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A Model of Anomaly Discovery

Abstract

We analyze a model of anomaly discovery. Consistent with existing evidence, we show that

the discovery of an anomaly reduces its magnitude and increases its correlation with existing

anomalies. One new prediction is that the discovery of an anomaly reduces the correlation between

deciles 1 and 10 for that anomaly. Using data for 12 well-known anomalies, we find strong

evidence consistent with this prediction. Moreover, the correlation between deciles 1 and 10 of an

anomaly becomes correlated with the aggregate hedge-fund wealth volatility after the anomaly is

discovered. Our model also sheds light on how to distinguish between risk- and mispricing-based

anomalies.
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1 Introduction

A significant portion of the asset-pricing literature has been devoted to “anomalies,” empirical

patterns that appear inconsistent with existing benchmark models. One popular approach to

interpreting anomalies is risk-based. Take the value premium as an example. Its discovery is

often attributed to Basu (1983). Since then, numerous models have been proposed to explain

why value stocks are indeed riskier (than what CAPM implies) and so have higher expected

returns.

We argue that this approach ignores the discovery aspect. In those risk-based models, investors

know that value stocks are riskier and demand higher returns. As expected, higher average returns

are realized for value stocks in the data. That is, in this view, there is no real discovery: Professor

Basu was the last one in the world to find out about the value premium. Investors knew about

this return pattern all along.

In contrast to the view above, it seems natural to expect discoveries to have significant effects

on investors’ decisions and asset prices since, over the years, discoveries in academia have had

increasingly important influences on the asset management industry. Many prominent asset man-

agement companies regularly organize academic seminars and conferences. Some explicitly claim

that they identify investment ideas from academic research.1 In this paper, we explicitly model

anomaly discovery and analyze its effects on asset prices, both theoretically and empirically.

We solve a simple model with two assets (asset 1 and asset 2) that have the same distribution

for future cash flows. However, investors find asset 1 riskier because their endowment is correlated

with asset 1’s cash flow, but not with asset 2’s. Consequently, in equilibrium, asset 1 has a lower

price and a higher expected future return than asset 2. We call this return pattern an “anomaly,”

which is risk-based since it is caused by investors’ risk consideration.

1Take Dimensional Fund Advisors as an example. According to its website, as of June 30, 2014, it manages
$378 billion. Academic research appears to have a deep influence on its operation, as its website states: “Working
closely with leading financial academics, we identify new ideas that may benefit investors.”
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When this anomaly is discovered, some agents, who we call “arbitrageurs,” become aware of the

return pattern and start exploiting it. To analyze the discovery effect, we construct an equilibrium

without these arbitrageurs, which we call a “pre-discovery equilibrium,” and an equilibrium with

these arbitrageurs, which we call a “post-discovery equilibrium.” The discovery effect is captured

by the difference between the pre- and post-discovery equilibria.2

Our model has the following implications. First, the discovery of an anomaly reduces its

magnitude. This follows directly once we recognize that the discovery brings in arbitrageurs.

Let us use the value premium as an example. It has been proposed that value stocks are riskier

because they are more exposed to the business cycle. Arbitrageurs, however, may not find this

risky, perhaps because they are wealthy and are themselves less exposed to the business cycle.

Hence, they will exploit this anomaly and consequently reduce its magnitude.3

Second, the discovery of an anomaly makes its return (i.e., the return from a long position in

asset 1 and a short position in asset 2) more correlated with the returns from existing anomalies.

This is due to a wealth effect when arbitrageurs exploit both existing anomalies and the newly

discovered one. Suppose the return from existing anomalies is unexpectedly high one period,

thus increasing arbitrageurs’ wealth. Everything else being equal, arbitrageurs will allocate more

investment to all their opportunities, including the new anomaly. This higher investment pushes

up the price of asset 1 and pushes down the price of asset 2, leading to a high return from the

new anomaly this period. Similarly, a low return from existing anomalies leads to a low return

from the newly discovered one. Hence, the wealth effect increases the correlation between the

new anomaly return and the returns from existing anomalies.

Third, the discovery reduces the correlation between the returns of assets 1 and 2, and this

effect is stronger when arbitrageurs’ wealth is more volatile. The intuition is as follows. After

2The traditional approach can be viewed as a special case, in which arbitrageurs’ wealth is zero. In this case,
the pre- and post-discovery equilibria coincide and the discovery has no effect on asset prices.

3For example, in an article written by several senior managers at AQR, Asness, Frazzini, Israel, and Moskowitz
(2014) state that “[w]e are fans of both momentum and value...” They also state that “none of this debate [about
whether momentum is due to risk or mispricing] should diminish momentum as a valuable investment tool.”
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the discovery, arbitrageurs have a long-short position in assets 1 and 2, as well as investments

in other opportunities. Suppose the arbitrageurs’ wealth increases due to, say, a high return

from their investments or fund flows from their investors. They will buy asset 1 and sell asset

2. This increases asset 1’s return but decreases asset 2’s. Similarly, when arbitrageurs’ wealth

decreases, they will unwind some of their long-short positions, i.e., sell asset 1 and buy asset 2,

which decreases asset 1’s return but increases asset 2’s. In both cases, arbitrageurs’ wealth shocks

push the returns of the two assets to opposite directions, reducing their correlation. Naturally,

this intuition also suggests that the effect is stronger when arbitrageurs’ wealth is more volatile.

To contrast with the above risk-based anomaly, we also analyze a version of our model where

the anomaly is due to mispricing. Specifically, we modify the previous model so that investors

do not have the hedging need in asset 1, but mistakenly believe that asset 1’s future cash flow is

lower than asset 2’s. Our analysis shows that the discovery of this mispricing-based anomaly has

exactly the same three asset-pricing implications as those discussed above. Hence, our analysis

suggests that in order to distinguish between risk- and mispricing-based anomalies, it is not

promising to focus only on asset prices. What is the solution? One possibility is to examine

investors’ portfolios instead, because risk- and mispricing-based anomalies have starkly different

implications for investors’ portfolios. For the value anomaly, for example, one can check if the

investors who underweight value stocks appear to be those whose labor income or other assets

are indeed more exposed to the risk proposed in the risk-based model. While this approach is

demanding on the required dataset, in this big data era, with more and more micro-level datasets

becoming available, this approach might not be a fantasy, either.

Both the risk- and mispricing-based versions of our model have the same three main pre-

dictions. The first two are consistent with existing empirical evidence. For example, McLean

and Pontiff (2013) analyze the post-discovery performance of 82 anomalies, and find that post-

discovery anomaly returns decay by 44% on average. They also find that after the discovery, the

new anomaly return becomes more correlated with the returns from existing anomalies.
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The third prediction is new to the literature, and we empirically test it. According to Harvey,

Liu, and Zhu (2014), there are more than 300 anomalies documented in the academic literature.

However, one would expect that for a discovery to have a first-order effect on underlying stock

prices, the anomaly would need to be widely known and exploited by a large number of arbi-

trageurs. Hence, we first analyze the three arguably most widely known anomalies—size, value,

and momentum—before we expand to a broader set of influential anomalies.

Our goal is to test, for each anomaly, whether the correlation between deciles 1 and 10,

formed from the corresponding portfolio sort, decreases after the discovery of the anomaly. For

each anomaly, we use a 5-year rolling window to estimate the correlation coefficient between the

monthly excess returns of deciles 1 and 10 during 1927–2013. The estimates are plotted in Figure

1. For momentum in Panel A, this correlation fluctuated between 0.6 and 0.8 in the first six

decades. In the early 1990s, however, it dropped significantly to around 0.4. This drop coincided

with the publication of the most influential study on momentum, Jegadeesh and Titman (1993).

We also see similar large drops in this correlation for size and value anomalies in Panels B and

C.4 Interestingly, although these two anomalies were documented in the early 1980s (Banz (1981)

and Basu (1983)), the correlations did not drop sharply until the early 1990s. This coincides with

Fama and French’s influential work (e.g., Fama and French (1992)) that narrows down a number

of anomalies to size and value.

To formally test the changes in the correlation between deciles 1 and 10, we control for its

potential time trend by normalizing it with the correlation between deciles 5 and 6. The idea is

that arbitrageurs are likely to take larger long-short positions in deciles 1 and 10 than in deciles

5 and 6. Hence, the correlation between deciles 5 and 6 should have little or no discovery effect,

but should share the common time trend with the correlation between deciles 1 and 10. Hence,

in our tests, we use the correlation ratio: the correlation between deciles 1 and 10 divided by the

correlation between deciles 5 and 6.

