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1 Introduction

It is well documented that the celebrated Black and Scholes (1973) model does not
fit real-world option prices, and in fact produces systematic biases. In general, the
volatilities that back out from the Black-Scholes formulae are downward sloping
against the moneyness and expirations. These biases are well known as implied
volatility smiles or smirks. Since the discovery of the volatility smile, researchers
and practitioners alike have tried to build realistic option pricing models. One of
the key reasons that the Black-Scholes model fails is that stock (or index) volatility
is stochastic.

Unlike the main approach in the literature that either directly models the dy-
namics of volatility or makes volatility depend on price, this paper models an
equilibrium stock price that exhibits stochastic volatility. Although there is only
one source of uncertainty, the heterogeneities of investors make the volatility vary
over time in a stochastic fashion. Because of the single source of risk, options that
are written on the stock are redundant, and can be hedged by the underlying stock.
The vanilla European options written on this stock are priced by simple formulae
that match some of the key features of the implied volatility that is observed in
options markets. Furthermore, the prices of certain exotic options, such as barrier
options, can be approximated by simple integrals that can be solved numerically
at any desired level of accuracy. This ability of the model seems to be unique in
the current literature, in which even evaluations of vanilla European options are
quite involved. In summary, the option pricing model that is developed in this pa-
per not only explains the main features of the implied volatility, but is also simple
to implement as in the spirit of the Black-Scholes model. The key assumption of
the model is that investors are heterogeneous in their preferences and beliefs

The base model is a simple version of the general equilibrium asset pricing
model that was developed by Li (2000). In this economy, investors with a loga-
rithmic utility1 have different time preferences (discount rate) and heterogeneous
beliefs about the only economic fundamental, which is a dividend or an endow-
ment stream. Unlike the homogeneous or a single representative agent setup of
Lucas (1978), the trading of stock not only involves risk sharing among investors,
but also speculation. Different trading strategies redistribute wealth among in-

1This makes the model very tractable. See Li (2000) for the case of general power utility.
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vestors over time, and this redistribution effect adds another layer of variation to
that which is caused by the variation of the fundamental, that is, the dividend with
a constant volatility. The equilibrium price does not follow a Markovian process
in terms of the price itself; detailed wealth distribution is needed to completely
described the equilibrium. The equilibrium stock volatility is stochastic, even
though the volatility of the dividend is constant. Moreover, the implied volatility
surface is also changing over time due to the change in wealth distribution.

There are several recent studies that also try to explain implied volatility in
equilibrium settings in which investors face uncertainty about the structure of
economic fundamentals. However, in most of these models, prices can be only
solved numerically, even for vanilla options. David and Veronesi (2002) propose
an equilibrium, continuous-time model in which a dividend stream has two pos-
sible growth rates and investors have to make an inference about the current rate
that the dividend follows. They show that the options that are written on the stock
can generate an implied volatility smile. A similar idea is also investigated by
Guidolin and Timmermann (2003) in a binomial tree setting. In Yan (2000), in-
vestors also continuously update the estimate of the mean dividend growth rate,
which follows a mean reverting process. Liu, Pan, and Wang (2005) give an equi-
librium model in which jumps in asset price are due to the jumps in the underlying
dividend. Garcia, Luger, and Renault (2003) directly assume some structures for
the processes of pricing kernel and dividends, the parameters of which follow a
two-state Markov chain.

There are many studies that aim to generalize the Black-Scholes model with-
out an equilibrium setting. In the spirit of Black and Scholes (1973), such ap-
proaches are adopted to derive flexible pricing formulae in applications. Relaxing
the constant volatility of a stock to a stochastic process seems to be an obvious
step forward. Models that adapt this approach are known as stochastic volatility
models, and include those of Hull and White (1987), Heston (1993), and others.
Another way to make stock volatility vary over time is to assume that volatility is a
deterministic function of stock price, as Derman and Kani (1994), Dupire (1994)
and Rubinstein (1994) have done. Such models are also called local volatility
models. The other approach is to add a jump component to the stock price dynam-
ics as in the work of Merton (1976) and Bates (1991). There are also models that
mix stochastic volatility and jumps together. Although these models enjoy some
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successes in term of explaining the observed implied volatility surface, other stud-
ies, such as those of Bakshi, Cao, and Chen (1997), Das and Sundaram (1999),
and Jones (2003) show that such success is limited. In addition, these models also
suffer some hedging problems in practice. For local volatility models, options can
be hedged by the underlying stock only, but suffer from consistency problems and
perform poorly empirically, as is shown by Dumas, Fleming, and Whaley (1998).
Obviously, these models more or less aim to ascertain how to model stock dynam-
ics such that the prices of the options that are written on the stock can explain the
real-world option prices with little details on the economics.

