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Incorporating Economic Objectives into Bayesian Priors:

Portfolio Choice Under Parameter Uncertainty

Bayesian priors on model parameters often ignore the economic objectives at hand. This

paper shows that this can be suboptimal, and proposes a way to allow priors to reflect the

objective of maximizing an expected utility. Using monthly returns of the Fama-French

25 assets and their three factors from January 1965 to December 2004, we find that the

objective-based priors out-perform alternative priors substantially, with annual certainty-

equivalent gains of over 10% in many cases. The better performance is present even in

repeated sampling experiments, suggesting that objective-based Bayesian optimal portfolios

are superior decision rules even judged by the classical statistical criterion.



1 Introduction

Many finance problems have well-defined economic objectives, but model estimation and

testing usually make no connection between the estimation of a model to its economic uses.

In the classic framework, it is known that different loss functions call for different parameter

estimates. Lehmann and Casella (1998) summarize many of the exiting approaches for

obtaining such estimates. In contrast, to our knowledge, there are no general theory in

a Bayesian set-up to guide one to form priors that take into consideration the economic

objectives at hand, despite of the wide use of Bayesian decision theory (Berger, 1985) and

the increasing applications of Bayesian framework in finance, e.g., Kandel and Stambaugh

(1996), Barberis (2000), Pastor and Stambaugh (2000), Brennan and Xia (2001), Avramov

(2002), Cremers (2002), Cohen, Coval and Pástor (2005) and Wang (2005).

This paper explores a general approach to form objective-based priors in the context of

an optimal portfolio selection problem. This problem has been extensively analyzed both

theoretically and empirically ever since Markowitz’s (1952) seminal mean-variance frame-

work. Zellner and Chetty (1965), Klein and Bawa (1976) and Brown (1979) and Jorion

(1986) are earlier studies that use the Bayesian approach to account for parameter uncer-

tainty. Recently, Pastor (2000), Pastor and Stambaugh (2000), Avramov (2004) and Tu and

Zhou (2004) study how the portfolio selection problem is impacted by an investor’s varying

prior beliefs on an asset pricing model and data-generating process. But the linkage between

priors and the economic objective functions has not been addressed in neither these studies

nor elsewhere in the finance literature.

The idea of this paper is to combine priors with the first-order condition of the portfolio

maximization problem. Even in the absence of any data specific information, the investor’s

objective function places restrictions on the parameters of the model. As it turns out, such

restrictions improve the Bayesian portfolio choice decision substantially.

The remainder of the paper is organized as follows. Section 2 provides the Bayesian

framework. Section 3 extends the analysis to the case where the returns are predictable.

Section 4 provides empirical results. Section 5 conducts a classical simulation comparison of

the Bayesian procedures versus the classical ones. Section 6 concludes.
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2 The Bayesian framework

1.1 The portfolio choice problem

Consider the standard portfolio choice problem where an investor chooses his optimal

portfolio among N risky assets and a riskless asset. Let rft and rt be the rates of returns on

the riskless asset and N risky assets at time t, respectively. We define Rt ≡ rt− rft1N as the

excess returns, i.e., the returns in excess of the riskless asset, where 1N is an N -vector of ones.

The standard assumption on the probability distribution of Rt is that Rt is independent and

identically distributed over time, and has a multivariate normal distribution with mean µ

and covariance matrix V at any time t.

For simplicity, consider first the standard mean-variance framework, while the non-

quadratic case will be discussed later. In the mean-variance framework, the investor is

assumed to choose portfolio weights w so as to maximize the quadratic objective function

U(w) = E[RT+1]− τ

2
Var[RT+1] = w′µ− τ

2
w′V w, (1)

where τ is the coefficient of relative risk aversion. It is well-known that, when both µ and V

are assumed known, the portfolio weights are

w∗ =
1

τ
V −1µ, (2)

and the maximized expected utility is

U(w∗) =
1

2τ
µ′V −1µ =

θ2

2τ
, (3)

where θ2 = µ′V −1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the risky

assets.