4In Panels B and C, the correlations revert back to their pre-discovery level after 2000. We are not sure about
the reasons behind the large increase in the correlations for size and value in the last 10 years.
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For each anomaly, we regress the correlation ratio on a dummy variable that takes the value

of 0 before the chosen “discovery time” of the anomaly and 1 afterwards. For momentum, if we

choose the publication time for Jegadeesh and Titman (1993) as the discovery time, the coefficient

for the discovery dummy is −0.13, with a t-statistic of −3.97. This implies that the correlation

ratio decreases by 0.13 after the discovery. For size and value anomalies, if we use the publication

time of the original studies (Banz (1981) and Basu (1983)) as the discovery time, the coefficient for

the discovery dummy is −0.07 (t = −1.15) for size and −0.09 (t = −1.78) for value. In contrast,

if we use the publication time for Fama and French (1992) as the discovery time, the coefficient

estimates become more significant both in magnitude and statistically: −0.14 (t = −1.78) for size

and −0.13 (t = −1.96) for value.

Our most compelling evidence is the direct link between the correlation and hedge funds’

activity. Our model predicts that the correlation is decreasing in the volatility of arbitrageurs’

wealth, which is proxied by the volatility of the aggregate assets under management (AUM) by

hedge funds. For each anomaly, we regress its correlation ratio on the estimated hedge fund

wealth volatility. Consistent with our model prediction, the coefficient for the wealth volatility is

highly significant for all three anomalies: the coefficient estimates are −6.78 (t = −2.23), −37.31

(t = −6.25), and −17.62 (t = −6.74), for momentum, size, and value, respectively.

We expand our analysis to include the list of anomalies that are studied in Stambaugh, Yu,

and Yuan (2012). Apart from a robustness check, the broader set of anomalies also offers a

stronger test to our model prediction: Our model implies that the post-discovery correlation

between deciles 1 and 10 is decreasing in the volatility of arbitrageurs’ wealth, but this relation

does not hold before discovery. In our previous analysis, we could not contrast the pre- and

post-discovery implications, because our hedge fund data start in 1999, long after the discovery

of all three anomalies. With the list of 12 anomalies, however, this comparison becomes possible

because half of them were discovered after 1999.

Specifically, we run two panel regressions of the correlation ratio for the 12 anomalies on hedge
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funds’ wealth volatility. In the first regression, we include the entire available sample during 1999–

2012. Since six anomalies were discovered after 1999, this regression includes their pre-discovery

data. In contrast, we exclude those pre-discovery data in the second regression. Our model

implies that the coefficient for hedge funds’ wealth volatility should be significantly negative in

the second regression, but weaker in the first one. This is exactly what we find. The estimate for

this coefficient is −4.18 (t = −1.00) in the first regression, and −11.75 (t = −2.21) in the second

one.

Our paper is closely related to the analyses of arbitrageurs’ risk-bearing capacity (e.g., Dow

and Gorton (1994), Shleifer and Vishny (1997), Xiong (2001), and Kyle and Xiong (2001)).

More broadly, our paper belongs to the literature that explores the role of arbitrageurs in asset

pricing (e.g., Gromb and Vayanos (2002), Liu and Longstaff (2004), Basak and Croitoru (2006),

Brunnermeier and Pedersen (2009), Kondor (2009), He and Krishnamurthy (2013), Kondor and

Vayanos (2013), Chinco (2014), Drechsler and Drechsler (2014), and Stambaugh, Yu, and Yuan

(2012, 2014)). These studies focus on the impact of arbitrageurs in contagion, risk sharing,

liquidity, portfolio choice, limit of arbitrage, the relation between the cost of shorting and anomaly

returns, and so on, while our paper focuses on the effect of discovery. There is an enormous

literature on anomalies, exploring explanations that are consumption-based (e.g., Bansal, Dittmar,

and Lundblad (2005)), investment-based (e.g., Hou, Xue, Zhang (2014)), institution-based (e.g.,

Vayanos and Woolley (2013)), and behavioral-based (e.g., Baker and Wurgler (2006)). See Harvey,

Liu, and Zhu (2014) for a comprehensive list. While these explanations generally abstract away

from the discovery aspect, we take it seriously and formally analyze its consequences. According

to Cochrane (1999), the discovery aspect “is (so far) the least stressed in academic analysis. In

my opinion, it may end up being the most important.”

The rest of the paper is as follows. Sections 2 presents a model of risk-based anomaly, Section

3 analyzes a mispricing-based anomaly, Section 4 tests the main new predictions, and Section 5

concludes. The numerical algorithm and proofs are in the appendix.
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2 A model of the discovery of a risk-based anomaly

We consider a two-period model, with time t = 0, 1, 2. Trading takes place at t = 0, 1, and

consumption occurs at t = 2. There is one risk-free asset, and its interest rate is normalized to

0. There are two risky assets, asset 1 and asset 2, each of which is a claim to a single cash flow

at t = 2. There is a continuum of identical investors, with a population size of one. At t = 0,

investors are endowed with one unit of each asset and k dollars cash.

The cash flows from assets 1 and 2 are independent and have the same ex ante distribution.

Specifically, for i = 1, 2, and t = 0, 1, we have

Di,t+1 = Di,t × µi,t+1, (1)

where Di,0 = 1, and µi,t+1 are independent across i and t, and have the same binary distribution:

µi,t+1 =

{

µ+ σ with probability p,

µ− σ with probability 1− p,
(2)

where µ > σ > 0, and 0 < p < 1. Asset i is a claim to a cash flow Di,2 at time t = 2. Hence,

the two cash flows (i.e., D1,2 and D2,2) are independent from each other and have the same

distribution at t = 0.

For i = 1, 2, and t = 0, 1, 2, we use Pi,t to denote the price of asset i at time t, which will be

determined endogenously in equilibrium. At t = 2, asset prices are pinned down by the final cash

flow: Pi,2 = Di,2. Let us denote the gross return of asset i at time t, for t = 1, 2, as

ri,t ≡
Pi,t

Pi,t−1

.

2.1 Risk-based anomaly

Investors are endowed with a nontradable asset (e.g., labor income), which is a claim to a cash

flow ρD1,2 at t = 2, with ρ ≥ 0. That is, this endowment is perfectly correlated with the payoff

from asset 1. Denote investors’ wealth, excluding their nontradable endowment, at time t as Wt
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for t = 0, 1, 2. If investors allocate a fraction θi,t of Wt to asset i at time t, for i = 1, 2 and t = 0, 1,

their wealth dynamic is given by

Wt+1 = Wt





∑

i∈{1,2}

θi,tri,t+1 +



1−
∑

i∈{1,2}

θi,t







 , (3)

with W0 = k + P1,0 + P2,0. Investors’ objective is to choose θi,t, for i = 1, 2, and t = 0, 1, to

max
θi,t

E0 [log (W2 + ρD1,2)] , (4)

subject to (3). In reduced form, the above formulation captures the essence of risk-based anoma-

lies: Investors find asset 1 riskier because its return is correlated with their endowment.

2.2 Anomaly discovery

Traditional risk-based explanations of anomalies abstract away from the discovery aspect. Let us

use the value premium as an example. By definition, the discovery of the value premium in Basu

(1983) should make at least some market participants aware of the return pattern for the first

time, unless one believes Basu was actually the last person to find out about the return pattern.

In traditional risk-based models of the value premium, however, all investors knew about the

value premium even before the discovery in Basu (1983). That is, this traditional approach does

not take into account the effect of discovery.

We focus on exactly this discovery aspect. That is, the discovery of the anomaly informs

some agents about the return pattern for the first time. For convenience, we call those agents

“arbitrageurs,” to highlight their difference from the previously-described “investors.”

There is a continuum of identical arbitrageurs, with a population size of one. Their aggregate

wealth at t = 0 is W a
0 ≥ 0 dollars in cash. They have access to another investment opportunity,

which presumably exploits existing anomalies (say, e.g., currency carry trade). This opportunity

is not available to the investors described earlier, perhaps because those investors do not have the

expertise to analyze and implement the strategy. We call this existing anomaly “asset e,” and
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assume its gross return at t = 1, 2 is

re,t =

{

µe + σe, with probability pe,

µe − σe, with probability 1− pe,

where µe > σe > 0, and 0 < pe < 1. Moreover, re,t is assumed to be independent from Di,t. That

is, the fundamentals of assets 1 and 2 are independent from the existing anomaly—asset e.

To analyze the discovery effect, we compare the equilibria in the following two economies. In

the first (pre-discovery) economy, arbitrageurs are not aware of the anomaly (i.e., that assets 1

and 2 have the same fundamentals but different prices at t = 0). Hence, they invest in asset e, but

not in assets 1 or 2. In the second (post-discovery) economy, arbitrageurs become aware of the

anomaly and start exploiting it, as well as investing in the existing anomaly—asset e. To capture

this, we assume that arbitrageurs take a long-short strategy in the two assets so that they can

exploit the anomaly and stay “market neutral.”5 Specifically, we use θai,t to denote the fraction of

arbitrageurs’ wealth that is invested in asset i = 1, 2, at time t = 0, 1. A market-neutral strategy

is such that, for t = 0, 1,

θa1,t + θa2,t = 0. (5)

Let us use θae,t to denote the fraction of arbitrageurs’ wealth that is invested in asset e at time

t = 0, 1. Then, arbitrageurs’ wealth dynamic is given by

W a
t+1 = W a

t





∑

i∈{1,2,e}

θai,tri,t+1 +



1−
∑

i∈{1,2,e}

θai,t







 , (6)

for t = 0, 1. Their objective is to choose θai,t for i = 1, 2, e, and t = 0, 1, to

max
θa
i,t

E0 [log (W
a
2 )] , (7)

subject to (5) and (6).