From an economic view point, equilibrium stock prices have stochastic volatil-
ity or jump components due to their fundamentals, that is, their dividends or earn-
ings.2 However, it is difficult to identify or verify the dynamics that the underlying
fundamentals follow, because we do not have the necessary data to carry out the
empirical analysis. Usually, information on economic fundamentals is difficult to
quantify and subject to different interpretations.3 An alternative is to assume that
economic fundamentals follow a simple structure but that investors do not have
perfect knowledge of the structure. Therefore, uncertainty about the structure of
the fundamentals, through investors’ learnings, may induce the stochastic volatil-
ity of stocks. This is the common approach that is adopted in several of the recent
studies that have been mentioned. Such studies do provide additional economic
insight, but, the pricing formulae in these models are quite complicated and in-
flexible, and hence they are quite limited in practice. In contrast to the existing
models, the options prices in the model that is proposed in this paper are not only
derived in an equilibrium setting, but are also easy to use in practice. In fact the
resulting option price formulae are simpler and easier to use in practice than those
in most of the reduced-form models

The rest of the paper is organized as follows. An equilibrium asset pricing

2Indeed, this is the approach that is taken by Liu, Pan, and Wang (2005). Presumably, we can
also take the volatility of a stock’s dividend to be stochastic. However, this approach may only
produce what the reduced-form models have achieved, and hence offers little additional economic
insight into options pricing.

3Knight (1964) classifies outcomes that are related to such information as risk with uncertainty,
and contrasts it to the outcome of a poker game, which comprises risk without uncertainty. The
main formalization of Knight’s idea about risk with uncertainty is known as Knightian uncertainty
in the literature.
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model is developed in the next section. Vanilla European options prices and
the relevant hedging deltas are derived in section 3. The Black-Scholes implied
volatility surface is also studied in this section. Section 4 shows how the price of
a barrier option can be approximated by an integral, and a simulation method to
compute this integral is proposed. It is also shown that both barrier and one-touch
options can be approximated by closed-form formulae in some cases. Section 5
contains the conclusion and discussions on possible extensions of the model. Ap-
pendix A provides all of the proofs that are omitted in the main text. Appendix
B provides a lemma, which is used in pricing barrier options, for the boundary
crossing probability of Brownian motion and some additional results on barrier
and one-touch options.

2 A Model of Equilibrium Asset Prices

2.1 Setup

We consider a pure-exchange, continuous-time competitive economy over an in-
finite time horizon. Our model is similar to the Lucas model (1978), except that
here investors have different beliefs or models about the structure of a dividend
process.

There is one risky security in the economy, which yields a nonnegative divi-
dend processδ. The dividend processδ(t) admits the following decomposition4

δ(t) = δ0 +
∫ t

0
µδ(s)δ(s) ds +

∫ t

0
σδδ(s) dZ(s), (1)

whereZ(s) is a one-dimensional Brownian motion andσδ is a constant. We as-
sume that bothµδ(t) and Z are unobservable. Investors in the economy have
different beliefs about the model that the processµδ follows, which yields dif-
ferent forecasts of current growth rates. In general,µδ could follow a wide class
of processes.5 However, as the focus of this paper is on pricing derivatives in an
economy with heterogeneous beliefs, the most convenient assumption about be-
liefs is the extreme case, in which investors believe the growth rate to be a constant

4The number of possible decompositions is infinite even whenµδ is a constant ifZ(s) is not
observable. This is an implication of the Girsanov theorem.

5Some of the possible setups are discussed in Li (2000).

4



and know it perfectly. As we will see later, this assumption enables closed-form
solutions for vanilla European option prices and closed-form approximations for
barrier options.6 Specifically, we assume that there are three investors, or three
kinds of investors, that are indexed byi,n, andp. Each believes thatµδ = µk,
whereµk is a constant fork = i, n, p.

The price of the risky security satisfies the Itô process

S(t) +
∫ t

0
δ(s) ds = S(0) +

∫ t

0
µS

k (s)S(s) ds +
∫ t

0
σS

k (s)S(s) dZk(s) (2)

from investork’s perspective, andZk(t) is the innovation process with respect to
investork’s information set.

There also is a risk-free asset (money market account), the price of which is

B(t) = exp
(∫ t

0
r(s) ds

)
,

wherer(s) is the instantaneous interest rate, which will be determined in equilib-
rium.