However, w∗ is not computable in practice because µ and V are unknown. To implement

the above mean-variance theory of Markowitz (1952), the optimal portfolio weights are usu-

ally estimated by using a two-step procedure. First, the mean and covariance matrix of the

asset returns are estimated based on the observed data. Second, these sample estimates are

then treated as if they were the true parameters, and are simply plugged into (2) to compute
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the optimal portfolio weights. Kan and Zhou (2004) show that such plug-in approaches are

not optimal and obtain better estimates for the optimal portfolio weights by incorporating

the economic objective function into consideration. In this paper, we make use of the eco-

nomic objective function by forming suitable priors in the Bayesian framework. In contrast

with the classical statistics set-up, our Bayesian approach is more flexible because it allows

easy adaption to different objective functions and to alternative data-generating processes.

1.2 Bayesian solution

Following Zellner and Chetty (1965), the Bayesian optimal portfolio is obtained by max-

imizing the expected utility under the predictive distribution, i.e.,

ŵBayes = argmaxw

∫

RT+1

U(w)p(RT+1|ΦT ) dRT+1

= argmaxw

∫

RT+1

∫

µ

∫

V

U(w)p(RT+1, µ, V |ΦT ) dµdV dRT+1, (4)

where U(w) is the utility of holding a portfolio w at time T +1, p(RT+1|ΦT ) is the predictive

density, ΦT is the data available at time T , and

p(RT+1, µ, V |ΦT ) = p(RT+1|µ, V,ΦT )p(µ, V |ΦT ), (5)

where p(µ, V |ΦT ) is the posterior density of µ and V . In contrast to the two-step solution

that treats sample estimates as the true parameters, the Bayesian approach accounts for

the estimation error. Brown (1976), Klein and Bawa (1976), and Stambaugh (1997), among

others, choose the standard diffuse prior on µ and V ,

p0(µ, V ) ∝ |V |−N+1
2 , (6)

in the absence of using any data information. They show that the resulted optimal portfolio

weights are generally slightly better than the classical plug-in approach, while Kan and

Zhou (2005) verifies this analytically. Nevertheless, the differences between the two portfolio

weights are known to be small and economically insignificant.

The closeness of the results between the classical and the Bayesian is not surprising from

a statistical point of view. Neither the classical nor diffuse prior utilizes any information of
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data or the objective. Because of using the same diffuse information, their results should be

close. On the other hand, as shown by Kan and Zhou (2005), the implied estimators of the

Bayesian diffuse prior can be dominated by alternative estimators. This clearly says that

the diffuse prior is not optimal to solving the portfolio problem. Then, the question is how

to construct useful priors that can improve the investor’s expected utility.

1.3 Priors incorporating objectives

Consider first the case in which no data information is available. In this case, we show

that one can construct informative priors based on the objective function. Suppose that we

are interested in forming a normal prior on µ,

µ ∼ N(µ0, σ
2
µV0), (7)

where σµ is a scale prior parameter to indicate how tight the variance of µ is relative to V0.

To reflect the economic objective, it is natural to link the prior to the first-order condition

(2),

µ ∼ N(V τw0, σ
2
µV0) (8)

where w0 is our prior on the portfolio weights. This says that the prior mean is proportional

to both the covariance matrix of the asset returns and the prior weights. Given the prior

weights, the prior expected returns are high on those assets whose risks are high. Without

using any data specific information, a simple prior on w0 is an equal-weighted portfolio with

weights summing to 0.5, which represents a strategy of investing 50% of the money into

the risky assets.1 This might be conservative to many. An alternative prior is to allow the

weights summing to 1, which represents an aggressive strategy.

The above prior requires also the specification of V0. A simple way of doing so is to use

the identity matrix,

µ ∼ N(V τw0, σ
2
µIN). (9)

Note that σ2
µ reflects the degree of uncertainty about µ0. A zero value of σ2

µ implies a dogmatic

belief on µ0 to be the true mean and there is no uncertainty. A value od σ2
µ = ∞ suggests

1DeMiguely, Garlappiz, and Uppal (2005) provide a detailed discussion for this naive rule and find it is
hard to beat.
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that µ0 is not informative at all about the true mean. Other than these two extremes, σ2
µ

places modest informative prior beliefs on the degree of uncertainty of how µ0 is close to be

the true mean.

