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Abstract

A model of true spreads is developed using spread data from the
Australian Stock Exchange. This spread model separates the true or
intrinsic spread of a stock from the component of spread that is due to
tick size. This enables the identification of excessive market spreads
due to a large minimum tick size (large minimum price increment).

The true or uncensored spreads are modelled as a LogNormal dis-
tribution where the scale (mean) parameter of the distribution is a
function of stock Turnover and Volatility, stock Price is not a deter-
minant of true spreads. This is a powerful and intuitive result; true
spread is a measure of the true cost of liquidity and this cost is a func-
tion of the scarcity of liquidity (Turnover) and the risk of supplying
liquidity (Volatility), nominal stock price is irrelevant to the cost of
market liquidity.

Observed or censored spreads are a result of partitioning the un-
derlying continuous true spread distribution into discrete tick size in-
tervals. Stock price is important in this partitioning and observed
spreads are a function of stock price.

Keywords: True Spread, Censored Spread, Observed Spread, Tick Size, Exchange
Policy
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Introduction

Stock exchanges have minimum price increments (often price dependent) on
which stocks can be quoted and traded, this is known as the ‘tick size’. The
tick size on the Australian Stock Exchange for stocks priced $0.50 (all cur-
rency in this paper is in Australian dollars) and above is 1 cent (July 2001).
The ‘spread’ is the difference between the ‘actual’ price of the stock and the
price paid by a liquidity demander (market order trader). Spread is measured
as the difference between the mid-point of the bid and ask immediately pre-
ceding a trade and the price of the subsequent trade. Therefore spreads can
only be observed on half-tick (0.5 cent) size discrete intervals.

It is a reasonable hypothesis that liquidity as supplied by limit order
traders has a continuous monotonically increasing supply curve as a function
of increasing spread and liquidity as demanded by market order traders has
a monotonically decreasing demand curve as a function of increasing spread.
Therefore, there is an underlying (unobserved) spread distribution which is
a continuous distribution on the positive half-line.

True Spreads and Liquidity Supply and Demand
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Figure 1: The existence of liquidity supply and demand curves imply an
underlying continuous spread distribution.
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Harris [5] suggested a likelihood regression for finding a parametric dis-
tribution that matches the continuous spread distribution and this technique
is further developed in this paper. The unobserved continuous spread distri-
bution is assumed to have a constant shape for all stocks and the the scale
of the distribution (the distribution mean) is regressed as a function of stock
Turnover, Volatility and Price. Price is found to be not significant in de-
termining the scale (mean) of the unobserved continuous spread. This is a
powerful and intuitive result. Turnover is a determinant in the pricing of
spread because it is a proxy for the scarcity of stock liquidity. Volatility is a
determinant of spread because of the extra risk taken by a limit order trader
when providing liquidity for a volatile stock. But it is intuitive that Price
is not a determinant of true unobserved spread because liquidity providers
and demanders are neutral about the nominal stock price at which liquidity
is supplied. For example, in negotiating the cost of supplying $1m of stock,
liquidity providers and demanders are neutral as whether that stock liquidity
is supplied as $1× 1, 000, 000 stock units or $100× 10, 000 stock units.

The unobserved continuous spread distribution is mapped onto the ob-
served discrete spreads by integrating the continuous spreads between the
midpoints of the observed spreads which partition the continuous spreads.
For example, in figure 2 the midpoint between an observed spread of 0.5 cents
and 1.0 cent is 0.75 cents, if the LogNormal continuous spread is integrated
(the cumulative LogNormal) between 0 and 0.75 cents the censored spread
at 0.5 cents is estimated at 57% of all spreads. The actual observed spread
was 55% of all spreads.

Thus observed spreads are estimated as a definite integral of the underly-
ing continuous spreads as partitioned by tick size. Observed spreads can be
split into a component which is intrinsic to the stock attributes of Turnover
and Volatility - the underlying continuous spread and a component due to
the censoring effect of tick size, the Excess spread. Being able to separate
these components enables excessive spreads through too large a tick size to
be identified.