As have been mentioned, there are three classes of investors in the economy,
and each investor has the utility function

Uk(t, c) = Ek

[∫ T

t
e−ρks ln(c(s)) ds

∣∣∣∣∣F
δ(t)

]
,

whereF δ denotes the information structure that is generated by the dividend pro-
cess,Ek is the expectation operator according to investork’s belief, andρk is
investork’s subjective discount rate. We assume thatρp ≤ ρn ≤ ρi, which means
that investorp is the most patient and investori the most impatient in the econ-
omy. Investorn’s patience lies somewhere in between. Furthermore, investork is
endowed withωk shares of the risky security, where the total number of shares is
normalized to equal1, that isωi + ωn + ωp = 1.

6Most derivatives are short-term securities, and thus ignoring the updating or learning effects
of investors on the equilibrium may not have a major impact on the pricing of derivatives.
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2.2 Decompositions and Forecasts

First letg(t) = ln(δ(t))− ln(δ(0)) denote the growth rate of the dividend, which
satisfies

g(t) =
∫ t

0

(
µδ(s)− 1

2
σ2

δ

)
ds +

∫ t

0
σδ dZ(s), (3)

then

dZk(t) =
1

σδ

[dg(t)− µk(t) dt], (4)

which is the innovation process according to investork’s belief.

2.3 Stock Price Dynamics and State Price Densities

The uncertainty about the drift of the dividend process and the heterogeneity of be-
liefs among investors lead to different stock price dynamics or forecasts. Namely,
for investork, we have

S(t) +
∫ t

0
δ(s) ds = S(0) +

∫ t

0
µS

k (s)S(s) ds +
∫ t

0
σS

k (s)S(s) dZk(s).

As the stock is a traded asset, in equilibrium fork ∈ {i , p}, we must have

∫ t

0
µS

k (s)S(s) ds +
∫ t

0
σS

k (s)S(s) dZk(s)

=
∫ t

0
µS

n(s)S(s) ds +
∫ t

0
σS

n (s)S(s) dZn(s)

=
∫ t

0
µS

n(s)S(s) ds +
1

σδ

∫ t

0
σS

n (s)[µk(s)− µn(s)] ds +
∫ t

0
σS

n (s)S(s) dZk(s)

for all t, where the last equation is obtained by using equation (4). This implies, by
the fact that two identical stochastic processes must have the same finite variation
and martingale parts, that

σS
k (s) = σS

n (s) = σS(s)

and
µS

k (s)− µS
n(s)

σS(s)
=

µk − µn

σδ

= βk (5)
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for all s. Based on this observation, from now on the stock price satisfies the
stochastic differential equation

S(t) +
∫ t

0
δ(s) ds =

∫ t

0
µS

k (s)S(s) ds +
∫ t

0
σS(s)S(s) dZk(s), (6)

whereµS
k (s) for k ∈ {i, p} satisfies equation (5).

Heterogeneous beliefs also lead to different state price densities for each in-
vestor. Let

θk(s) =
µS

k (s)− r(s)

σS(s)

denote investork’s price of risk. Investork’s state price density is then

ξk(t) = exp
[
−

∫ t

0
r(s) ds− 1

2

∫ t

0
θ2

k(s) ds−
∫ t

0
θk(s) dZk(s)

]
. (7)

By equation (5), we have

θk(s)− θn(s) =
µk(s)− µn(s)

σδ

≡ βk (8)

for k = p, i. This relation regarding investors’ personal prices of risk must be
satisfied in equilibrium.

2.4 Optimality and Equilibrium

Equipped with the results in the last section, we now turn to investigate how the in-
vestors choose their consumption plans and portfolios to maximize their expected
utilities.

A feasibleconsumption and trading strategy of investork is a collection of
(c, π) = {c(t), π(t)}∞0 such that the following are satisfied.

1. c(t) is nonnegative andF δ-adapted and satisfies
∫ T
0 c(t) dt < ∞ ∀T > 0.