However, the identify matrix specification has an undesired property. It measures the

difference of any value µd from µ0,

µd − µ0 6= 0, (10)

by placing equal importance on the deviations of each element of µd from µ0. While this may

be plausible in some applications, it does not measure adequately the investor’s assessment

of the deviations given his utility function. To see this, let wd and w0 be the portfolio weights

associated with µd and µ0 based on the objective function. It is easy to show that

U(w0|µ0)− U(wd|µ0) ≈ 1

2
[µd − µ0]

′Ω−1[µd − µ0]. (11)

where

Ω =

{{
∂2U

∂w∂µ′
[w0|µ0]

}′ {
∂2U

∂w∂w′ [w0|µ0]

}−1 {
∂2U

∂w∂µ′
[w0|µ0]

}}−1

. (12)

Hence, from the perspective of utility evaluation, the investor measures the importance of

deviations with weights Ω−1. This suggests a potentially better prior on µ is

µ ∼ N

[
V τw0, σ

2
µ

(
1

s2
Ω

)]
, (13)

where s2 is the average of the diagonal elements of Ω. In this way, the investors’s objective

function, the utility function here, is linked to prior density. Note that this prior is invariant

to any positive monotonic transformations of the utility function. In the case of mean-

variance utility, it is easy to verify that Ω = V . So, the above prior can be simply written

as

µ ∼ N

[
V τw0, σ

2
µ

(
1

s2
V

)]
, (14)

where, as we recall, V is the covariance matrix of the asset returns.

The objective-prior has an interesting relation to Black and Litterman’s (1992) asset

allocation method the received attention of many practitioners (see, e.g., Litterman (2003)

and Meucci (2005)). They argue that, if w0 is taken as the market value-weighted portfolio,

V τw0 is the equilibrium expected return as investors hold the market in equilibrium. It is
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this expected return that are used in their allocation decision which yields more balanced

portfolios than the standard optimal mean-variance one. Our approach here allows it as a

prior for Bayesian allocation that combines both the prior and the data. In contrast, Black

and Litterman’s Bayesian analysis is ad hoc and does not reply on the likelihood function of

the data.

Consider now the case in which data is used to form informative priors on the parameters.

For simplicity, assume we use 10 years of monthly data. Let µ̂10 and V̂10 be the sample mean

and covariance matrix, respectively. Then, the standard Bayesian informative prior on µ

based on the 10 years data may be written as

µ ∼ N

[
µ̂10, σ

2
µ

(
1

ŝ2
V̂10

)]
, (15)

where ŝ2 is the average diagonal elements of V̂10, and σ2
µ remain a scale parameter to indicate

the degree of uncertainty. An alternative is the conjugate prior (Zellner, 1970),

µ ∼ N

[
µ̂10, σ

2
µ

(
1

ŝ2
V̂

)]
, (16)

which replaces the earlier V̂10 by V̂ . In empirical empirical applications, the performance

of these two priors are similar Is this true? and hence we consider only the first in what

follows.

Given the data, an objective-based Bayesian starts from the non-data prior 14, updates

his prior based on the 10 years data and then this for his future decision making. This is

analogous to the updating the diffuse prior to get (15) and (16). The updated prior on µ is

µ ∼ N

[
µ̂∗10, σ

2
µ

(
1

s2
V

)]
, (17)

where µ̂∗10 = V τŵ10 and ŵ10 is the Bayesian optimal portfolio weights based on the 10 years

data. It is interesting that the conjugate prior provides a similar covariance structure to that

of the objective-based prior. However, their means are entirely different. In applications, t

the means are more difficult to estimate and it is them that make the most differences in

portfolio decisions.

