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Abstract

This paper first demonstrates that the immunization strategy proposed by Tzeng, Wang , and Soo [2000] fails to protect the surplus of an insurance company against yield curve shift risks. Using goal programming, we propose a new method of immunization. The results of our simulation show that, compared to Tzeng, Wang , and Soo [2000], the goal programming proposed in this paper can significantly reduce the risks of yield curve shifts against an insurance company’s surplus.
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The early literature (Grove [1974], Bierwag [1987], and Reitano [1992]) recommended that insurance companies can set the duration of assets equal to the asset/liability ratio times the duration of liabilities to immunize the interest-rate risk against an insurance company’s surplus. However, most of the research since has shared a common assumption that the shift of the yield curve is parallel. To recognize the non-parallel shifts of the curve, Tzeng, Wang, and Soo [2000] (hereafter TWS) extended the traditional immunization strategy to the case where interest rates follow a stochastic process. However, their strategy immunizes only the risk of a shift of the current interest rate; and this shift has almost no impact on the long-term yield, since they assumed that the underlined stochastic process of the interest rates is unchanged. Thus, TWS’s strategy [2000] can be applied to only a limited set of non-parallel yield curve shifts.

Reitano [1996] proposed a mean-variance approach to immunize an insurer’s surplus against a stochastic shift of the yield curve. While this idea is intriguing, in practice it may be difficult to find the required information for implementing this strategy. To calculate the mean and variance of the insurer’s surplus under a stochastic yield curve shift, Reitano [1996] assumed that the insurance company knows the distribution of this shift. However, it be unrealistic to assume that this information is known in real practice.

In this paper, we intend to propose an immunization strategy against unknown yield curve shifts. Unlike Reitano [1996], we assume that insurance companies do not know the distribution of the stochastic yield curve shift. The mechanism of our method relies on the insurance company forming a strategy to immunize parameter changes characterized by the yield curve. Wang and Tzeng [2003] proposed a method for an insurance company to immunize the parameter risks of the stochastic process. However, the change of the stochastic process is unobservable. Likewise, the parameter changes in the stochastic process are unobservable. Unlike Tzeng and Wang’s [2003] focus on unobservable parameter changes in the stochastic process, our paper focuses on the shift of the yield curve, which is generally observable by the insurance companies.

Thus, we first demonstrate that TWS’s strategy [2000] cannot immunize the risk of a general yield curve shift. Furthermore, unlike TWS’s focus on the current interest rate change under a stochastic process, we follow Reitano’s idea [1996] of coping directly with the shift of the yield curve. We then propose a goal-programming algorithm to form the strategy against parameter changes of the yield curve. The results of our simulation show that, compared to TWS [2000], the goal programming proposed in this paper can significantly reduce the yield curve shift risks against an insurance company’s surplus.
MODEL
Assume that the yield curve function 
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 maturity period. Thus, as evaluated by the net present value, the assets and liabilities of an insurance company are then equal to 
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where 
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, as a discount factor. Let S denote an insurance company’s surplus, and S is then equal to 
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    We characterize movement of the yield curve shift as parameter changes in Equation (1). To immunize the risks of the yield curve shifting under an insurance company’s surplus management, we propose the goal programming method as follows, 
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where d is the minimum distance of the surplus change between the goal and the final outcome of insurance company—i.e., the risk position the insurance company has to bear; 
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 are the weights of the parameter risks; and K is the insurance company’s minimum cash flow holding at j maturity period.

The first six constraints in Equation (4) control the impact on the surplus of each parameter change. It should be noted that insurance companies can set a smaller weight for any parameter if they are more concerned about a specific parameter change. Following TWS [2000], we assume that an insurance company may need to fulfill the minimum solvency margins and may have borrowing constraints. The last two constraints in Equation (4) represent the solvency and borrowing constraints for insurance companies.

SIMULATION

To fulfill the simulation, we assume that there exists a hypothetical insurance company with cash outflows of ten periods. The balance sheet for this hypothetical company at period 0 and its future cash outflows in ten years are shown as Table 1 and 2.
We first use TWS [2000] as a benchmark. For simplicity, we assume that the interest rate stochastic processes of assets and liabilities in TWS [2000] are identical. TWS [2000] used Vasicek [1977] to characterize the interest rate process as 
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. According to the linear programming proposed by TWS [2000], the optimal asset allocation will be determined, as shown in Table 3.

Since we intend to show that the goal programming method proposed in this paper outperforms the linear programming method suggested by TWS [2000], it is critical to isolate the effect of pricing errors. In other words, the yield curve we use in this paper should match the stochastic process used in TWS [2000]. By matching Vasicek’s [1977] discount factor, which is adopted TWS’s immunization strategy method,
 we estimate the parameters of the yield curve function by OLS. Table 4 shows the estimated results and R2. The R2 and the Adjusted R2 are nearly close to 1. This implies that we have an almost perfect fitting between the discount factors generated by the yield curve function and those generated by Vasicek [1977].