2. π(t), which is the portion of investork’s wealthW (t) invested in the stock,
isF δ-adapted and satisfies∀T > 0,

∫ T

0
|W (t)r(t) + [µS

k (t)− r(t)]π(t)W (t)| dt +
∫ T

0
[π(t)W (t)σS(t)]2 dt < ∞.
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3. c(t) andπ(t) satisfy the following intertemporal budget constraint

W (t) = W (0) +
∫ t

0
W (s){r(s) + π(s)[µS

k (s)− r(s)]− c(s)} ds

+
∫ t

0
W (s)π(s)σS(s) dZk(s),

whereW (0) is the initial wealth.
Standard portfolio choice theory, orthe martingale approach(Cox and Huang,

1989), applies to each investor’s optimization problem in our model, which trans-
forms a dynamic problem into a static problem. Equivalently, investork seeks to
maximize

Ek

[∫ ∞

0
e−ρkt ln(ck(t)) dt

]

subject to

Ek

[∫ ∞

0
ξk(t)ck(t) dt

]
≤ Wk(0).

The following results are straightforward.

Lemma 1 The optimal trading strategy for investork is

π∗k(t) =
µS

k (t)− r(t)

(σS(t))2
,

and the optimal consumption plan is

c∗k(t) = ρkWk(0)ξ−1
k (t)e−ρkt. (9)

Furthermore, investork’s wealth at timet is given by

Wk(t) = e−ρktξ−1
k (t)Wk(0).

Due to the assumption that all investors have a logarithmic utility function, the
individual investor’s optimization problem has a very simple solution. In partic-
ular, the feature that the optimal consumption is deterministically proportional to
an investor’s wealth enables us to compute the equilibrium explicitly.

An equilibrium is a pair of interest rate and stock price processes(r, S) =

{r(t), S(t)}∞0 such that given(r, S), all of the investors maximize their expected
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utilities based on their own beliefs and information sets, and all of the markets—
the perishable consumption good and the securities markets—are cleared. These
market clearing conditions lead to the following.

Define

ηk(t) =
Wk(t)

Wn(t)
=

ωk

ωn

× ξ−1
k (t)

ξ−1
n (t)

e−(ρk−ρn)t (10)

to be the ratio of wealth between the optimistic and the pessimistic investors. Note
that by (9), we have

c∗k(t)
c∗n(t)

= λkηk(t), (11)

whereλk = ρk

ρn
is the ratio of propensity to consume between investorsk ∈ {i, p}

andn.
Given the optimal policies, the market clearing condition for the perishable

consumption good is

c∗i (t) + c∗n(t) + c∗p(t) =
∑

k∈{i,n,p}
ρkWk(0)ξ−1

k (t)e−ρkt = δ(t). (12)

This implies that

ξn(t) = [1 + λiηi(t) + λpηp(t)]
ρnWn(0)

δ(t)
e−ρnt, (13)

and that fork ∈ {i, p}

ξk(t) =
1 + λiηi(t) + λpηp(t)

λkηk(t)
× ρkWk(0)

δ(t)
e−ρkt. (14)

Proposition 1 In equilibrium, the individual prices of risk of investors are

θn(t) = σδ − λiηi(t)βi + λpηp(t)βp

1 + λiηi(t) + λpηp(t)
,

θi(t) = σδ +
βi + λpηp(βi − βp)

1 + λiηi(t) + λpηp(t)
,

θp(t) = σδ +
βp + λiηi(βp − βi)

1 + λiηi(t) + λpηp(t)
,
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respectively. The equilibrium interest rate is

r(t) =
ρn + λiηi(t)ρi + λpηp(t)ρp

1 + λiηi(t) + λpηp(t)
+

µn + λiηi(t)µi + λpηp(t)µp

1 + λiηi(t) + λpηp(t)
− σ2

δ .

Moreover, the price of the stock is

S(t) =
1

ρn

× 1 + ηi(t) + ηp(t)

1 + λiηi(t) + λpηp(t)
δ(t). (15)

The equilibrium interest rate is a consumption weighted average of each class
of subjective discount rate of investors plus their estimate of the instantaneous
growth rate of the dividend minus the instantaneous variance of the dividend pro-
cess. When investors share homogeneous beliefs or the same subjective discount
rate, the stock price is independent of the wealth ratioη. The reason for the case in
which investors have heterogeneous beliefs is as follows. Recall that in our pure
exchange economy, all securities markets are automatically cleared when the con-
sumption good market is cleared. This implies that the stock price is determined
by the consumption behavior of investors. When investors with logarithmic pref-
erences share the same subjective discount rate, the ratio of consumption to wealth
is the same across all investors. Therefore, due to the fact that aggregate consump-
tion is exogenously given to equal the current dividend, the redistributing wealth
has no effect on the stock price.

When both investors share the same beliefs, the ratio of the state price densities
is equal to 1. Hence, the stock price does not depend on the beliefs of investors
or estimates of current dividend growth rate, because investors are “myopic” with
logarithmic preferences in the sense that they do not hedge on the changes of
investment opportunities. Their beliefs or estimates of the dividend growth rate
only affects the interest rate.