Pastor (2000) and Pastor and Stambaugh (2000) introduce a class of interesting priors

that reflect investors’ degree of belief in an asset pricing model. To see how this prior is
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formed, assume Rt = (yt, xt), where yt contains the excess returns of m non-benchmark

positions and xt contains the excess returns of K (= N −m) benchmark positions. Consider

a factor model multivariate regression,

yt = α + Bxt + ut, (18)

where ut is an m×1 vector of residuals with zero means and a non-singular covariance matrix

Σ = V11 −BV22B
′, and α and B are related to µ and V , through

α = µ1 −Bµ2, B = V12V
−1
22 , (19)

where µi and Vij are the corresponding partition of µ and V ,

µ =

(
µ1

µ2

)
, V =

(
V11 V12

V21 V22

)
. (20)

For a factor-based pricing model, such as the three-factor model of Fama and French (1993),

the restriction is α = 0.

To allow for mispricing uncertainty, Pastor (2000) and Pastor and Stambaugh (2000)

specify the prior distribution of α as a normal distribution conditional on Σ,

α|Σ ∼ N

(
0, σ2

α

(
1

s2
Σ

Σ

))
, (21)

where s2
Σ is a suitable prior estimate for the average diagonal elements of Σ. The above alpha-

Sigma link is also explored by MacKinlay and Pástor (2000) in the classical framework. The

magnitude of σα represents an investor’s level of uncertainty about a given model’s pricing

ability. When σα = 0, the investor believes dogmatically in the model and there is no

mispricing uncertainty. On the other hand, when σα = ∞, the investor believes that the

pricing model is entirely useless.

In contrast with the priors motivated by asset pricing theory, the objective-based priors

do not reply on the degree to which the asset pricing theory is true. What requires is only

that the objective function of the price taking investor be known and well specified. The

quadratic utility is assumed earlier, which can be relaxed as follow.

Consider how to obtain µ0 and Ω in the power utility case which is one of the most

popular utilities. The utility function is defined as

U [w|µ[= E

[
[1 + Rf + wRT+1]

1−γ

1− γ
|µ

]
. (22)
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The first-order condition is

E
[
[1 + Rf + wRt]

−γRt|µ
]

= 0, (23)

from which we can solve for µ for any given w0. As there is no analytical solutions, we

can either use the earlier normal distribution of µ with mean µ0 as an approximation or

truncated the posterior draws of µ in a neighborhood of equation (refeq:power-foc). The

second-order derivatives are:

∂U

∂w
[w|µ] = E

[
[1 + Rf + wRt]

−γRt|µ
]
, (24)

and
∂2U

∂w∂w′ [w|µ] = −γE
[
[1 + Rf + wRt]

−γ−1RtR
′
t|µ

]
. (25)

Although Ω now is also not available analytically, it can be computed numerically. Samples

of µ nay be drawn, and then we can approximate the second-order derivatives by

∂2U

∂w∂µ′
[w0|µ0] =

[
∂f(µ0)

∂µ1

,
∂f(µ0)

∂µ2

, · · · ,
∂f(µ0)

∂µN

]
, (26)

where

∂f(µ0)

∂µi

= [f(µ0 − 2hei)− 8f(µ0 − hei) + 8f(µ0 + hei)− f(µ0 + 2hei)] /(12h), (27)

where f(µ0) ≡ ∂U
∂w

[w0|µ0], ei = (0, 0, · · · , 0, 1, 0, · · · , 0, 0) is an N × 1 vector with 1 as the ith

element and zero otherwise, and h is a small number, such as 10−6.

3 Priors when returns are predictable

Kandel and Stambaugh (1996) and Barberis (2000) show that incorporating return pre-

dictability plays an important role in portfolio decisions. Avramov (2004) extends this in

a multivariate asset setting. The question we address here is whether objective-based prior

can still result significant economic gains in the presence of predictability.