To clarify terminology for the reader the following definitions of spreads
used in the paper are defined.

• The True or Uncensored spread is the mean of the underlying, unob-
served continuous spread.
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• The Censored spread is the mean of the definite integrals of the under-
lying continuous spreads as partitioned by tick size. This is an estimate
of Observed spread.

• The Observed spread is the mean of all observed spreads.

• The Excess spread is the component of Observed (or Censored) spread
that is due to tick size effects and is simply the Observed spread minus
the True spread.
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Observed, Censored and Continuous Spreads - NAB July 2001
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Figure 2: Observed spreads for stock NAB (National Australia Bank, Bank-
ing and Finance, July 2001 VWAP Price $32.63, Av Daily Turnover $78.9
million, Annualized Volatility 30.5% ) are shown as blue triangles. Tick size
censoring means that spreads can only be observed on half-tick (0.5 cent)
intervals; at 0.5 cents, 1.0 cent, 1.5 cents etc. The implied LogNormal con-
tinuous spread is partitioned by the midpoints between the observed spreads;
0.75 cents, 1.25 cents etc. The shape of the continuous spread distribution
(0.834) is constant across all stocks, the mean (scale) of the distribution is
a likelihood regression of stock Turnover and Volatility. Stock Price is not
a determinant of the mean (scale) of the continuous spread. The Censored
spread is the value of the integral of the continuous spread distribution (the
cumulative spread distribution) between the spread mid-point partitions and
is shown as magenta circles. The Censored spread is an estimate of Observed
spreads.
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Spreads and Tick Size

Measuring Spread

When measuring spreads, the spread cost paid by market order traders to
initiate a trade and execute against limit order traders is of primary interest.
It is intuitive to measure the spread as the the absolute difference between
the transaction price and the actual stock price.

Spread = |TransactionPrice − ActualPrice | (1)

The actual stock price cannot, in general, be observed but lies somewhere
between the current quoted bid and ask price. If it is assumed that actual
stock prices are symmetrically or uniformly distributed between the bid and
ask price, then the expectation of the actual price will be the mid-point of the
bid and ask price. Thus a practical spread cost measurement is the absolute
difference between the current mid-point of the bid and ask price and the
transaction price. Effective spread is defined as the difference between the
trade price (P trade) and the mid-point quoted price ( bid+ask

2
) and the average

effective spread is calculated by averaging over the number of trades. Effec-
tive spread has been chosen as the spread measure in recent investigations
into market spread on the Toronto stock exchange by Bacidore [1] and the
NASDAQ exchange by Barclay et al [2].

Seffective =

∑N
i=1

∣∣P bid-ask
i − P trade

i

∣∣
N

, P bid-ask
i =

Aski + Bidi

2
(2)

Relative effective spread (Rs) is effective spread normalized by dividing
by the mid point bid-ask price and, following market convention, is scaled
by 10,000 so that the relative spread is expressed in ‘basis points’ (1/100ths
of a percent).

Rs =
10000

N

N∑
i=1

∣∣∣∣
P bid-ask

i − P trade
i

P bid-ask
i

∣∣∣∣ (3)

Minimum Relative Spread Cost

The minimum measured spread cost is half the tick size (see figure 3). Since
the ASX has a 1 cent tick size for all stock priced $0.50 and above, the
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Pays $5.77 
Spread Cost = $0.005 

Sell Market Order 

Figure 3: A Tick Size of $0.01 Implies a Minimum Spread Cost of $0.005

minimum spread is $0.005. The minimum relative spread cost in basis points,
Rmin, is given by the following relationship to stock price, Ps in dollars.

Rmin =
50

Ps

(4)

Figure 4 shows the minimum cost of crossing the spread and executing a
market order rapidly increases for lower priced stocks.