One of the important observations from equation (15) is that the stock price
itself does not follow a Markovian process. Therefore, observation on price only
is not enough to describe the dynamics of stock price; one has to know the distri-
bution of wealth among investors. Because investors with heterogeneous beliefs
employ different trading strategies, the wealth distribution varies stochastically
over time, so as does the stock volatility. This has many implications for the
equilibrium, but, the focus of this paper is the implications for pricing options.
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3 Vanilla Options and Implied Volatility

Bonds and options are redundant assets in this economy, and so we can use the
state prices that are derived in the previous section to price derivatives. The as-
sumption that investors have constant beliefs enables the prices of many deriva-
tives have closed-form solutions.

Definition of wealth ratio (10), relations among prices of risk of investors (8),
and innovation processes (4) imply that (by )

ηk(T ) = ηk(t) exp
[
−

(
ρk − ρn +

1

2
β2

k

)
(T − t) + βk (Zn(T )− Zn(t))

]
. (16)

We also know that

δ(T ) = δ(t) exp
[(

µn − 1

2
σ2

δ

)
(T − t) + σδ(Zn(T )− Zn(t))

]
. (17)

These two identities implies the following result.

Lemma 2 Suppose thatβi ≤ 0 and βp ≥ 0. Then,S(T ) ≥ K if and only if
Zn(T )− Zn(t) ≥ ȳ, whereȳ is the solution to

g(τ)
1 + λiηi(t) + λpηp(t)

1 + ηi(t) + ηp(t)

× 1 + fi(τ)ηi(t)e
βiy + fp(τ)ηp(t)e

βpy

1 + λifi(τ)ηi(t)eβiy + λpfp(τ)ηp(t)eβpy
× eσδy =

K

S(t)
, (18)

where

fk(τ) = exp
[
−

(
ρk − ρn +

1

2
β2

k

)
τ
]

for k ∈ {i, p}, and

g(τ) = exp
[(

µn − 1

2
σ2

δ

)
τ
]
,

whereτ = T − t.

Given the state prices, we can price any securities with payoffG(t) using

1

ξk(t)
Ek

[∫ ∞

t
ξk(s)G(s) ds

∣∣∣∣F δ(t)
]
,
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for k ∈ {n, i, p}. We will useξn(t) to price the options.7 In the case of a European
call option, we have

C(t) =
1

ξn(t)
En

[
ξn(T )[S(T )−K]+

∣∣∣F δ(t)
]
,

whereK is the strike price andT is the expiration time. Using the state price (13)
and the stock price (15), we can rewrite the call option price as

C(t) =
δ(t)e−ρn(T−t)

1 + λiηi(t) + λpηp(t)
En

[
1 + λiηi(T ) + λpηp(T )

δ(T )

×
(

1

ρn

1 + ηi(T ) + ηp(T )

1 + λiηi(T ) + λpηp(T )
δ(T )−K

)+
∣∣∣∣∣∣
F δ(t)




=
δ(t)e−ρn(T−t)

1 + λiηi(t) + λpηp(t)
(19)

×En




(
1 + ηi(T ) + ηp(T )

ρn

− 1 + λiηi(T ) + λpηp(T )

δ(T )
K

)+
∣∣∣∣∣∣
F δ(t)


 .

A direct calculation gives the European call option price.

Proposition 2 Suppose thatβi ≤ 0 andβp ≥ 0. Letτ = T − t. Define

dn
1 = − ȳ√

τ
, dk

1 = − ȳ√
τ

+
√

τβk

anddn
2 = dn

1 −
√

τσδ, dk
2 = dk

1 −
√

τσδ for k ∈ {i, p}, whereȳ is the solution to
(18).

The price of a European call option with strike priceK and expiration time
T > t is then

C(t, S(t), ηi(t), ηp(t); T, K)

= S(t)
e−ρnτN(dn

1 ) + ηi(t)e
−ρiτN(di

1) + ηp(t)e
−ρpτN(dp

1)

1 + ηi(t) + ηp(t)

−K
e−rnτN(dn

2 ) + λiηi(t)e
−riτN(di

2) + λpηp(t)e
−rpτN(dp

2)

1 + λiηi(t) + λpηp(t)
,

7All investors have the same risk-neutral probability.
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whereN(·) is the cumulative distribution function of a normal random variable
with a mean of 0 and a variance of 1 and

rk = ρk + µk − σ2
δ

for k = p, i is the interest rate of an economy in which only investork prevails.
In addition, the bond price is given by

B(t, ηi(t), ηp(t); T ) =
e−rnτ + λiηi(t)e

−riτ + λpηp(t)e
−rpτ

1 + λiηi(t) + λpηp(t)
.