Following earlier studies, we assume that the returns are related to L predictive variables

by linear regression,

Rt = µ + µ1Zt−1 + vt, (28)
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where vt ∼ N(0, Σrr) and the predictive variables Zt−1 have an VAR process,

Zt = ψ + ψ1Zt−1 + ut, (29)

with ut ∼ N(0, Σzz). Let y′t = [R′
t, Z

′
t−1], xt = (1, y′t−1)

′, and Y and X be (N + L) × T and

(N + L + 1)× T matrices of the yt’s and xt’s, respectively, then the model can be written in

the standard form,

Y = XB + U, (30)

where U are formed by the corresponding residuals, vec(U) ∼ N(0, Σ⊗ IT ), where

Σ =

(
Σrr Σrz

Σzr Σzz

)
. (31)

We in what follows focuses on how to impose an objective-based prior since the solution

to the Bayesian optimal portfolio problem is known in the diffusion prior case. Conditional

on any given prior for µ1, the mean and variance conditional on ZT−1 are relevant for the

usual utility maximization. Similar to the iid case, we obtain an objective-based prior on µ

as

µ ∼ N

[
Σrrτw0, σ

2
µ

(
1

s2
Σrr

)]
. (32)

This prior can easily be combined with a prior on predictability and on “no-predictability”

as set forth in Kandel and Stambaugh (1996).

4 Empirical results

In this section, we compare the objective-based priors with its usual alternatives. The data

are monthly returns of the well-known Fama-French 25 book-to-market and size portfolios

and their three factors from January 1965 to December 2004.2

Consider first the possible gains of switching from diffuse priors to the objective-based

prior without using any data information. Following Kandel and Stambaugh (1996) and

Pástor and Stambaugh (2000), the utility gain of switching from the diffuse prior to the

objective-based prior is the difference of expected utilities under the posterior distribution of

2We are grateful to Ken French for making this data available on his website.
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the latter. Let E∗ and V ∗ be the predictive mean and variance-covariance matrix of the asset

returns under objective-based prior without data, equation (14), and wO be the associated

optimal portfolio allocation. Then the expected utility is given by

EUO = w
′
OE∗ − 1

2
Aw

′
OV ∗wO, (33)

where A is the degree of relative risk aversion. The allocation, wD, which is optimal under

the diffuse prior, should have an expected utility of

EUD = w
′
DE∗ − 1

2
Aw

′
DV ∗wD. (34)

Notice that this expected utility is evaluated based on the same E∗ and V ∗ of the objective-

based prior. Because of this, the difference

CE = EUO − EUD (35)

is interpreted as the ‘perceived’ loss in terms of certainty-equivalent return to an investor

who is forced to accept the optimal portfolio selection based on the diffuse prior. Since wO is

optimal under the objective-based prior, CE is always positive or zero by construction. The

issue is how big this value can be. Generally speaking, values over a couple of percentage

points per year are deemed as economically significant.3

Table 1 reports the results. When we apply the objective-based prior to 10 years worth

of data (T = 60), the utility gains are overwhelmingly large. They range from an annual rate

of 22% to 124%. The large difference is driven by the fact that the posterior returns are very

sensitive to prior specifications when T = 60. This can also understood by the simulation

results of Kan and Zhou (2005) who show that, with a sample size of T = 60, the estimated

parameters can be far away from the true ones. Even with a sample size of T = 480, there

is still substantial variability in the estimates. The objective-based prior seems to provide

an informative way to shift the posterior mean from the sample one to a more reasonable

value.

As sample size grows, the influence of priors decreases because the posterior distribution

is completely determined by the data when the sample size is infinity. However, with a

3Fleming, Kirby and Ostdiek (2001) provides a similar but different measure in the classical framework.
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sample size of as large as T = 480, Table 1 shows that the utility gains are still substantial.

At σµ = 1%, the gain is greater than 8%, although it eventually decreases to an insignificant

amount of 0.04% at σµ = 5%. Overall, it is clear that the objective-based prior make a

significant economic difference in portfolio selections.