5This assumption is made so that arbitrageurs focus on exploiting the anomaly. Alternatively, we can simply
assume that after the discovery, arbitrageurs become aware of the existence of assets 1 and 2. Under this alternative
assumption, however, arbitrageurs will not only take a long-short position in the two assets, but also start investing
in both assets. The latter will simply push up the prices of both assets. We are not interested in analyzing this
latter effect. Moreover, in the value premium example, for instance, it seems more natural to think that, after the
discovery of the value premium, hedge funds start buying value stocks and shorting growth stocks, rather than
hedge funds becoming aware of the existence of both value and growth stocks and starting to buy both of them.
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In the pre-discovery case, arbitrageurs are on the sidelines and have no impact on the markets

for assets 1 and 2. Hence, the equilibrium can be defined as follows. The pre-discovery competitive

equilibrium is defined as asset prices (Pi,t for i = 1, 2, and t = 0, 1) and investors’ portfolios (θi,t

for t = 0, 1 and i = 1, 2), such that investors’ portfolios optimize (4), and markets clear, i.e., for

i = 1, 2 and t = 0, 1,

Wtθi,t = Pi,t. (8)

Similarly, the post-discovery competitive equilibrium is defined as asset prices (Pi,t for i = 1, 2,

and t = 0, 1) and portfolios of investors and arbitrageurs (θi,t for t = 0, 1 and i = 1, 2; and θai,t for

t = 0, 1, i = 1, 2, e), such that investors’ portfolios optimize (4), arbitrageurs’ portfolios optimize

(7), and markets clear, i.e., for i = 1, 2 and t = 0, 1,

Wtθi,t +W a
t θ

a
i,t = Pi,t. (9)

The implicit assumption is that arbitrageurs do not have any hedging demand in asset 1 or

2. Moreover, after the discovery, they know that the cause of the anomaly is investors’ hedging

demand. These are simplifying assumptions. What is necessary is that arbitrageurs have less

hedging demand in asset 1 than investors. Finally, even if arbitrageurs do not know the true

cause of the anomaly, they will still invest in it, and the main implications in this alternative

model remain similar to those in our current setup.6

2.3 Equilibrium

Proposition 1 (Pre-discovery) The pre-discovery equilibrium prices Pi,t and portfolio choices

θi,t can be characterized by equation (8) and

Et

[

ri,t+1 − 1

Wt+1 + ρP1,t+1

]

= 0, for i = 1, 2, t = 0, 1. (10)

Moreover, in this equilibrium, we have P1,0 < P2,0.

6See Brennan and Xia (2001) for an analysis of this intuition in the portfolio choice context.
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The above proposition illustrates the anomaly: Although both assets have the same fundamentals

ex ante, they have different prices and hence different future expected returns. Due to their

nontradable asset endowment, investors find asset 1 more risky than asset 2, leading to a lower

price for asset 1.

This is, of course, a reduced-form formulation of a risk-based anomaly. While traditional risk-

based models focus on the detailed analysis of the exact mechanism through which the hedging

demand arises, they assume away the discovery aspect since all investors know the return pattern

all along. In contrast, we are not interested in the details of the hedging demand, but focus on

the analysis of the consequences of the discovery. The following proposition characterizes the

post-discovery equilibrium.

Proposition 2 (Post-discovery) The post-discovery equilibrium prices Pi,t and portfolio choices

θi,t and θai,1 can be characterized by equations (5), (9), (10), and for t = 0, 1,

Et

[

r1,t+1 − r2,t+1

W a
t+1

]

= 0,

Et

[

re,t+1 − 1

W a
t+1

]

= 0.

Since arbitrageurs are not exposed to the endowment risk that investors have, they find the

anomaly an attractive investment opportunity, and buy asset 1 and short asset 2. For convenience,

we call the return from this long-short portfolio, r1,1 − r2,1, the “anomaly return.”

To analyze the discovery effect, we will compare the post-discovery equilibrium in Proposition

2 with the pre-discovery equilibrium in Proposition 1.7 In particular, following the algorithm in

Appendix A, we solve both equilibria numerically. The baseline parameter values are summarized

7The equation system in Proposition 2 is highly nonlinear and we have not been able to establish the existence
and uniqueness of their solutions. However, we have always been able to solve the equation system numerically,
and the solution appears to be unique. One might be somewhat surprised that the simple two-period structure in
our model does not allow for a closed-form solution. In fact, the wealth effect in our model has similar complexity
as that in the continuous-time model in Xiong (2001), which also heavily relies on numerical analysis. As noted in
Gromb and Vayanos (2002), a two-period model of arbitrageurs and investors with a wealth effect is not as tractable
as its appearance suggests (page 381). In a recent study, Kondor and Vayanos (2013) gain more tractability by
simplifying investors’ decisions.
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in Table 1. In the following numerical analysis, we vary only one parameter at a time to examine

the effects of the discovery. We have also repeated our numerical analyses for other parameter

values, and none of the following qualitative results are specific to the chosen parameters.

2.4 Anomaly magnitude

Figure 2 illustrates the effects of discovery on the expected anomaly returns. The dashed line

represents the size of the anomaly (i.e., the expected anomaly return E0[r1,1 − r2,1]) before the

discovery. Since arbitrageurs have no influence on the markets for assets 1 and 2 before the

discovery, the dashed line is flat: The expected anomaly return is around 5.5% regardless of

arbitrageurs’ wealth.

After the discovery, arbitrageurs start exploiting the opportunity, reducing the expected

anomaly return. As shown by the solid line in Panel A, the post-discovery expected anomaly

return is lower than that in the pre-discovery case (i.e., the solid line is below the dashed line).

In the case W a
0 = 2, for example, the discovery reduces the expected anomaly return from 5.5%

to 5%.

The plot also shows that the effect of discovery is stronger when arbitrageurs have more

wealth. For example, in the case W a
0 = 5, the discovery reduces the expected anomaly return

from 5.5% to 4%. The discovery effect disappears when W a
0 = 0. One can think of this W a

0 = 0

case as representing the traditional modeling approach, where discovery does not change the set

of investors who are aware of the anomaly.

Panels B and C demonstrate the effects of arbitrageurs’ existing investment opportunity (i.e.,

asset e). If arbitrageurs’ existing strategy is more attractive (i.e., µe is higher, or σe is lower),

they will allocate less capital to exploit the new anomaly and so its expected return will drop less.

As shown in Panels B and C, after the discovery of an anomaly, its expected return is increasing

in µe and decreasing in σe.
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2.5 Correlation among anomaly returns

By the construction of our model, before the discovery, the anomaly return r1,1−r2,1 is independent

of the return of the existing anomaly re,1. How does the discovery affect the correlation between

r1,1 − r2,1 and re,1?

Intuitively, after the discovery of an anomaly, arbitrageurs start exploiting it, as well as the

existing anomaly, asset e. This creates a correlation through the wealth effect. Suppose the return

from asset e is unexpectedly high one period. This increases the wealth of these arbitrageurs.

Everything else being equal, they will allocate more investment to the newly discovered anomaly.

This higher investment pushes up the price of asset 1 and pushes down the price of asset 2, leading

to a high anomaly return r1,1 − r2,1. Similarly, an unexpectedly low return from asset e leads

to a low anomaly return. That is, the wealth effect increases the correlation between the newly

discovered anomaly return and the return from the existing anomaly.

The above intuition is illustrated in Figure 3. Panel A plots the correlation coefficient between

r1,1 − r2,1 and re,1. Before the discovery, as illustrated by the dashed line, the correlation is 0. In

contrast, the post-discovery correlation, shown by the solid line, is positive. The only exception

is the case W a
0 = 0, where the correlation is zero, the same as in the pre-discovery case. Again,

one can view this special case as the traditional approach that abstracts away from discovery.

This discovery effect (i.e., the change in the correlation across the pre- and post-discovery

cases) is initially increasing in the size of arbitrage capital W a
0 , and is not monotonic. This is

because arbitrageurs have two effects on the correlation. The first is the aforementioned wealth

effect, which increases the correlation. The second is that as arbitrage capital increases, the prices

of assets 1 and 2 are more driven by their fundamentals. This reduces the correlation between

r1,1 − r2,1 and re,1. When the size of arbitrage capital is sufficiently large, the second effect

dominates, and hence a further increase in arbitrage capital reduces the correlation.