The prices for the put options can be easily derived. Using the fact thatC(T )−
P (T ) = S(T )−K and the state price, we have

1

ξn(t)
En

[
ξn(T )[C(T )− P (t)]| F δ(t)

]
=

1

ξn(t)
En

[
ξn(T )[S(T )−K]| F δ(t)

]
,

which implies that

C(t)− P (t) =
e−ρnτ + ηi(t)e

−ρiτ + ηp(t)e
−ρpτ

1 + ηi(t) + ηp(t)
S(t)−B(t, ηi(t), ηp(t); T )K.

Rearranging the terms of the equation yields the put option price

P (t, S(t), ηi(t), ηp(t); T, K)

= K
e−rnτN(−dn

2 ) + λiηi(t)e
−riτN(−di

2) + λpηp(t)e
−rpτN(−dp

2)

1 + λiηi(t) + λpηp(t)

−S(t)
e−ρnτN(−dn

1 ) + ηi(t)e
−ρiτN(−di

1) + ηp(t)e
−ρpτN(−dp

1)

1 + ηi(t) + ηp(t)
.

3.1 Hedging Deltas

As has been mentioned, the dynamics of the stock does not follow a Markovian
process in terms of stock price itself, and is obvious that the options that are writ-
ten on the stock do not follow a simple monotone relationship with the underlying
stock. This result is consistent with the empirical findings of Bakshi, Cao, and
Chen (2000) in the US options markets.

Nonetheless, the options written on the stock can be hedged by using the stock
only, because the wealth ratios are locally perfectly correlated with the stock.
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Hence, the hedging delta has two parts: one for the movements of the stock caused
by the changes in dividend and one for the stock price changes caused by the
variations of the wealth ratios.

Corollary 1 The delta of the European call option that is specified in Proposition
2 is

∆(t, S(t), ηi(t), ηp(t); T, K) =
ΣC(t, S(t), ηi(t), ηp(t); T, K)

S(t)σS(t, ηi(t), ηp(t))
,

where

ΣC(t, S(t), ηi(t), ηp(t); T, K)

= S(t)
e−ρnτθn(t)N(dn

1 ) + ηi(t)e
−ρiτθi(t)N(di

1) + ηp(t)e
−ρpτθp(t)N(dp

1)

1 + ηi(t) + ηp(t)

− K

[1 + λiηi(t) + λpηp(t)]2

[
λiηi(t)βi

(
e−riτN(di

2)− e−rnτN(dn
2 )

)

+ λpηp(t)βp

(
e−rpτN(dp

2)− e−rnτN(dn
2 )

)

+ λiηi(t)λpηp(t)(βp − βi)
(
e−rpτN(dp

2)− e−riτN(di
2)

)]

and

σS(t, ηi(t), ηp(t))

= σδ +
(1− λi)ηi(t)βi + (1− λp)ηp(t)βp + (λi − λp)ηi(t)ηp(t)(βp − βi)

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]
,(20)

whereθk is the state price of risk for investork as defined in Proposition 1.

Although options can be hedged by the underlying stock, the deltas for call
options can be negative or greater than1, depending on the level of the wealth
ratios. Figure 1(a) is a numerical example that illustrates this point. The key
difference to the Black-Scholes model is the randomness of the wealth ratios.
Although the wealth ratios are locally perfectly correlated with the stock return,
neither the stock nor the options that are written on it can be a Markov system of
the stock price itself and thus the wealth ratios are needed to describe the dynamics
of the stock and options.

It is not surprising that the hedging deltas as calculated by Black-Scholes for-
mula using the implied volatility are different from those that are given in Corol-
lary 1, as shown in Figure 1(b). The poor approximation of the hedging deltas

14



 0

 0.005

 0.01

 0.015 patient

 0.002
 0.004

 0.006
 0.008

impatient

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

(a)

 0

 0.005

 0.01

 0.015 patient

 0

 0.005

 0.01

 0.015impatient

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

(b)
Figure 1: The∆s for a European call option against wealth ratios. The dot-
ted planes are (a) the zero level; (b) the∆s of Black-Scholes using the implied
volatility. The strike price and time to expiration are (a)K = 0.8S andτ = 0.1;
(b) K = 1.1S and τ = 1. The parameters are as follows: beliefsµn = 1%,
µi = −50%, µp = 30%; discount ratesρn = 3%, ρi = 10%, ρp = 1%; volatility
of dividendσδ = 7.5%.
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indicates that the Black-Scholes implied volatility cannot account the full dynam-
ics of the underlying stock in the Black-Scholes model. In general, matching price
levels does not automatically entail the matching of the derivatives of the different
pricing formulae.