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e 
S

pr
ea

d 
C

os
t (

ba
si

s 
pt

s)

Stock Price (dollars)

Market order spread costs must be

on or greater than the minimum line

Minimum (0.5 cent) Market Trade Cost

Figure 4: Minimum Relative Spread Cost as a Function of Price

Equation 4 can be transformed with logarithms (in this paper, ‘log’ sym-
bolizes a logarithm to the base 10, ‘ln’ symbolizes a natural logarithm) so
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that the log of the minimum relative spread is linear with respect to the log
of price (figure 5).

log Rmin = log 50 − log P (5)
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Figure 5: Log Minimum Relative Cost as a Function of Log Price

The cost of executing a market order (for stocks priced above $0.50) on
the ASX must be on or above the minimum relative cost line in figure 5. The
price of a stock determines the minimum relative cost of executing a market
order.
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Ordinary Least Squares Models of Spreads

It is a reasonable proposition that market order spread costs are inversely
correlated to turnover (market traders are willing to pay for low stock liq-
uidity by paying higher spread costs when executing market orders). The
idea that spread may be partially driven by turnover was first suggested by
Demsetz [3] and has been further developed by other researchers such as
Harris [5] and Stoll [11]. Both authors developed cross sectional regression
models where relative spreads are regressed against price, market activity
(trades per day), turnover, market capitalization and volatility. These OLS
regression models have strong explanatory power when describing spreads on
the NYSE and NASDAQ stock markets with Stoll stating (Stoll [11], page
1481) ‘few empirical relations in finance are this strong’.

The Parsimonious ASX Spread Regression Model

Following Stoll [11] and Harris [5], ASX relative effective spread data were
combined for each stock to produce a cross-sectional regression over the en-
tire data period (July 2001) for each stock (see the subsection titled ‘The
Spread Data’ for a description of the regression data). A modified parsimo-
nious version of the regression equation specified by Stoll [11] was estimated
for the aggregated ASX spread data. The regression estimates spread using
Turnover, Price and Volatility, adding additional independent variables such
as Trade Count and Market Capitalization did not add significant informa-
tion to the regression. The fitted coefficients are given in table 1.

The regression was checked for heteroscedasticity using the test devised
by White [12] for regressions where there is a large number of observations
relative to the number of variables. This test is labelled ‘Hetero-X’. Testing
the regression of equation 6 confirms heteroscedasticity (F (9, 235) = 32.55).
Where heteroscedasticity is confirmed, heteroscedastic consistent t-statistics
for the explanatory variables are generated using the Jack-Knife estimator
described by White and MacKinnon [6]. These are labelled ‘t-JHCSE’. The
Partial R2 statistics for explanatory variables are calculated from the incre-
mental increase in sum of squares by including an explanatory variable given
the sum of squares of all other explanatory variables are already included.
For further details see Nachtshiem et al [9].
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log Rs = A0 + A1 log Ts + A2 log Ps + A3 log σs + εs (6)

Intercept log Turnover log Price log Volatility
A0 A1 A2 A3

Coefficients 3.499 -0.268 -0.354 0.233
t-JHCSE 23.663 -9.878 -7.160 7.832
Partial R2 0.666 0.547 0.179
R2 0.911
Hetero-X F (9, 235) = 32.55 (p =0.000)

Table 1: The ASX Parsimonious Relative Spread Regression Model (n=249)

ASX Spreads are Censored by Tick Size

It is important to note that the parsimonious relative spread regression model
(eqn 6), although apparently successful in describing observed spreads, is
incorrectly specified since relative spreads are censored by minimum tick size
(see figure 6). The true regression model must account for this tick size
censoring.
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Figure 6: Daily relative spreads against Stock Price for Top Decile (highest)
Turnover Stocks. Observed spreads are censored against the minimum spread
line (black line) for lower priced stocks (higher minimum spread).
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A Model of True Spreads

The previous section showed that OLS models of spreads, although highly
predictive, were an incorrect description of spread behaviour because of data
censoring. In this section the spread model first proposed by Harris [5] is
generalized and developed as a model of spreads on the ASX. This model
assumes that relative spreads form a continuous distribution and that the
observed discrete half-tick size relative spreads are a result of partitioning
this continuous distribution into discrete half-tick size increments. Harris
used maximum log-likelihood techniques to estimate the underlying para-
metric relative spread distribution and this technique is further developed
by extending the size of the discrete half-tick size distribution observed to
50 observations and examining different candidate parametric relative spread
distributions (Harris only examined the Gamma distribution).