Consider now the case in which some of the data is used to form informative priors. In this

case, the data prior, equation (15) plays the role of earlier diffuse prior, while the comparable

objective-based prior is the one given by equation (17) which updates the previous one with

the same length of data. Table 2 Since we have in total 480 data, should T goes

only to 360 in table 2? provides the results. The objective-based prior outperforms the

data-based prior substantially when T < 240, or when σµ ≥ 2%. However, the gains are less

dramatic than the diffuse prior case, and they gains are not necessarily smaller or greater as

T increases. For example, quite a few of the gains when T = 480 are even greater than those

with few samples. There are two explanations for this. First, in a given application, the first

10 years of data may not necessarily informative to the samples that follow, and hence the

expected utilities may not be a monotonic function of the sample size. Second, even if they

are, their difference may not necessarily be so.

Consider finally the performance of the objective-based priors relative to those based on

asset pricing models. Taking xt as the Fama-French three-factors, the degree of belief on the

validity of the Fama-French three-factor model is represented by the alpha prior, equation

(21). For simplicity, we assume σ2
α = σ2

µ in the comparison. Table 3 provides the results.

Similar to the data-based prior case, the utility gains are economically significant for all the

sample sizes when σµ ≥ 2%.

In summary, maximizing a utility function provide a useful guidance for choosing priors

in Bayesian decision making. Using the Fama-French data, we find that such objective-based

priors outperform both standard statistical priors and asset-pricing-based ones significantly.

Even with sample size as large as T = 480, the utility gains are still economically significant.
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5 A comparison in the classical framework

Because the true parameters of the data-generating process is unknown in the real world,

the Bayesian utility comparison in the previous section is based on E∗ and V ∗, the mean and

variance estimated based on the objective-based prior with or without data information. The

gains are positive by design. One might argue that this benchmark is unfairly biased against

the diffuse prior, and the diffuse prior might perform better under the true parameters.

To answer this question, we conduct the following simulation experiment. First, we set

true parameters of the model as the sample mean and covariance matrix of the monthly

returns of the Fama-French data from January 1965 to December 2004. Then, we simulate

1000 data sets from the assumed normal distribution of asset returns, and compute the

expected utilities based on the diffuse prior and the objective-based priors. In contrast with

earlier Bayesian analysis, we evaluate the expected utilities at the assumed true parameters

so that no bias toward neither priors exists. Table 4 reports the average utility gains over the

simulated data sets. It is striking that the objective-based prior achieve even greater gains

over the diffuse prior when T = 60, suggesting that the diffuse prior is indeed inadequate

with small sample size. However, as sample size increases, the magnitude of the gains, though

economically significant, decrease substantially. Nevertheless, even when sample size T is as

large as T = 480, the gains are still economically important.

One may view Bayesian portfolio decisions, based on either the diffuse prior or objective-

based priors, as purely decision rules that are functions of the samples. In the classical

framework, their performance is judges by the expected values of the functions or by the

simulated sample averages. By this classical statistics criterion, the objective-based Bayesian

analysis is clearly a better decision tool than the diffuse one. This is also true, as shown by

Table 4 and 5, when we compare the objective-based prior with the data- and asset-pricing-

based ones.
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6 Conclusion

This paper explores the link between Bayesian priors and economic objective functions. Once

incorporating the economic objectives into priors, we find that the gains are substantial, and

sometimes are enormous. The superior performance is present not only in using the real

data, but also in simulations.

Although our study focuses on portfolio choice, the results do suggest economic objective-

based priors should be explored in almost any financial decision making, especially where

the Bayesian framework is deemed appropriate because such priors contains information on

both the nature of the data and the plausible parameters of the model.
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Table 1: Utility gains of switching from diffuse to objective-based priors

The table reports the utility gains (annualized) of switching from the standard diffuse prior,

p0(µ, V ) ∝ |V |−N+1
2

to the objective-based prior

p0(µ, V ) ∝ N

[
τV w0, σ

2
µ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
µ reflects the degree of uncertainty about µ0 and w0 is proportional to a constant with

∑
w0i = 0.5

or 1, respectively.