Implementing the goal programming method, we must assume that the parameters of the yield curve function are as shown in Table 4. In the meantime, we set 
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=1. Therefore, according to the goal programming method, the optimal cash inflows can be generated by Equation (4), and the results are shown in Table 5.

To compare the effects of the two approaches, we show the yield curve shifting in terms of alternative parameters given other fixed parameters. Figures 1 to 6, respectively, demonstrate the yield shifts caused by each parameter change. In Figure 1, c0 obviously captures the parallel yield curve shift. From Figures 2 and 3, it seems that c1 and c2 mainly exhibit the change in slope and curvature of a yield curve. On the other hand, from Figures 4 to 6, c3, c4, and c5 seem to capture more of the change in the long-run yield rates.

In comparing the performance between our goal programming method and TWS’s [2000] linear programming method, the criterion we adopt is the percentage change of an insurance company’s surplus. In Figures 7 to 12, we show the percentage changes of this surplus with respect to changes of the various parameters.

    Figure 7 shows the surplus percentage changes for various c0 from 0.01 to 0.09. Notice that a change in c0 represents a parallel yield curve shift. Interestingly, we find that, for all the parallel shifts, the performance of the linear programming approach proposed by TWS [2000] dominates that of the goal programming we propose in this paper. This implies that the linear programming approach proposed by TWS [2000] is quite useful if the insurance company worries only about parallel yield curve shifts. Our proposed goal programming approach tries to immunize the risks caused by both parallel yield curve shifts and several kinds of non-parallel yield curve shifts and thus reduces the performance in the case of the parallel yield curve shifts.

However, insurance companies frequently need to cope with cases of non-parallel yield curve shifts. From Figures 8 to 12, we find that the surplus percentage changes under the immunization strategy proposed by TWS [2000] vary much more than those under the immunization strategy proposed by our paper. The simulation results seem to support that the goal programming method proposed by our paper provides a better immunization strategy than TWS’s [2000] linear programming method.

CONCLUSIONS
In this paper, we proposed to use goal programming to form an immunization strategy against risks of yield curve shifts. The method in our paper could be easier to implement in real practice than that in Reitano [1996] because it copes with observable changes of the yield curve and requires no information about the distribution of stochastic yield curve shifts. Moreover, the results of our simulation show that, compared to TWS [2000], the goal programming proposed in this paper can significantly reduce risks of yield curve shifts against an insurance company’s surplus.
REFERENCES
Bierwag, Gerald O. Duration Analysis: Managing Interest Rate Risk. Cambridge, MA: Ballinger Publishing Company, (1987).

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross. “A Theory of the Term Structure of Interest Rates.” Econometrica, 53(1985), pp. 385-407.

Grove, M.A. “On Duration and Optimal Maturity Structure of the Balance Sheet.” Bell Journal of Economics and Management Sciences, 5(1974), pp. 696-709.

Heath, D. C., Robert A. Jarrow, and Andrew Morton. “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation.” Econometrica, 60(1992), pp. 77-105.

Ho, Thomas S., and Sang Bin Lee. “Term Structure Movements and Pricing Interest Rate Contingent Claims.” The Journal of Finance, 41(1986), pp. 1011-29.

McCulloch, J. “The Tax-Adjusted Yield Curve.” Journal of Finance, 30(1975), pp. 811–830.
Nelson, C., and A. Siegel. “Parsimonious Modelling of Yield Curves.” Journal of Business, 60(1987), pp. 473-489.
Reitano, Robert R. “Non-Parallel Yield Curve Shifts and Spread Leverage.” The Journal of Portfolio Management, (1991), pp. 82-87.

-------. “Non-Parallel Yield Curve Shifts and Immunization.” The Journal of

Portfolio Management, (1992), pp. 36-43.

-------. “Non-Parallel Yield Curve Shifts and Stochastic Immunization.” The Journal of Portfolio Management, (1996), pp. 71-78.
Svensson, L. “Estimating and Interpreting Forward Interest Rates: Sweden

1992-1994.” International Monentary Fund, Working Paper no. 114(1994).

Tzeng, Larry Y., Jennifer L.Wang, and June Soo. “Surplus Management Under a Stochastic Process.” Journal of Risk and Insurance, 67(2000), pp. 451-62. 