Developing a model of the underlying continuous parametric relative
spread distribution allows the observation of the true spread schedule of
stocks and enables the partition of observed spreads into true spreads in-
trinsic to the stock attributes of Turnover, Volatility and Price and ‘excess’
spreads imposed by the tick size schedule. These excess spreads are gener-
ated when the continuous parametric relative spread distribution is mapped
onto the observed discrete half-tick size spread distribution (see figure 2).

When the true spread regression model is examined, the log Price ex-
planatory variable is shown to be not significant and this is explained as a
powerful and intuitive result. The parametric continuous relative spread dis-
tribution, the true spread, is a function of stock liquidity (turnover) and stock
risk (volatility), whereas the nominal stock price is not an important deter-
minant of true spreads. Price is only introduced as an important explanatory
variable in relative spreads by the ‘tick-size censoring function’ that maps
the underlying parametric continuous relative spread distribution on to the
discrete half-tick size spread distribution.

The Spread Data

The ASX market data used in this paper is very rich and allows the ASX
market to be replayed with complete accuracy. In particular, the complete
depth of the limit order queues are known before each trade and traded spread
calculations are unambiguous and accurate. For all stocks (non ordinary
stock securities such as warrants, hybrid debt-equity, etc. were excluded)
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trading on the ASX in July 2001 with a stock price equal to or greater
than $0.50 (all stocks with a minimum 1 cent tick size) the actual spread
relative to the bid-ask mid-point price paid by pure market orders (buyers
and sellers) was recorded in 50 x 0.5 cent spread bins. Each spread bin
corresponding to a particular spread size recorded the total volume of the
market order trades at that spread size. The first bin corresponded to the
minimum observable tick size of 0.5 cents, the next bin 1.0 cent and so on.
The final bin, 50× 0.5 cents = 25 cents, contained the sum of the volume of
all spreads ≥ 25 cents. Only stocks that had at least 1 spread observation
per day (1 pure market trade per day) for the 20 business days of market
data during July 2001 were analyzed, 249 stocks had spread data for the
20 business days. For each of the 249 stocks, Turnover, Price and Volatility
were calculated using the following definitions:

• Price was the VWAP (Volume Weighted Average Price) price of the
stock for all on-market trades in July 2001.

• Turnover was the turnover of all on-market trades in July 2001 divided
by the 20 business days to give an average daily turnover.

• Volatility was calculated as a weekly standard deviation from the previ-
ous 52 weekly prices. Weekly prices were used rather than daily prices
to minimize serial price correlations in low turnover stocks which would
(downward) bias the volatility estimates.

A Parametric Continuous Spread Distribution

Assume a cumulative probability for relative true spread, Φ(r; Λ), where Λ
is a vector of distributional parameters (possibly scalar).

The actual effective spreads paid by market order traders for stock S
are observed and summed on a K × 0.5 cent grid (in this paper, K = 50).
The K spread step probabilities can be written recursively in terms of the
cumulative probability distribution of the relative true spread.

Pr(n = 1) = Φ(π(1, Ps); Λ)
Pr(n = 2) = Φ(π(2, Ps); Λ) − Pr(n = 1)
...

...
Pr(n = K − 1) = Φ(π(n− 1, Ps); Λ) − Pr(n = K − 2)
Pr(n ≥ K) = 1 − Pr(n = K − 1)

(7)
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The function π(n, Ps) is a mapping function from the continuous (but un-
observed) spread distribution to the observed discrete half-tick sized spreads.
The mapping function does this by mapping the observed nth 0.5 cent spread
step onto a continuous spread that represents the mid-point of n spread steps
and n+1 spread steps. An unobserved continuous spread, r, will be observed
as an actual spread of n × 0.5 cents if the unobserved continuous spread is
in the following interval.