The above intuition is further illustrated in Panels B and C. In particular, when arbitrageurs
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have a larger position in asset e (due to a higher µe or a lower σe), their wealth becomes more

sensitive to its realized return re,1. This leads to a stronger wealth effect, i.e., the discovery has a

stronger effect in generating the correlation between r1,1 − r2,1 and re,1. In Panel B, for example,

as the expected return from asset e increases (i.e., a higher µe), it leads to a higher correlation

between r1,1 − r2,1 and re,1. Similarly, in Panel C, as the volatility of asset e increases (i.e., a

higher σe), it leads to a weaker wealth effect and a lower correlation.

2.6 Correlation between assets 1 and 2

Our model shows that the discovery of an anomaly reduces the correlation coefficient between

the returns of assets 1 and 2. The intuition is as follows. After the discovery, arbitrageurs long

asset 1 and short asset 2 to exploit the anomaly. Now, suppose arbitrageurs’ wealth increases

due to, say, a high return from their investment in asset e. They will buy more of asset 1 and

sell more of asset 2. This increases asset 1’s return but decreases asset 2’s return. Similarly,

when arbitrageurs’ wealth decreases, they will unwind some of their positions in the long-short

portfolio. That is, they will sell asset 1 and buy asset 2, decreasing asset 1’s return but increasing

asset 2’s return. In both cases, arbitrageurs’ wealth shocks push the returns of the two assets to

opposite directions, which reduces the correlation between the returns of assets 1 and 2.

This intuition is illustrated in Figure 4. The dashed line in Panel A is for the pre-discovery

correlation between assets 1 and 2. Since arbitrageurs are on the sidelines before the discovery,

their wealth level W a
0 does not affect the correlation. Hence, the dashed line is flat. The post-

discovery case is represented by the solid line. It is below the dashed line, suggesting that the

discovery reduces the correlation between assets 1 and 2. It also shows that the larger the size of

arbitrage capital, the larger the reduction in the correlation.

The above intuition further suggests that the discovery effect is stronger when arbitrageurs’

wealth is more volatile. To illustrate this intuition, we plot the correlation between assets 1 and

2 against arbitrageurs’ wealth volatility. Specifically, we vary arbitrageurs’ wealth volatility by
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changing σe, the volatility of asset e. The solid line in Panel B shows that after the discovery,

the correlation between assets 1 and 2 is decreasing in arbitrageurs’ wealth volatility. In contrast,

this relation does not hold before the discovery, as shown by the dashed line.

3 Mispricing-based anomaly

Another major approach to understanding anomalies is based on mispricing. To compare mispricing-

and risk-based anomalies, we now analyze a model in which the anomaly is caused by investors’

behavioral bias. Specifically, we modify the previous model by setting ρ = 0; that is, there is no

hedging demand. The fundamentals of the two assets are still given by (1) and (2). However,

investors are biased about asset 1 and believe that for t = 0, 1,

µ1,t+1 =

{

µ+ σ with probability p− b,

µ− σ with probability p+ b,
(11)

where 0 ≤ b < p. That is, investors underestimate asset 1’s expected cash flow, and b measures

the degree of the bias. In contrast, their belief about asset 2 is correct.

Investors’ objective is to choose θi,t, for i = 1, 2, and t = 0, 1, to

max
θi,t

E∗
0 [log (W2)] , (12)

subject to (3), where E∗
0 [·] indicates that the expectation is taken under the biased belief in (11).

Arbitrageurs have correct beliefs, and their objective is given by (7), as in the previous section.

This formulation is meant to capture the essence of mispricing-based interpretations of anoma-

lies in a reduced form. For instance, in the value premium example, Lakonishok, Shleifer, and

Vishny (1994) argue that investors are overly enthusiastic about glamorous growth stocks and

have a low demand for value stocks. Similarly, in our model, investors underestimate the payoff

from asset 1 and so have a low demand.

Similar to the case for the risk-based anomaly, in the pre-discovery case, arbitrageurs have no

influence on the markets for assets 1 and 2. The competitive equilibrium for this case is defined as
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asset prices (Pi,t for i = 1, 2, and t = 0, 1) and investors’ portfolios (θi,t for t = 0, 1 and i = 1, 2),

such that investors’ portfolios optimize (12), and markets clear as in (8).

The post-discovery competitive equilibrium is defined as asset prices (Pi,t for i = 1, 2, and

t = 0, 1) and portfolios of investors and arbitrageurs (θi,t for t = 0, 1 and i = 1, 2; and θai,t for

t = 0, 1, i = 1, 2, e), such that investors’ portfolios optimize (12), arbitrageurs’ portfolios optimize

(7), and markets clear as in (9).

What is implicitly assumed here is that the discovery does not affect investors’ bias b. That

is, the bias is systematic and deeply rooted, and investors do not adjust their behavior after the

discovery of the anomaly.

Proposition 3 The pre-discovery equilibrium prices Pi,t and portfolio choices θi,t can be charac-

terized by (8), and for i = 1, 2, t = 0, 1,

E∗
t

[

ri,t+1 − 1

Wt+1

]

= 0. (13)

The post-discovery equilibrium prices Pi,t and portfolio choices (θi,t, and θai,1) can be characterized

by equations (5), (9), (13), and for t = 0, 1,

Et

[

r1,t+1 − r2,t+1

W a
t+1

]

= 0, (14)

Et

[

re,t+1 − 1

W a
t+1

]

= 0. (15)

Similar to the risk-based case in the previous section, investors have a lower demand for asset 1

than for asset 2. The only difference is the motivation. In the risk-based case, the motivation is

to hedge, while in the mispricing-based case, the motivation is investors’ wrong belief. Can we

distinguish a risk-based anomaly from a mispricing-based one by examining asset prices? We will

examine this in the next section.
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3.1 Comparing risk- and mispricing-based anomalies

We now compare the risk-based anomaly (Propositions 1 and 2) with the mispricing-based one

(Proposition 3). In particular, we set b = 0.055 and adopt all other parameters from Table 1. We

choose this value for b so that, before the discovery, the expected anomaly returns are the same

across the risk-based case and the mispricing-based case. We now compare the post-discovery

return dynamic across the two cases.

Panel A of Figure 5 shows that it is difficult to distinguish a risk-based anomaly from a

mispricing-based one by examining the post-discovery performance. The solid and dashed lines

represent the post-discovery expected anomaly return for the risk- and mispricing-based cases,

respectively. The pre-discovery expected anomaly return for both cases is flat at around 5.5%

(we omitted this flat line). The plot shows that the discovery of an anomaly reduces its expected

return regardless of whether the anomaly is caused by risk or mispricing. Moreover, both lines

are downward sloping, implying that the more arbitrage capital (W a
0 ), the stronger the effect.

The two lines are also close to each other, suggesting that the magnitude of the reduction of

the anomaly return is similar across the two cases. Panel B shows that, for both the risk- and

mispricing-based cases, the discovery of an anomaly increases the correlation between its return

and the existing anomaly return. Even the non-monotonic pattern is similar across the two cases.

Finally, Panel C shows that the discovery of the anomaly reduces the correlation between assets

1 and 2 for both risk- and mispricing-based cases. Moreover, this correlation is decreasing in

arbitrageurs’ wealth level W a
0 in both cases.

3.2 One possible solution

The above results highlight the difficulty in distinguishing between risk- and mispricing-based

anomalies by examining asset prices.8 What is the solution then? We argue that it is more

8This is parallel to the result in Brav and Heaton (2002), which emphasizes the difficulty in distinguishing a
biased belief from a rational belief with structural uncertainty.
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promising to analyze investors’ portfolios. The idea is that investors’ holdings might offer direct

evidence on why they overweight one asset and underweight another.

In a risk-based anomaly, investors recognize the fact that asset 1’s expected return is higher

than asset 2’s, and so they have a higher total exposure to asset 1 than to asset 2, once we include

the exposure implied by their nontradable endowment. That is, in this case, although investors

underweight asset 1 in the stock market, their total exposure to asset 1 is actually higher than

that to asset 2. In a mispricing-based anomaly, however, investors have a lower exposure to asset

1, because they mistakenly believe that it has a lower future payoff and underweight it.

Therefore, investors’ portfolio holdings can help separate risk- and mispricing-based anomalies.

For example, Fama and French (1993, 1996) interpret the value premium as value stocks exposing

investors to risks associated with economy-wide financial distress. To evaluate this risk-based

explanation, one can examine whether the investors who underweight value stocks are those who

are more exposed to risk of financial distress (e.g., their labor income or other assets are more

exposed to financial distress).

To be fair, while examining portfolio holdings is a direct approach, it is very demanding on

the dataset. It requires detailed information on investors’ positions, including their nontradable

assets. Nevertheless, in this big data era, it is hopeful that as more micro-level data on investors’

holdings become available, this test may eventually become feasible.9 For example, Betermier,

Calvet, and Sodini (2014) has recently analyzed the characteristics of investors of value and growth

stocks, and potentially shed light on why investors hold value or growth stocks.