∑
w0i T σµ

1% 2% 3% 4% 5%

T= 60
0.5 60 123.93 90.23 58.47 36.17 22.36
1 60 125.47 91.36 59.18 36.68 22.66

T= 120
0.5 76.97 31.80 12.54 5.42 2.61
1 75.57 31.20 12.33 5.33 2.57

T= 180
0.5 53.45 14.62 4.54 1.74 0.78
1 52.54 14.39 4.45 1.71 0.77

T= 240
0.5 38.72 8.45 2.36 0.85 0.38
1 38.00 8.27 2.33 0.84 0.37

T= 360
0.5 15.95 2.66 0.67 0.24 0.10
1 15.28 2.54 0.65 0.22 0.10

T= 480
0.5 8.87 1.26 0.31 0.10 0.04
1 8.70 1.24 0.30 0.10 0.04
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Table 2: Utility gains of switching from data-based to objective-based priors

The table reports the utility gains (annualized) of switching from the data-based prior

p0(µ, V ) ∝ N

[
µ̂10, σ

2
µ

(
1
ŝ2

V̂10

)]
× |V |− νV +N+1

2 exp

{
−1

2
trHV −1

}

to the objective-based prior

p0(µ, V ) ∝ N

[
µ̂∗10, σ

2
µ

(
1
s2

V

)]
× |V |− νV +N+1

2 exp

{
−1

2
trHV −1

}
,

where µ̂∗10 = V τŵ10, ŵ10 is the Bayesian optimal portfolio weights based on the 10 years data when w0 is
proportional to a constant with

∑
w0i = 0.5 or 1, respectively, σ2

µ reflects the degree of uncertainty about µ0,
H = T10V̂10, νV = T10, T10 = 120 (sample size of 10 year monthly returns), and V̂10 is the sample covariance
of the previous 10 year monthly returns.

Sum of Prior weights σµ

1% 2% 3% 4% 5%

T= 60
0.5 54.49 30.32 18.26 12.32 8.88
1 53.23 29.46 17.94 12.31 8.87

T= 120
0.5 44.84 44.96 31.38 19.28 12.31
1 42.61 44.07 31.31 19.12 12.22

T= 180
0.5 34.40 14.34 7.44 4.07 2.34
1 33.70 14.31 7.40 4.23 2.36

T= 240
0.5 17.84 4.30 1.62 0.73 0.39
1 17.27 4.32 1.66 0.70 0.36

T= 360
0.5 6.61 1.97 0.78 0.35 0.18
1 6.36 1.90 0.75 0.34 0.18

T= 480
0.5 42.91 8.71 2.36 0.95 0.47
1 43.05 8.73 2.36 0.94 0.47
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Table 3: Utility gains of switching from Fama-French three-factor model-based

to objective-based priors

The table reports the utility gains (annualized) of switching from a prior reflecting the degree of belief in
the Fama-French three-factor model,

p0(α,B, V ) ∝ N(Bµ2, σ
2
µ

1
s2
Σ

Σ)× |V |−N+1
2 ,

where Σ = V11−V12V
−1
22 V21 and s2

Σ is the average of the diagonal elements of Σ, to the objective-based prior

p0(µ, V ) ∝ N

[
τV w0, σ

2
µ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
µ reflects the degree of uncertainty about µ0 and w0 is proportional to a constant with

∑
w0i = 0.5

or 1, respectively.

Sum of Prior weights σµ

1% 2% 3% 4% 5%

T= 60
0.5 84.32 120.18 125.20 114.53 102.71
1 83.19 118.94 123.68 113.31 101.47

T= 120
0.5 42.53 39.94 26.21 18.26 14.11
1 40.26 38.64 25.49 17.92 13.82

T= 180
0.5 33.86 18.97 10.05 6.53 4.93
1 32.65 18.51 9.83 6.41 4.85

T= 240
0.5 28.62 11.63 5.54 3.45 2.57
1 27.68 11.30 5.43 3.39 2.52

T= 360
0.5 14.76 4.04 1.72 1.04 0.76
1 13.92 3.83 1.65 0.99 0.74

T= 480
0.5 8.42 1.87 0.74 0.43 0.30
1 8.16 1.81 0.72 0.41 0.30
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Table 4: Monte Carlo utility gains of switching from diffuse to objective-based