π(n− 1, Ps) ≤ r < π(n, Ps) (8)

The arithmetic mid-point between two observed spreads is used to de-
termine the boundary for a continuous unobserved spread to move from an
observed spread step size of n × 0.5 cent steps to (n + 1) × 0.5 cent steps.
Therefore π(n) is defined as follows (in basis points):

π(n, Ps) =
50 (n + 0.5)

Ps

, π(0, Ps) = 0 (9)

The Loglikelihood Function

A multinomial likelihood function (constant omitted) can be generated for
M stocks with K actual spread step observations (each observation is mj,k)
for each stock.

L(Λ) =
M∏

j=1

K∏

k=1

[
Pr(n = k)

]mj,k (10)

The consequent log-likelihood function is defined as:

`(Λ) = ln L(Λ) =
M∑

j=1

K∑

k=1

mj,k ln Pr(n = k) (11)

If fj(k) is introduced as the observed relative frequency of actual spread
step k for the jth stock and substituting equations 7 into the log-likelihood
equation 11.

Mj =
K∑

k=1

mj,k fj(k) =
mj,k

Mj
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`(Λ) =
M∑

j=1

Mj

[
fj(1) ln[ Φ(π(1, Pj); Λ) ] +

fj(2) ln[ Φ(π(2, Pj); Λ) − Φ(π(1, Pj); Λ) ] +

...

fj(K − 1) ln[ Φ(π(K − 1, Pj); Λ) − Φ(π(K − 2, Pj); Λ) ] +

fj(K) ln[ 1− Φ(π(K − 1, Pj); Λ) ]

]

(12)

In order to solve for the relative spread distribution, a distributional class,
Φ(r; Λ), needs to be selected with a mean of Rs for different values of the
shape parameter vector Λ and supported on the non-negative numbers, r ∈
[0,∞). Then Λ can be solved by maximizing the log-likelihood equation 12.

Λ0 = arg max
Λ

[ `(Λ) ] (13)

For purely practical reasons associated with the optimization software,
the optimization is actually performed by minimizing the negative value of
`(Λ).

Λ0 = arg min
Λ

[− `(Λ) ] (14)

Equation 14 was solved numerically by software written in the specialist
econometrics programming language OX developed by Jurgen A. Doornik
[4]. In all optimizations, convergence to optimal values was prompt and
consistent with no evidence of local minima.

Parameter Estimation of Continuous Spread Distribu-
tions

Harris [5] uses the Gamma distribution to model the spread distribution by
solving equations 12 and 14. The Gamma distribution can be parameterized
by shape (λ) and scale (β) parameters:

Φ(r; λ, β) =
1

βλ Γ(λ)

∫ r

0

xλ−1 e−x/β dx r ∈ [0,∞) (15)
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E[Φ(r; λ, β)] = λβ (16)

If the true spread, Rtrue
s (abbreviated to Rt

s), is defined as the mean of the
continuous spread distribution.

Rt
s = E[Φ(r; λ, β)] = λβ (17)

The scale parameter (β) can be modified to be a function of the shape pa-
rameter (λ) and the mean uncensored spread (Rt

s). With this specification,
the shape parameter (λ) can be constant and the scale parameter (β) varied
so that the distributional mean is always Rt

s.

β =
Rt

s

λ
(18)

The true spread (Rt
s) can be modelled explicitly as a function of the Turnover,

Price and Volatility of stock S. The same functional form as the parsimonious
regression (eqn 6) is chosen.

log Rt
s = B0 + B1 log Ts + B2 log Ps + B3 log σs (19)

Therefore the scale parameter of the Gamma distribution is written as a func-
tion of the shape parameter and the parameters of the regression equation
(eqn 19).