9This idea can be applied more broadly to the measurement of many other hard-to-measure variables. For
example, Choi, Jin, and Yan (2014) tries to measure the degree of information asymmetry at an individual stock
level by tracking the activities of all investors in the stock market in China. The detailed transaction data of the
whole population reveals the degree of information asymmetry for each stock.
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3.3 Welfare

How does the discovery of an anomaly affect investor welfare? To address this question, we first

need to clarify our welfare measures. For the risk-based case, we simply use investors’ expected

utility at t = 0. For the mispricing-based case, we use “subjective welfare” to refer to investors’

subjective expected utility at t = 0, and use “objective welfare” to refer to investors’ utility

evaluated under the objective belief at t = 0.

Proposition 4 The discovery of a risk-based anomaly increases investors’ welfare. The discovery

of a mispricing-based anomaly increases investors’ subjective welfare, but reduces their objective

welfare.

In the case of a risk-based anomaly, arbitrageurs essentially offer better risk sharing to investors.

Before the discovery, the endowment risk is narrowly shared among investors (i.e., arbitrageurs

are not involved). After the discovery, this endowment risk is shared between investors and

arbitrageurs: Investors unload asset 1 to arbitrageurs to hedge against their endowment risk. Ar-

bitrageurs’ trading makes the hedging cheaper. For the mispricing-based case, when arbitrageurs

start exploiting the anomaly, naive investors think they are better off, since they can offload

some of asset 1, which they are pessimistic about. That is, investors’ subjective expected utility

increases after the discovery. However, the discovery reduces naive investors’ objective welfare.

For instance, suppose the value premium was caused by investors’ overly optimistic perception

about growth stocks. The discovery of this anomaly attracts arbitrageurs to buy value and sell

growth stocks. Consequently, investors end up holding more over-priced growth stocks and fewer

under-priced value stocks, and they will suffer from worse performance in the future.
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4 Empirical analysis

Our risk-based model in Section 2 and mispricing-based model in Section 3 share the following

three main predictions: The discovery of an anomaly i) reduces its magnitude, ii) increases its

correlation with existing anomalies, and iii) reduces the correlation between assets 1 and 2. The

first two predictions are consistent with existing empirical evidence. For example, McLean and

Pontiff (2013) analyze the post-discovery performances of 82 anomalies that have been identified

in published academic studies. They find that post-discovery anomaly returns decay by 44% on

average. In addition, they find that after the discovery, the return of the new anomaly becomes

more correlated with the returns from existing anomalies.

The third prediction is new to the literature, and so we empirically examine it in this section.

According to Harvey, Liu, and Zhu (2014), there are more than 300 anomalies documented in the

academic literature. However, one would expect that for a discovery to have a significant effect on

underlying stock prices, the anomaly needs to be widely known and exploited by a large number

of arbitrageurs. Hence, in the next section, we examine the three arguably most well-known

anomalies—momentum, size, and value—one by one. Then, in Section 4.2, we study a larger set

of anomalies as a group.

4.1 Momentum, size, and value

Our goal is to examine, for each anomaly, whether the correlation coefficient between the excess

returns of deciles 1 and 10 decreases after the discovery of the anomaly.10 It is not obvious

how to choose the “discovery time” for each anomaly. The decision is necessarily subjective to

some extent. Suppose we choose the publication time of the first study on the anomaly. One

might object to this choice because it is possible that practitioners have known and exploited

10Lou and Polk (2013) uses the high-frequency correlation among stocks to infer the size of arbitrage capital.
The economic mechanism is quite different. In their setup, higher high-frequency correlations among stocks imply
a larger arbitrage capital size. However, in our setup, higher low-frequency correlations between decile 1 and 10
portfolios imply a smaller arbitrage capital size.
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the anomaly before that. Moreover, the essence of the “discovery time” is the time when a

large number of arbitrageurs start exploiting the anomaly. One might suspect that it may take

some time after arbitrageurs become aware of an anomaly for them to be convinced and start

exploiting it. Moreover, the first publication might not be the one that generates most attention.

For example, the discovery of the size and value anomalies are usually credited to Banz (1981)

and Basu (1983), respectively. However, one might suspect that Fama and French (1992) has

generated more attention on these two anomalies. For example, the last column of Table 2

reports the citation counts for each paper according to Google Scholar as of October 16, 2014.

One can see that the citation for Fama and French (1992) is an order of magnitude larger than

those for Banz (1981) and Basu (1983). Moreover, Fama and French’s studies in the early 1990s

suggest that the long list of anomalies at that time can be narrowed down to size and value, giving

these two anomalies extra attention.

With the above considerations in mind, we use September 1981 (Banz (1981)) and June

1992 (Fama and French (1992)) as possible discovery times for the size anomaly, June 1983 (Basu

(1983)) and June 1992 (Fama and French (1992)) as possible discovery times for the value anomaly,

and March 1993 as the discovery time for momentum (Jegadeesh and Titman (1993)).

We obtain the monthly decile portfolio returns and risk-free asset returns during 1927–2013

from Kenneth French’s website. Panel A of Figure 1 is the time series of the correlation coefficients

between the excess returns from deciles 1 and 10 of momentum portfolios, estimated based on a

rolling window of previous five years’ data. In the first six decades, this correlation fluctuated

between 0.6 and 0.8. In the early 1990s, however, it dropped significantly to around 0.4. The

significant decline in the correlation coincided with the publication of the most influential study

on momentum, Jegadeesh and Titman (1993). Although we cannot infer causality, this change in

correlation is certainly consistent with our model prediction. Similarly, Panels B and C are the

correlation coefficients for size and value anomalies, respectively. Interestingly, although these

two anomalies were documented in the early 1980s, the correlations started dropping sharply in
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the early 1990s. This coincides with Fama and French’s influential work that singles out size and

value among a number of anomalies. We note that in Panels B and C, the correlations revert back

to their pre-discovery level after 2000. While the recent financial crisis might have contributed to

the higher correlations in the last few years, it certainly cannot explain this drastic increase in

the correlations for these two anomalies in the last 10 years.

To formally test whether the correlations decrease after discoveries, we normalize the correla-

tions between deciles 1 and 10 by the correlations between deciles 5 and 6, in order to control for a

potential time trend for the correlation among stocks in general. The motivation is the following.

To exploit the anomaly return, arbitrageurs are likely to take larger long-short positions in deciles

1 and 10 than in deciles 5 and 6. Hence, the correlation between deciles 5 and 6 may share a

common time trend with the correlation between deciles 1 and 10, but should be subject to a

weaker discovery effect. For each anomaly, we compute the correlation ratio as

Xt ≡
ρ1,10t

ρ5,6t

, (16)

where ρ1,10t is the correlation coefficient between the monthly excess returns of deciles 1 and 10

of the anomaly during the five years prior to month t, and ρ5,6t is similarly defined for deciles 5

and 6.

Table 3 reports the summary statistics of the estimated correlation ratios. The first column

of Panel A shows that, for momentum, the correlation ratio has a mean of 0.55, and standard

deviation of 0.08. The correlation ratio is slightly higher (0.66 and 0.75) and more volatile (0.21

and 0.11) for size and value anomalies, respectively. For each of the three series, the mean and

median are close to each other.

To test our model prediction, for each anomaly, we regress the ratio Xt on Discovery, a

dummy variable that takes the value of 0 before the discovery of the anomaly and 1 afterwards.

For the momentum anomaly, for example, we use March 1993 (the publication time of Jegadeesh

and Titman (1993)) as the discovery time. The first column of Table 4 shows that the coefficient
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for the discovery dummy is −0.13, with a t-statistic of −3.97. This suggests that, for momentum,

the correlation ratio decreases by 0.13 after the discovery of the anomaly.

For the size anomaly, as discussed earlier, we analyze two potential discovery times, September

1981 and June 1992. If we use the former as the discovery time, as shown in the second column,

the coefficient of the discovery dummy is negative, but statistically insignificant. Once we use

June 1992 as the discovery time, however, the result gets stronger: The point estimate becomes

twice as large, −0.14, with a t-statistic of −1.78. Similarly, for the value anomaly, the coefficient

for the discovery dummy is −0.09, only marginally significant, if we use June 1983 as the discovery

time (column 4). Once we use June 1992 as the discovery time, the point estimate becomes −0.13,

with a t-statistic of −1.96. These results are consistent with the observation from the plots in

Figure 1. There is no immediate decrease in the correlation coefficient after the original studies

(Banz (1981) and Basu (1983)). Perhaps due to the wider influence of Fama and French (1992),

and/or the rapid growth of the hedge fund industry, the correlations decrease significantly in the

early 1990s.

The essential point of our model is that arbitrageurs’ trading activity reduces the correlation

between deciles 1 and 10. We now examine more directly whether this correlation is indeed related

to arbitrageurs’ activity. Our model implies that the post-discovery correlation between deciles

1 and 10 is decreasing in the volatility of arbitrageurs’ wealth. Note that this prediction is the

opposite of the implication from the casual intuition that arbitrageurs’ wealth tends to be more

volatile when the market is more volatile (e.g., in a financial crisis). Since stocks tend to be more

correlated when the market is more volatile, this casual intuition implies that the correlation

between deciles 1 and 10 should be increasing in the volatility of arbitrageurs’ wealth.