3.2 Implied Volatility Surface

We now turn to investigate the properties of the implied volatility surface in this
model. Letρ be the current dividend yield, which is defined by

ρ(t) =
δ(t)

S(t)
= ρn

1 + λiηi(t) + λpηp(t)

1 + ηi(t) + ηp(t)
=

ρn + ηi(t)ρi + ηp(t)ρp

1 + ηi(t) + ηp(t)
, (21)

where we obtain the last equality by the definition ofλ. Given the current interest
rate in Proposition 1 and the volatilityσ, the call option under the Black-Scholes
model is priced as

CBS(t, S(t); T, K; σ) = e−ρ(t)τS(t)N(d1)− e−r(t)τKN(d2),

where

d1 =
log

(
S(t)
K

)
+

(
r(t)− ρ(t) + 1

2
σ2

)
τ

σ
√

τ
, d2 = d1 − σ

√
τ .

The implied volatility for vanilla call options,σimv(t; τ, K), is the solution to8

CBS(t, S(t); T, K; σimv(t; τ, K)) = C(t, S(t), ηi(t), ηp(t); T,K). (22)

The implied volatility for put options can be defined in a similar fashion.
Figure 2 is a plot of the implied volatility surface,σimv(t; τ, K), for call op-

tions. It shows that the model that is presented here can generate some of the key

8In practice or empirical studies, implied volatility is sometimes calculated using the slightly
different formula

CBS(t, S(t); T,K;σ) = e−ρ(t)τS(t)N(d1)−B(t, T )KN(d2),

whereB(t, T ) is the price of the bond mature atT . Of course, this is not a strict interpretation of
the Black-Scholes formula when the interest rate is stochastic.
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Figure 2: Implied volatility surface against moneyness and expiration. The pa-
rameters are as follows: beliefsµn = 1%, µi = −50%, µp = 30%; discount rates
ρn = 3%, ρi = 10%, ρp = 1%; volatility of dividend σδ = 5%; initial wealth
ratios (a)ηi = 0.008, ηp = 0.000002; (b) ηi = 0.002, ηp = 0.008.
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Figure 3: Implied volatility surface against moneyness and expiration. The pa-
rameters are as follows: beliefsµn = 3%, µi = −50%, µp = 30%; discount rates
ρn = 3%, ρi = 10%, ρp = 1%; volatility of dividendσδ = 7.5%; initial wealth
ratios (a)ηi = 0.00002, ηp = 0.0002, and (b)ηi = 0.0001, ηp = 0.02.
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Figure 4: Implied volatility surface against moneyness and expiration. The pa-
rameters are as follows: beliefsµn = 1%, µi = −50%, µp = 30%; discount rates
ρn = 3%, ρi = 3.2%, ρp = 2.8%; volatility of dividendσδ = 5%; initial wealth
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features that are well documented in the empirical literature on real-world options
markets. When the patient investor, who is also optimistic, holds a relatively small
portion of wealth, the implied volatility smile is pronouncedly downward sloping
and becomes a smirk. When the patient investor holds a relatively large portion
of wealth, the implied volatility smile becomes more symmetric. Figure 3 shows
a similar plot, but with a low relative wealth holding by the impatient (or pes-
simistic) investor. In this case, we have a flat volatility smile near the money, and
a strong positively skewed volatility smile when the patient (or optimistic) investor
has a higher relative wealth. These plots indicate that the shape of the volatility
surface is determined by the relative distribution of wealth among investors.

These properties of the volatility smile seem to fit some casual empirical ob-
servations well. In the stock market, the fear of crash seems to be a dominant
factor, and thus the pessimistic (impatient) investor dominates the optimistic in-
vestor. This means that the negative skewness of the volatility smile occurs more
often. However, in a currency market, both optimistic and pessimistic investors
are present, and thus the U- or V-shaped volatility smile dominates.

The term structures of the implied volatility in Figures 2 and 3 are downward
sloping in general. However, as shown in Figure 4, the term structures that are
generated by the model can also be upward sloping or hump shaped. In this case,
the time preferences of investors are quite close or the same, and the slope of the
term structures can be quite high when the wealth ratios of the pessimistic and
optimistic are relatively high.