β = 10−(B0 + B1 log Ts + B2 log Ps + B3 log σs)
1

λ
(20)

Substituting the re-parameterized Gamma distribution into the log-likelihood
equation 12 produces a model with 5 parameters to solve, the shape of the
continuous distribution (λ) and the scale of the continuous distribution ex-
pressed as a regression on the stock Turnover (Ts), Price (Ps) and Volatility
(σs).

Λ0 = {λ0, B0
0 , B

0
1 , B

0
2 , B

0
3} = arg min [−`(λ, B0, B1, B2, B3) ] (21)

The Gamma distribution suggested by Harris [5] has a rich range of distri-
butional shapes but there are other shape and scale distributions defined on
the positive half-line and suggested by inspection of the binned spread data
that can be used in the general log-likelihood model developed in equation
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12. Alternatives are the Weibull distribution and the Log-Normal distribu-
tion. The Exponential distribution is also modelled because the results of
modelling the Gamma and Weibull distributions (table 2) produced shape
parameters close to this distribution.

The Exponential distribution is dependent on a single scale parameter β.

Φ(r; β) = 1 − exp
[−β r

]
(22)

E[Φ(r; β)] =
1

β
= Rt

s (23)

Therefore the scale parameter of the exponential distribution is written
as a function of the parameters of the regression equation only (there is no
shape parameter).

β = 10−(B0 + B1 log Ts + B2 log Ps + B3 log σs) (24)

The Weibull distribution is parameterized by a shape (λ) and scale (β)
parameter.

Φ(r; λ, β) = 1− exp
[−(

r

β
)λ

]
(25)

E[Φ(r; λ, β)] = β Γ(
λ + 1

λ
) = Rt

s (26)

β = 10(B0 + B1 log Ts + B2 log Ps + B3 log σs)

[
Γ(

λ + 1

λ
)

]−1

(27)

The Log-Normal distribution is parameterized by a shape (λ) and scale
(β) parameter.

Φ(r; λ, β) =
1

2

[
1 + erf

(
ln r − β√

2λ

)]
, erf(z) =

2√
π

∫ z

0

e−t2 dt (28)

E[Φ(r; λ, β)] = exp
[
β +

λ2

2

]
= Rt

s (29)

β = ln(10)(B0 + B1 log Ts + B2 log Ps + B3 log σs) − λ2

2
(30)
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The important attribute of this log-likelihood specification is that by the
regression model for the true spread (Rt

s) avoids any censorship bias due
to the censoring of relative spreads because of tick size. The maximum
likelihood parameter estimates from equation 19 will give us estimates of the
true spread regression model.

The maximum likelihood estimates were obtained for the spread distri-
butional data of 249 stocks. The minimum number of spread observations
for all stocks was 70 (median spread observations 731, max spread observa-
tions 39,831) and following Harris [5] this was used as the Mj term in the
log-likelihood function (eqn 12) for all stocks (Mj = 70, ∀j). This results
in conservative parameter interval estimates and avoids high turnover stocks
being over-influential . The proportion of total volume for each spread bin,
fj(k), was calculated by dividing the volume summed in the kth spread bin
by the total volume executed as pure market orders for the stock.

Log-likelihood Regression Results

The results of fitting the alternative distributions to the binned volume data
are tabulated in table 2. The true relative spread regression model is ro-
bust and insensitive to the particular distribution used. The Weibull and
Gamma distributions both have estimated optimal shape parameters close
to 1. A shape parameter of 1 defines the exponential distribution for both
these distributions. Therefore the fitted Weibull and Gamma distributions
do not provide significant parametric shape information. In contrast, the
Log-Normal distribution does provide distributional shape information.

The estimated true relative spread regressions have larger coefficients for
log Turnover and log Volatility than the parsimonious OLS spread regression,
but the main difference is the negligible coefficient for log Price. The log Price
coefficient is not significantly different from zero for any of the log-likelihood
regressions. This means that there is no relationship between stock price and
true uncensored spreads.

This is a powerful result, true relative spreads are a function of stock
turnover (the cost of liquidity) and volatility (the cost of risk); there is no
relationship to stock price. The price effect on observed (censored) spreads is
introduced by the censoring of true uncensored spreads due to the interaction
of tick size and stock price.