To test our model implication, we need a proxy for the volatility of arbitrageurs’ wealth. It is

certainly impossible to directly observe the aggregate wealth of all arbitrageurs. As a compromise,

we measure the wealth of one group of investors, who are often considered to be arbitrageurs in

financial markets: hedge funds. The implicit assumption is that the volatility of the aggregate
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wealth of all hedge funds is positively correlated with the volatility of the total wealth of all

arbitrageurs.

We obtain monthly hedge fund returns and assets under management (AUM) from TASS

during 1994–2012. Then, we compute the percentage change in AUM for each fund and aggregate

them into the value-weighted average of percentage AUM change of all funds. For each month

during 1999–2012, hedge fund wealth volatility, denoted by wealth volt, is calculated as the

standard deviation of this aggregate AUM percentage changes during the previous 5 years. The

summary statistics for wealth volt are reported in Panel B of Table 3. This series has a mean of

0.032 and a standard deviation of 0.005. The median is 0.031, nearly identical to the mean.

The first column of each panel of Table 5 reports the regression results of the correlation ratio

Xt on hedge funds’ wealth volatility, wealth volt. As a control variable, we also include V IX, the

implied volatility of S&P 500 index options on the Chicago Board Options Exchange in the current

month. Consistent with our model prediction, the coefficient for wealth volt is highly significant

for all three anomalies: The coefficient estimates are −6.78 (t = −2.23), −37.31 (t = −6.25),

and −17.62 (t = −6.74), for momentum, size, and value, respectively. V IX is considered to

be negatively related to the amount of arbitrage capital in the market (e.g., Brunnermeier and

Pedersen (2009)). Hence, a higher V IX is correlated with less arbitrage capital, which implies

a higher X. In our estimates in Panels B and C, the coefficient for V IX is highly positively

significant, although the estimate for momentum in Panel A is insignificant.

The AUM change can be decomposed into two components: the first is due to performance

and the second is due to fund flows from investors. Similar to the construction of wealth volt, we

compute the volatility of each component. For each month, we use the data from the previous

5 years to estimate the standard deviation of the monthly value-weighted hedge fund returns,

ret volt, and the standard deviation of the monthly percentage flows to the hedge fund industry,

flow volt. Panel B in Table 3 shows that flow volt is slightly more volatile than ret volt. The

correlation coefficient between these two components is 0.51, as shown in Panel C. It also shows
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that both flow volt and ret volt are negatively correlated to the correlation ratio X for all three

anomalies.

We regress Xt on ret volt, flow volt, and V IXt for each anomaly. The results are reported

in Table 5. The second and third columns of Panels A–C show that, if we only include one

of flow volt and ret volt in the regressions, the coefficients for both are significantly negative,

with one exception of flow volt for momentum. Including both flow volt and ret volt in the

regressions, we find that for momentum, the return-induced volatility ret volt is more correlated

with Xt, while for size and value, the fund-flow-induced volatility flow volt is more correlated

with Xt.

We conduct a variety of robustness analyses, and the main results remain similar throughout.

First, we use the correlation estimate ρ1,10t to replace the correlation ratio Xt to conduct our

analysis. Second, we use the average correlation of 1000 pairs of simulated random decile portfolios

to replace ρ5,6t in our construction of Xt. Third, we use a 3-year rolling window (rather than the

5-year rolling window in the above analysis) to estimate the correlation ratios in equation (16).

Forth, we use quintile portfolios to construct the correlation ratio: the correlation coefficient

between quintiles 1 and 5 divided by the correlation coefficient between quintiles 2 and 4. Finally,

we use the index return from Hedge Fund Research (rather than the one we constructed from

TASS) for our regressions in Table 5.

4.2 More anomalies

We now expand our analysis to a broader set of anomalies. Apart from a robustness check for

the previous results, a broader set of anomalies also offers a stronger test of our model prediction.

For example, for all three anomalies in the previous section, the decrease in correlation occurred

in the early 1990s. This is consistent with the interpretation that those three anomalies became

more widely known in the early 1990s, perhaps combined with the rapid growth of the hedge fund

industry around that time. However, a broader set of anomalies offers an opportunity to test our
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model prediction for discoveries at different points in time.

More importantly, this broader set of anomalies offers an opportunity to have a stronger test

of our model. In particular, our model (Panel B of Figure 4) implies that the post-discovery

correlation between deciles 1 and 10 is decreasing in the volatility of arbitrageurs’ wealth, but

this relation does not hold before the discovery. In our analysis in Section 4.1, we cannot test

the pre-discovery part, because our hedge fund data start in 1999, long after the discovery of

value, growth, and momentum. By including anomalies discovered after 1999, we have a chance

to further test this model prediction.

We choose the list of anomalies that are studied in Stambaugh, Yu, and Yuan (2012). In addi-

tion to the three anomalies analyzed earlier, the list also includes ten other influential anomalies

discovered in the last four decades. Table 2 lists all the anomalies and the papers that are cred-

ited for their discovery. The last column of this table reports the citation counts for each study.

One can see that all ten studies are heavily cited in the literature. These ten anomalies reflect

portfolio sorts on measures that include financial distress, net stock issues, composite equity is-

sues, total accruals, net operating assets, gross profit-to-assets, asset growth, return-on-assets,

and investment-to-assets. The publication time of those studies ranges from 1980 to 2013. For

these ten anomalies, we simply use the corresponding paper’s publication time, listed in the third

column of Table 2, as the discovery time.

We exclude the gross profitability anomaly in Novy-Marx (2013) due to the lack of post-

discovery data. Then, we pool the rest of the nine anomalies and the three in the previous section

together, and run a panel regression of the correlation ratio Xt, defined in (16), on the dummy

variable Discovery. Table 6 shows that the coefficient for Discovery is −0.052 (t = −1.91),

implying that, on average, the discovery of an anomaly reduces the correlation ratio by 0.052.

To test the implication on the relation between the correlation and hedge funds’ activity, we

run a panel regression of the correlation ratio Xt for all 12 anomalies on wealth volt. In panel
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A of Table 7, the regression includes the entire available sample during 1999–2012. Note that

half of the 12 anomalies were discovered after 1999. Hence, this regression includes pre-discovery

data for Xt for 6 anomalies. In contrast, in the regression in Panel B, we exclude those pre-

discovery data for the 6 anomalies that were discovered after 1999. Our model (Panel B of Figure

4) implies that the coefficient for wealth volt should be significantly negative in the regression

for the post-discovery sample in Panel B, and that this result should be weaker in Panel A. This

is exactly what we find. As shown in the first column of the two panels, the estimate for the

coefficient of wealth volt is −4.18 (t = −1.00) in the Panel A, and −11.75 (t = −2.21) in Panel B.

Similarly, the decomposition results in the rest of the table show that the coefficients for ret volt

and flow volt are strongly negative in the post-discovery sample in Panel B but insignificant in

the overall sample in Panel A.

We also examine the robustness of the results in Table 7. Given that the standard errors are

clustered on anomaly and there are only 12 anomalies, we also run the test with an alternative

specification. In particular, for each month, we compute the average of the correlation ratios across

anomalies. Then we run a time-series regression of the average correlation ratio on wealth volt,

ret volt, and flow volt. The results are reported in Table 8. In Panel A, the regression is based

on the entire available sample during 1999–2012. In Panel B, however, we include only the post-

discovery sample. The results remain similar to those in Table 7: Compared to the estimates in

the overall sample, the coefficients of hedge fund wealth volatility in the post-discovery sample are

larger in magnitude and more statistically significant. For example, the coefficient for wealth volt

is −4.18 (t = −4.81) in the overall sample in Panel A and is −15.88 (t = −16.24) in the post-

discovery sample in Panel B.

5 Conclusion

We have analyzed a simple model of anomaly discovery. It shows that consistent with existing

evidence, the discovery of an anomaly reduces its magnitude and makes its returns more cor-
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related with the returns from existing anomalies. A new prediction is that the discovery of an

anomaly reduces the correlation between the two extreme portfolios formed from the correspond-

ing portfolio sorting for that anomaly, and this effect is stronger when arbitrageurs’ wealth is

more volatile. We empirically test these new predictions for 12 widely-known anomalies, and find

strong evidence consistent with our model predictions.

Our analysis also contrasts risk- with mispricing-based anomalies, and highlights the difficulty

in distinguishing between them by examining asset prices. We argue that one solution is to

analyze investors’ portfolios instead. For the value premium, for example, we can examine the

exposures of those investors who underweight value stocks and overweight growth stocks. We can

test whether those investors appear to be more exposed to the risk proposed in the explanation.

While this direct approach is demanding on the required dataset, in this big data era, it might

not be a fantasy, either.