priors

This table reports the average utility gains of switching from diffuse prior to objective-based priors with data
sets simulated from a multivariate normal distribution whose ‘true’ mean and covariance matrix, E∗ and
V ∗, are calibrated from the monthly returns of the Fama-French 25 assets and the associated three factors
from January 1965 to December 2004. The number of simulated data sets is 1000.

Prior types σµ

1% 2% 3% 4% 5%

T= 60
0.5 185.14 185.19 168.42 143.16 118.04
1 186.06 185.77 168.78 143.39 118.11

T= 120
0.5 42.50 44.95 35.16 25.68 18.87
1 43.21 45.25 35.28 25.77 18.89

T= 180
0.5 18.99 21.88 15.67 10.80 7.66
1 19.55 22.07 15.79 10.84 7.65

T= 240
0.5 10.08 13.03 8.91 5.93 4.11
1 10.54 13.16 8.92 5.97 4.13

T= 360
0.5 3.64 6.18 3.97 2.56 1.76
1 3.97 6.25 3.99 2.57 1.75

T= 480
0.5 1.33 3.52 2.19 1.39 0.95
1 1.56 3.55 2.20 1.39 0.96

20



Table 5: Monte Carlo utility gains of switching from data-based to objective-

based priors

This table reports the average utility gains of switching from the data-based to objective-based priors with
data sets simulated from a multivariate normal distribution whose ‘true’ mean and covariance matrix, E∗

and V ∗, are calibrated from the monthly returns of the Fama-French 25 assets and the associated three
factors from January 1965 to December 2004. The number of simulated data sets is 100.

Sum of Prior weights σµ

1% 2% 3% 4% 5%

T= 60
0.5 71.52 98.15 87.66 68.40 52.92
1 72.32 98.58 87.56 68.28 52.60

T= 120
0.5 21.38 20.07 13.53 9.02 6.16
1 21.97 20.24 13.67 8.96 6.44

T= 180
0.5 16.38 9.49 5.15 2.94 2.00
1 16.61 9.41 5.10 3.04 2.04

T= 240
0.5 12.77 5.16 2.38 1.42 0.89
1 12.97 5.21 2.38 1.34 0.85

T= 360
0.5 8.04 1.81 0.67 0.40 0.14
1 8.11 1.80 0.69 0.41 0.23

T= 480
0.5 4.70 0.70 0.26 0.16 0.14
1 4.73 0.67 0.28 0.16 0.12
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Table 6: Monte Carlo utility gains of switching from Fama-French three-factor

model-based to objective-based priors

This table reports the average utility gains of switching from the Fama-French three-factor model-based to
objective-based priors with data sets simulated from a multivariate normal distribution whose ‘true’ mean
and covariance matrix, E∗ and V ∗, are calibrated from the monthly returns of the Fama-French 25 assets
and the associated three factors from January 1965 to December 2004. The number of simulated data sets
is 1000.

Sum of Prior weights σµ

1% 2% 3% 4% 5%

T= 60
0.5 53.47 187.62 237.01 242.54 233.47
1 54.39 188.21 237.37 242.78 233.54

T= 120
0.5 21.33 55.66 55.95 50.49 45.63
1 22.04 55.96 56.07 50.58 45.66

T= 180
0.5 9.67 25.95 23.39 19.92 17.45
1 10.23 26.14 23.51 19.96 17.44

T= 240
0.5 5.22 15.58 13.33 11.06 9.58
1 5.68 15.71 13.34 11.10 9.60

T= 360
0.5 1.15 6.87 5.41 4.27 3.61
1 1.48 6.94 5.43 4.29 3.60

T= 480
0.5 0.26 4.24 3.32 2.67 2.30
1 0.49 4.28 3.33 2.67 2.30
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