Rcensored
s = Censor( Rtrue

s ; TickSize, Price, ) (31)
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λ B1 B2 B3 B0

Distribution Shape log Turnover log Price log Volatility Intercept

LogNormal 0.834 -0.420 -0.010 0.493 4.443
Std Error 0.0106 0.0081 0.0146 0.0225 0.0487

−`(Λ0) 12268

Gamma 1.127 -0.415 -0.014 0.469 4.368
Std Error 0.0286 0.0076 0.0134 0.0209 0.0457

−`(Λ0) 12289

Weibull 1.031 -0.418 -0.0067 0.473 4.382
Std Error 0.0126 0.0079 0.0139 0.0215 0.0472

−`(Λ0) 12296

Exponential -0.422 0.004 0.480 4.407
Std Error 0.0080 0.0136 0.0219 0.0475

−`(Λ0) 12299

OLS -0.268 -0.354 0.233 3.499

Table 2: True relative spread distribution parameters (50 x 0.5 cent bins;
n=249 Stocks) for different parametric distributions. Also, for comparison,
the coefficents of the OLS regression (equation 6, table 1).
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The Tick Size Censoring Function

In this section a formal model of the tick size censoring function is devel-
oped. The observed actual spreads can be modelled as a half a tick size
partitioning of the underlying continuously distributed true spread and the
censoring function is simply the probability weighted sum of the underly-
ing continuously distributed true spread partitioned into discrete observed
spreads.

Note that only the censoring function is affected when tick size is varied
through stock exchange policy change. Therefore a variable tick size, ρ, is
introduced when defining the censoring function. This enables the censor-
ing function us to be parameterized for different market tick sizes and the
hypothetical effect of varying tick size on observed spreads (true spreads are
independent of tick size) can be investigated.

The censored mean spread over the observed discrete half tick size dis-
tribution is calculated by summing over the probability that the continuous
true spread will be in the kth half spread bin, Pr(k, ρ, Ps), by the relative
spread size of the kth bin, µ(k, ρ, Ps).

Rcensored
s =

∞∑

k=1

Pr(k, ρ, Ps) µ(k, ρ, Ps) (32)

Formally, the sum in equation 32 is over an infinite number of terms be-
cause the uncensored continuous distribution of relative spreads, Φ(r; Λ), is
defined over the whole non-negative real interval [0,∞). In practise, an arbi-
trarily accurate approximation can be achieved by truncating the summation
when the remaining terms of the infinite sum become small.

The following auxiliary function is defined. The half tick size mid-point
function (eqn 9) is augmented by an explicit tick size argument, ρ - tick size
in dollars. (the mid-point is in basis points).

π(n, ρ, Ps) =
5000 ρ (n + 0.5)

Ps

, π(0, ρ, Ps) = 0 (33)

Let Φ(r; Λ) be the true spread cumulative distribution function for a
vector of known spread distribution parameters Λ. The probability of a true
relative spread being observed at the kth half-tick size bin, Pr(k, ρ, Ps), is
simply the cumulative spread distribution at the kth spread bin mid-point
less the cumulative spread distribution at the (k − 1)th mid-point.

20



Pr(k, ρ, Ps) = Φ(π(k, ρ, Ps); Λ) − Φ(π(k − 1, ρ, Ps); Λ) (34)

The relative spread (in basis points) of the kth half tick size, parameter-
ized for market tick size ρ (in dollars) is:

µ(k, ρ, Ps) =
5000 k ρ

Ps

(35)

The Censoring Function

Using the functions defined above the complete censoring function is defined:

Rcensored
s =

∞∑

k=1

Pr(k, ρ, Ps) µ(k, ρ, Ps)

=
∞∑

k=1

[
Φ(π(k, ρ, Ps); Λ) − Φ(π(k − 1, ρ, Ps); Λ)

] 5000 k ρ

Ps

(36)

The infinite sum can be truncated to approximate the censored spread
such that the remaining (infinite) sum is less than a small value, ε:
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Analysis of Results

Censored Spreads, True Spreads and Excess Spreads

For the 249 stocks in the data sample, true spreads were calculated and com-
pared to the Censored spreads of each stock. The calculation of true spreads
uses the LogNormal regression results of table 2 and is a function of Turnover
and Volatility only, stock price (Ps) is not significant. Censored spreads were
calculated from the underlying continuous spreads using equation 36 and
stock price and tick size are introduced as determinants of censored spread.