Our goal in this paper is to highlight the importance of the discovery aspect, both conceptually

and quantitatively. Hence, we take a simplified approach in our model by comparing the pre-

and post-discovery equilibria. This leaves many interesting questions unanswered. For example,

it seems natural to conjecture that the statistical significance of the discovered return pattern

determines the “legitimacy” of the anomaly and whether it will prompt arbitrageurs to act. The

dynamics of the interaction between the legitimacy of an anomaly, arbitrageurs’ actions, and asset

prices seems a promising avenue for future research.
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Appendix A. Numerical procedure

We follow the procedure described below to solve the model:

1. Take initial guesses for the total wealth for investors and arbitrageurs at t = 1: W1 and W a
1

for the eight states at date 1.

2. For each of the eight states, take W1 and W a
1 as given, solve for the portfolios (θi,1 for

i = 1, 2, and θai,1 for i = 1, 2, e) and prices P1,1 and P2,1.

3. Take the prices P1,1 and P2,1 for the eight states in step 2 as given, solve for the t = 0

portfolios (θi,0 for i = 1, 2, and θai,0 for i = 1, 2, e) and prices P1,0 and P2,0.

4. Based on the portfolios in step 3 (θi,0 for i = 1, 2, and θai,0 for i = 1, 2, e) and the prices in

steps 2 and 3 (P1,0, P2,0, and P1,1, P2,1 for all eight states at t = 1), calculate the investors’

and arbitrageurs’ updated wealth, W1 and W a
1 , in the eight cases at t = 1.

5. Repeat steps 2 to 4 until the wealth, portfolios, and prices converge, i.e., for each variable,

the difference between two iterations is no greater than 0.00005.

Appendix B. Proofs

Proof of Propositions 1 and 2

Due to the logarithmic preference, the maximization problem (4) is equivalent to maximizing the

log wealth growth for each period. Hence, investors’ first-order conditions are given by

Et

[

ri,t+1 − 1

Wt+1 + ρP1,t+1

]

= 0,

for i = 1, 2, t = 0, 1. Similarly, the arbitrageurs’ optimization problem (7) can also be decomposed

into a period-by-period optimization problem, and the first-order conditions are given by

Et

[

r1,t+1 − r2,t+1

W a
t+1

]

= 0,

Et

[

ra,t+1 − 1

W a
t+1

]

= 0.

Combining the above first-order conditions with the market-clearing conditions, we can charac-

terize the equilibria in Propositions 1 and 2.
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We now prove P1,0 < P2,0 by contradiction. Suppose P1,0 ≥ P2,0. Note that investors’ optimal

portfolio in equilibrium is to hold one unit of both assets. Suppose an investor sells ǫ unit of asset

1 and buys ǫ unit of asset 2. Define his expected utility as

U(ǫ) ≡ E0[log(k + (1 + ρ− ǫ)D1,2 + (1 + ǫ)D2,2)].

It is easy to see that dU
dǫ
|ǫ=0 > 0. That is, he can strictly improve his portfolio by selling ǫ unit of

asset 1 and buying ǫ unit of asset 2. This leads to a contradiction.

Proof of Propositions 3

The first-order condition to the maximization problem (12) is given by (13). The first-order

conditions for arbitrageurs are still given by (14) and (15). These optimality and market-clearing

conditions lead to the results in the proposition.

Proof of Proposition 4

In both the risk-based and mispricing-based cases, investors have the option not to trade. The

participation constraint implies that the investors’ expected utility cannot be lower than that in

the pre-discovery case. Moreover, investors’ concave utility function and convex budget constraint

imply that the investors’ optimization problem has a unique solution. It is easy to see that in

the case of W a
0 > 0, the portfolio characterized in Proposition 2 is strictly different from the

non-participation portfolio. Hence, discovery strictly increases investor welfare. Similarly, in the

mispricing-based case, discovery strictly increases investors’ subjective welfare.

To analyze naive investors’ objective welfare, we note that naive investors’ portfolio in the

economy in Section 3 can be decomposed into one unit in assets 1 and 2, and a position xt

(for t = 0, 1) in the long-short strategy (long asset 1 and short asset 2). It is easy to show

that naive investors’ objective welfare E[log(W2)] is concave in x0 and x1. In the pre-discovery

case, x0 = x1 = 0. In the post-discovery case, however, xt is “further away” from the optimum

point for maximizing E[log(W2)]. For example, an naive investor’s choice is x0 < 0 although

∂E[log(W2)]/∂x0|x0=0 > 0. Therefore, an naive investor’s objective welfare is lower in the post-

discovery case.
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Table 1: Baseline Parameterizations

Parameter W a
0 k ρ µ σ p µe σe pe

Value 1 1 1 1.2 0.6 0.5 1.4 0.5 0.5

This table reports the baseline parameter values in our numerical analysis.

Table 2: Anomalies and Their Citation Counts

Anomaly Paper Pub. Date Data Start Citation

Momentum Jegadeesh and Titman (1993) Mar 1993 Jan 1927 6089
Size Banz (1981) Sep 1981 Jan 1927 4608
Value Basu (1983) Jun 1983 Jan 1927 1317
Size/Value Fama and French (1992) Jun 1992 Jan 1927 11821

O-score Ohlson (1980) Mar 1980 Jul 1961 3542
Net stock issue Ritter (1991) Mar 1991 Jul 1964 3374
Total accruals Sloan (1996) Jul 1996 Jul 1964 2894
Investment to assets Titman et. al. (2004) Dec 2004 Jul 1964 551
Net operating assets Hirshleifer et. al. (2004) Dec 2004 Jul 1964 312
Composite equity issue Daniel and Titman (2006) Aug 2006 Jul 1965 535
Return on assets Fama and French (2006) Dec 2006 Jan 1972 228
Asset growth Cooper et. al. (2008) Aug 2008 Jul 1964 409
Financial distress Campbell, et. al. (2008) Dec 2008 Jan 1976 727
Gross profit to assets Novy-Marx (2013) Apr 2013 Jul 1964 91

This table lists anomalies and the studies that discover or popularize them. The third column
reports the publication time of the studies. For size, value and momentum, we obtain the decile
portfolio monthly returns from Kenneth French’s website. For all the other anomalies, we follow
the original studies to sort portfolios and compute their returns. The starting time of the return
for each anomaly is reported in the forth column, Data Start. All the portfolio return series end
in December 2012. The last column reports the number of citations for each study according to
Google Scholar on Oct 16, 2014.
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Table 3: Summary Statistics

Panel A: Correlation Ratios (Jan 1932 – Dec 2013)
X mom X size X value

Mean 0.55 0.66 0.75
Stdev 0.08 0.21 0.11
Median 0.51 0.72 0.74

Panel B: Volatility (Jan 1999 – Dec 2012)
wealth vol ret vol f low vol V IX

Mean 0.032 0.019 0.025 22.069
Stdev 0.005 0.004 0.004 8.270
Median 0.031 0.019 0.024 21.205

Panel C: Correlation Matrix (Jan 1999 – Dec 2012)
X mom X size X value wealth vol ret vol f low vol V IX

X mom 1.00 0.18 0.03 -0.42 -0.48 -0.19 -0.16
X size 1.00 0.87 -0.78 -0.54 -0.86 0.07
X value 1.00 -0.64 -0.24 -0.81 0.29
wealth vol 1.00 0.79 0.89 0.25
ret vol 1.00 0.51 0.44
flow vol 1.00 0.06
V IX 1.00

Panel A reports the mean, standard deviation, and median of the correlation ratio Xt, defined
in (16). X mom, X size, and X value are for momentum, size and value anomalies, respectively.
Panel B reports the mean, standard deviation, and median of wealth volt, ret volt, flow volt and
V IX. wealth volt is the standard deviation of the monthly percentage changes in the total assets
under management by all hedge funds. ret volt is the standard deviation of the monthly value
weighted returns among all hedge funds reported in TASS. flow volt is the standard deviation of
the monthly flows, in percentage, to all hedge funds in TASS. These three variables are estimated
based on a rolling window of the prior 60-month data. We only include funds that have been
reporting to TASS for more than or equal to 2 months. V IX is the monthly series of the implied
volatility of S&P 500 index options on the Chicago Board Options Exchange.
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Table 4: Pre- and Post-discovery Correlations (Jan 1932–Dec 2012)

Momentum Size Size Value Value
(Mar 1993) (Sep 1981) (Jun 1992) (Jun 1983) (Jun 1992)

Discovery −0.13∗∗∗ −0.07 −0.14∗ −0.09∗ −0.13∗∗

(−3.97) (−1.15) (−1.78) (−1.75) (−1.96)