Vasicek, Oldrich. “An Equilibrium Characterization of the Term Structure.” The Journal of Financial Economics, 5(1977), pp. 177-88.
Vasicek, Oldrich, and H. Fong. “Term Structure Modelling Using Exponential Splines.” Journal of Finance, 37(1982), pp. 339-356.
Wang, Jennifer L., and Larry Y. Tzeng. “Parameter Risks of Surplus Management Under a Stochastic Process.” Journal of Financial Studies, 11(2003), pp. 95-115. 

TABLES and FIGURES

	Table 1 
	
	
	

	Balance Sheet of a Hypothetical Insurance Company

	
	
	
	
	

	
	Assets
	Liabilities
	Surplus
	

	
	$6,331,902
	$5,331,902
	$1,000,000
	


	Table 2 
	
	
	
	

	Cash Outflows Schedule of the Hypothetical Insurance Company

	
	
	
	
	

	
	Periods
	Cash Outflows
	

	
	1
	$591,500
	
	

	
	2
	$633,700
	
	

	
	3
	$677,400
	
	

	
	4
	$723,500
	
	

	
	5
	$775,800
	
	

	
	6
	$815,200
	
	

	
	7
	$856,100
	
	

	
	8
	$903,100
	
	

	
	9
	$935,400
	
	

	
	10
	$1,023,000
	　
	


	Table 3 
	
	
	
	
	

	Optimal Asset Allocation Using the Linear Programming Method

	
	
	
	
	
	

	
	Periods
	Assets
	
	

	
	0
	$3,056,976
	
	
	

	
	1
	$0
	
	
	

	
	2
	$0
	
	
	

	
	3
	$0
	
	
	

	
	4
	$0
	
	
	

	
	5
	$0
	
	
	

	
	6
	$534,101
	
	
	

	
	7
	$847,477
	
	
	

	
	8
	$894,235
	
	
	

	
	9
	$926,336
	
	
	

	
	10
	$3,042,343
	　
	
	


	Table 4 
	
	
	

	The Estimated Parameters of the Yield Curve Function

	
	
	
	
	

	
	Parmaeters
	Value
	

	
	c0
	0.0503634810 
	
	

	
	c1
	0.0042651994 
	
	

	
	c2
	-0.0002452841 
	
	

	
	c3
	0.0000086095 
	
	

	
	c4
	-0.0000001683 
	
	

	
	c5
	0.0000000014 
	
	

	
	R2
	1.0000000000 
	
	

	
	Adj R2
	0.9999999900 
	　
	


	Table 5 
	
	
	
	

	Optimal Asset Allocation Using the Goal Programming Method

	
	
	
	
	
	

	
	Periods
	Assets
	
	

	
	0
	$1,209,441
	
	
	

	
	1
	$0
	
	
	

	
	2
	$1,606,510
	
	
	

	
	3
	$0
	
	
	

	
	4
	$0
	
	
	

	
	5
	$313,162
	
	
	

	
	6
	$3,845,783
	
	
	

	
	7
	$0
	
	
	

	
	8
	$0
	
	
	

	
	9
	$0
	
	
	

	
	10
	$1,960,694
	　
	
	


Figure 1 

Changes of the Yield Curve with respect to Changes of c0
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Figure 2 

Changes of the Yield Curve with respect to Changes of c1
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Figure 3 

Changes of the Yield Curve with respect to Changes of c2
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Figure 4 

Changes of the Yield Curve with respect to Changes of c3
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Figure 5 

Changes of the Yield Curve with respect to Changes of c4
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Figure 6 

Changes of the Yield Curve with respect to Changes of c5
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Figure 7 

Surplus Management Performance of Our Method (GP) and TWS (IS) with respect to Changes of c0 
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Figure 8 

Surplus Management Performance of Our Method (GP) and TWS (IS) with respect to Changes of c1
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Figure 9 

Surplus Management Performance of Our Method (GP) and TWS (IS) with respect to Changes of c2
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Figure 10 

Surplus Management Performance of Our Method (GP) and TWS (IS) with respect to Changes of c3
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Figure 11 

Surplus Management Performance of Our Method (GP) and TWS (IS) with respect to Changes of c4
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Figure 12 

Surplus Management Performance of Our Method (GP) and TWS (IS) with respect to Changes of c5
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� The setting of the yield curve function is just for the sake of simplicity. Many models are proposed to sketch the yield curve function, e.g., McCulloch [1975], Vasicek and Fong [1982], Nelson and Siegel [1987], and Svensson [1994]. The main idea of this paper can be applied to other yield curve functions.


� Implicitly, we assume that the yield curve is generated by Vasicek [1977]. The main results generally hold if interest rates follow other stochastic processes, e.g., Cox, Ingersoll, and Ross [1985], Ho and Lee [1986], and Heath, Jarrow, and Morton [1992].
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