Rtrue
s = 10 4.443− 0.420 log Ts + 0.493 log σs (37)

The comparison is graphed in figure 7, the difference between the true
spreads and censored spreads is the excess spread due to tick size. From
the graph it is readily seen that where censored spreads are well above the
minimum spread line, then there is little or no difference between true spreads
and censored spreads (no excess spread). However, for lower priced stock,
where the censored spread is near or on the minimum spread line, there is
significant difference between true and censored spreads.
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Figure 7: True spreads compared to Censored Spreads, 249 stocks.
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Censored Spreads as an Estimate of Observed Spreads

The model of censored spreads developed in this paper should be able to
predict observed spreads accurately and without bias. This is readily tested
by modelling observed spreads as a linear regression of censored spreads. So
the censored spreads are calculated using the results from the LogNormal
continuous spread model and fitted to the following linear regression

Robserved
s = k Rcensored

s + b + εs (38)

The intercept term (b) in equation 38 is not significant so the regression
is refitted without an intercept term and this regression shows that k (slope)
is not significantly different from 1. The R2 of the regression is 0.86 and the
‘Hetero-X’ statistic confirms heteroscedasticity. So censored spreads are an
accurate and unbiased estimate of observed spreads.
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Summary

The loglikelihood spread regression model suggested by Harris [5] is gener-
alized and applied to effective spread data from the Australian Stock Ex-
change. This model enables the identification of an unobserved continuous
spread distribution related to the cost of the supply of liquidity. This unob-
served continuous spread distribution is partitioned (‘censored’) by market
tick size into the observed discrete spreads.

For some higher turnover, low priced stocks traded on the ASX, the 1
cent minimum tick size (stock price ≥ $0.50) is too large and all spreads
are observed at the minimum 0.5 cent spread, these spreads are censored by
tick size. This implies that ordinary least squares linear regression models
of spreads on the ASX are miss-specified because this tick size censoring is
not addressed by the regression. The loglikelihood spread regression model
overcomes this problem and allows a model of unobserved continuous spreads
to be developed.

The continuous regression model is robust. Continuous spread regression
models were developed with 4 different parameterized distributions (see ta-
ble 2) with similar regression results for turnover and volatility, all rejected
price as significant. Stock turnover is a proxy for the scarcity of liquidity
and increasing turnover results in decreasing spread. Volatility increases the
risk of limit order traders (liquidity suppliers) because of the increased like-
lihood that the stock price will move away from the limit order price before
the limit order is executed, so increasing stock volatility increases the un-
observed continuous spread. Price is not an important determinant of the
unobserved continuous spread and this is intuitively appealing - the spread
costs of trading of stock should not be influenced by nominal stock price.
For example, in negotiating the cost of supplying $1m of stock, liquidity
providers and demanders are neutral as whether that stock liquidity is sup-
plied as $1× 1, 000, 000 stock units or $100× 10, 000 stock units.

Not only does the continuous spread regression allow the investigation of
the underlying influences on spreads but it also gives us a powerful tool for
investigating the effect of tick size on the cost of trading on the ASX. The
unobserved continuous uncensored regression can be used as an accurate and
unbiased model (equation 38 and figure 8) of observed spreads by explicitly
tick-size censoring. Any changes in tick size on the ASX can simply be
modelled as a change in the spread censoring function and resultant changes
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in stock trading behaviour estimated. The definition of relative spreads as a
censored regression and the resultant model of true continuous spreads and
censored spreads is new to the microstructure literature.
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