#obs 972 972 972 972 972
adj R2 0.387 0.075 0.236 0.126 0.194

This table reports, for each anomaly, the results from regressions of the correlation ratio Xt,
defined in (16), on the dummy variable Discovery, which is 0 before the discovery time and 1
afterwards. The discovery time is in the parenthesis at the top of each column. The t-statistics
are reported in the parenthesis under each coefficient estimate, and are based on the standard
errors with Newey-West adjustment with 60 lags. ∗, ∗∗, and ∗ ∗ ∗ indicate that the coefficients
are statistically significant at the 10%, 5%, and 1% level, respectively.
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Table 5: Correlations and Hedge Funds (Jan 1999–Dec 2012)

Panel A: Momentum

wealth vol −6.78∗∗∗

(−2.23)
ret vol −11.16∗∗ −12.26∗

(−2.36) (−1.88)
flow vol −3.83 1.76

(−0.70) (0.30)
V IX −0.05 0.06 −0.14 0.08

(−0.54) (1.59) (−0.98) (1.10)

# of obs 168 168 168 168
adj R2 0.17 0.22 0.05 0.22

Panel B: Size

wealth vol −37.31∗∗∗

(−6.25)
ret vol −41.29∗∗∗ −15.55∗∗

(−4.31) (−2.18)
flow vol −48.33∗∗∗ −41.24∗∗∗

(−12.52) (−8.95)
V IX 0.71∗∗∗ 0.95∗∗∗ 0.31∗∗ 0.58∗∗∗

(6.37) (5.03) (2.52) (5.02)

# of obs 168 168 168 168
adj R2 0.67 0.40 0.75 0.79

Panel C: Value

wealth vol −17.62∗∗∗

(−6.74)
ret vol −13.88∗∗∗ 1.83

(−3.98) (1.23)
flow vol −24.32∗∗∗ −25.16∗∗∗

(−22.08) (−20.49)
V IX 0.63∗∗∗ 0.64∗∗∗ 0.44∗∗ 0.41∗∗∗

(7.27) (5.89) (6.99) (6.87)

# of obs 168 168 168 168
adj R2 0.62 0.23 0.76 0.76

This table reports, for each anomaly, the results of contemporaneous regressions of the correlation
ratio Xt, defined in (16), on wealth volt, ret volt, flow volt, and V IXt. wealth volt is the
standard deviation of the monthly percentage changes in the assets under management by all
hedge funds during the prior 60 months, ret volt, the standard deviation of the monthly hedge
fund index returns during the prior 60 months, flow volt, the standard deviation of the monthly
flows, in percentage, to all hedge funds during the prior 60 months, and V IXt, the implied
volatility of S&P 500 index options in the current month. Hedge funds data are from the TASS
database. We only include funds that have been reporting to the database for more than or equal
to 2 months. The t-statistics are reported in the parenthesis under each coefficient estimate, and
are based on the standard errors with the Newey-West adjustment with 60 lags. ∗, ∗∗, and ∗ ∗ ∗
indicate that the coefficients are statistically significant at the 10%, 5%, and 1% level, respectively.
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Table 6: Pre- and Post-discovery Correlations in Panel Data (Jan 1932–Dec 2012)

Discovery −0.052*
(−1.91)

# of obs 7,419
# of anomaly 12
adj R2 0.052

This table reports the results from a panel regression of the correlation ratio Xt, defined in
(16), on the dummy variable Discovery, which is 0 before the discovery time and 1 afterwards.
The regression includes anomaly-fixed effects. T-statistics are reported in the parenthesis, and
are based on standard errors that are clustered on anomaly. ∗ indicates that the coefficient is
statistically significant at the 10% level.
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Table 7: Correlations and Hedge Funds in Panel Data (Jan 1999–Dec 2012)

Panel A: All sample

wealth vol −4.18
(−1.00)

ret vol −3.38 −1.76
(−1.01) (−0.96)

flow vol −4.85 −3.97
(−0.90) (−0.82)

V IX 0.035 0.032 −0.012 0.016
(0.35) (0.34) (−0.17) (0.20)

# of obs 2,016 2,016 2,016 2,016
# of anomaly 12 12 12 12
adj R2 0.038 0.020 0.034 0.038

Panel B: Post-discovery sample

wealth vol −11.75**
(−2.21)

ret vol −7.51** −4.88**
(−2.30) (−2.42)

flow vol −13.16* −11.62*
(−1.94) (−1.83)

V IX 0.16 0.11 0.05 0.11
(1.36) (1.13) (0.57) (1.17)

# of obs 1454 1454 1454 1454
# of anomaly 12 12 12 12
adj R2 0.219 0.090 0.197 0.232

This table reports the results of panel regressions of the correlation ratio Xt, defined in (16), on
wealth volt, ret volt, flow volt, and V IXt, with anomaly-fixed effects. The regression in Panel
A includes all the data during Jan 1999–Dec 2012. The regression in Panel B excludes the pre-
discovery data for each anomaly. wealth volt is the standard deviation of the monthly percentage
changes in the assets under management by all hedge funds during the prior 60 months, ret volt,
the standard deviation of the monthly hedge fund index returns during the prior 60 months,
flow volt, the standard deviation of the monthly flows, in percentage, to all hedge funds during
the prior 60 months, and V IXt, the implied volatility of S&P 500 index options in the current
month. Hedge funds data are from the TASS database. We only include funds that have been
reporting to the database for more than or equal to 2 months. T-statistics are reported in the
parenthesis, and are based on standard errors that are clustered on anomaly. ∗, ∗∗, and ∗ ∗ ∗
indicate that the coefficients are statistically significant at the 10%, 5%, and 1% level, respectively.
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Table 8: Average Correlation and Hedge Funds (Jan 1999–Dec 2012)

Panel A: All sample

wealth vol −4.18***
(−4.81)

ret vol −3.38** −1.76**
(−2.59) (−2.59)

flow vol −4.85*** −3.97***
(−5.35) (−4.25)

V IX 0.035 0.033 −0.012 0.016
(0.75) (0.90) (−0.21) (0.39)

# of obs 168 168 168 168
# of anomaly 12 12 12 12
adj R2 0.419 0.220 0.374 0.420

Panel B: Post-discovery sample

wealth vol −15.88***
(−16.24)

ret vol −13.63*** −7.70***
(−3.57) (−6.42)

flow vol −18.33*** −14.47***
(−8.10) (−20.24)

V IX 0.20*** 0.20*** 0.015 0.14***
(4.39) (3.04) (0.17) (4.55)

# of obs 168 168 168 168
# of anomaly 12 12 12 12
adj R2 0.832 0.493 0.734 0.861

This table reports the results of a contemporaneous time-series regression of the average correla-
tion ratio Xt, defined in (16), across anomalies, on wealth volt, ret volt, flow volt, and V IXt.
The regression in Panel A includes all the data during Jan 1999–Dec 2012. The regression in
Panel B excludes the pre-discovery data for each anomaly. wealth volt is the standard deviation
of the monthly percentage changes in the assets under management by all hedge funds during the
prior 60 months, ret volt, the standard deviation of the monthly hedge fund index returns during
the prior 60 months, flow volt, the standard deviation of the monthly flows, in percentage, to
all hedge funds during the prior 60 months, and V IXt, the implied volatility of S&P 500 index
options in the current month. Hedge funds data are from the TASS database. We only include
funds that have been reporting to the database for more than or equal to 2 months. T-statistics
are reported in the parenthesis, and are based on the Newey-West adjustment with 60 lags. ∗, ∗∗,
and ∗ ∗ ∗ indicate that the coefficients are statistically significant at the 10%, 5%, and 1% level,
respectively.
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Figure 1: Correlations
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Panels A–C plot the correlation coefficient between the excess returns of deciles 1 and 10 for
momentum, size and value, respectively. The correlation coefficients are estimated based on a
5-year rolling window of monthly data.
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Figure 2: Anomaly Return
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Panels A–C plot the expected anomaly return, E[r1,1 − r2,1], on arbitrageurs’ initial wealth W a
0 ,

asset e’s expected return µe and volatility σe, respectively. The parameter values are given by
Table 1.
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Figure 3: Correlation Among Anomaly Returns
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Panels A–C plot the correlation coefficient between the anomaly return and asset e’s return,
Corr(r1,1 − r2,1, re,1), on arbitrageurs’ initial wealth W a

0 , asset e’s expected return µe, and its
volatility σe, respectively. The parameter values are given by Table 1.
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Figure 4: Correlation Between Assets 1 and 2
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Panels A and B plot the correlation coefficient between assets 1 and 2, Corr(r1,1, r2,1), on arbi-
trageurs’ initial wealth W a

0 , and their wealth volatility σa, respectively. The parameter values are
given by Table 1.
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Figure 5: Comparison: Asset Prices
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Panels A–C plot the expected anomaly return, E[r1,1 − r2,1], its correlation with asset e’s return,
Corr(r1,1−r2,1, re,1), and the correlation between assets 1 and 2, Corr(r1,1, r2,1), on arbitrageurs’
initial wealth W a

0 , respectively. The solid line is for the risk-based case, and the dashed line the
mispricing-based case. Parameter values: b = 0.055, and other parameter values are given by
Table 1.

45