In summary, the shape of the implied volatility surface depends on the time
preferences, beliefs, and relative wealth of investors. The numerical examples
show that the model can generate quite a variety of implied volatility surfaces
that are consistent with empirical observations, such as those shown by Das and
Sundaram (1999) and Derman (1999).

Another interesting observation from these plots is that the beliefs of both the
pessimistic and optimistic investors are quite extreme,9 but the wealth ratios are
quite small. This means that it is not necessary for the extremely pessimistic and
optimistic investors to hold significant portions of the aggregate wealth to replicate

9In Garcia, Luger, and Renault (2003) (page 69), the estimated mean growth for the “crash”
state is extremely negative (-32%) with a relatively high probability (11%) in the empirical esti-
mation of their model using S&P 500 option price data.
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the observed patterns of the implied volatility surface. Indeed, the wealth of the
extreme investors is very small in the numerical example. This makes the model
more plausible.

The instantaneous stock volatility,σS that is given by equation (20) varies
with wealth ratios but lacks of any dramatic characteristics, and almost represents
a plane when both wealth ratios are in the range of(0, 0.1). Options significantly
“amplify” the future variations of stock volatility through changes in the wealth
ratios.10

In a comparative static sense, the implied volatility surface is dependent on the
difference in beliefs and time preferences of investors. Dynamically, the wealth ra-
tios are stochastic processes, and change over time, so as does the implied volatil-
ity surface. Hence, any shocks to the fundamental will result in changes to the
implied volatility surface.

4 Barrier Options

It is usually difficult to obtain a closed-form solution to barrier options except
with the Black-Scholes model. This is also true for the model in this paper, but
as shown in the following, our model yields tight closed-form bounds for barrier
options under certain conditions, and in general the pricing bounds can be made
to converge to the price using simple numerical methods. The reason for the ease
of pricing barrier options in this model is the occurrence of deterministic barriers
of Brownian motion, which are equivalent to constant stock barriers.

Let b(s) be the solution to equation (18) forT = t + s andK = Sb, whereSb

is the barrier that is based on the stock price. Thenb(s) is the equivalent barrier
that is based on the innovation processZn(t + s) − Zn(t) according to investor
n’s belief. The slope ofb(s) has constant upper and lower bounds that are shown
by the following lemma.

Lemma 3 For a constant barrier that is based on the stock price, the equiva-
lent barrier that is based on the innovation processesZn, b(s), is a deterministic

10The future volatility does not feed back to the current volatility due to the assumption of
logarithmic preferences. For general preferences, we should expect some feedback effects through
investors hedging demands.
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function of time and satisfies

max{h, li, lp} ≥ ∂b(s)

∂s
=

σδh + Σi(s, b(s))li + Σp(s, b(s))lp
σδ + Σi(s, b(s)) + Σp(s, b(s))

≥ min{h, li, lp},

where

Σi(s, b(s)) =
βi

(
1− λi + (λp − λi)fp(s)ηp(t)e

βpb(s)
)
fi(s)ηi(t)e

βib(s)

(1 +
∑

k∈{i,p} λkfk(s)ηk(t)eβkb(s))(1 +
∑

k∈{i,p} fk(s)ηk(t)eβkb(s))
,

Σp(s, b(s)) =
βp

(
1− λp + (λi − λp)fi(s)ηi(t)e

βib(s)
)
fp(s)ηp(t)e

βpb(s)

(1 +
∑

k∈{i,p} λkfk(s)ηk(t)eβkb(s))(1 +
∑

k∈{i,p} fk(s)ηk(t)eβkb(s))

and

h = −µn − 1
2
σ2

δ

σδ

, lk =
ρk − ρn + 1

2
β2

k

βk

,

for k ∈ {i, p}, whereb(s) is the solution to (18) by settingT = t+s andK = Sb.

The fact thatb(s) is a deterministic function of time makes the pricing of bar-
rier options much easier. Several numerical techniques are available to approxi-
mate the prices of barrier options, such as the hazard rate approximation that is
proposed by Roberts and Shortland (1997) and the piece-wise linear approxima-
tions of Wang and Potzelberger (1997).11 We use the latter method to approximate
the prices of barrier options in this paper.

Let 0 = s0 < s1 <, ... < sm = T − t and bothbu
m(s) andbl

m(s) be linear
functions on each of the intervals[sj−1, sj] such thatbl

m(s) ≤ b(s) ≤ bu
m(s) for

all s ∈ [0, T − t]. The pricing bounds are accessed by piece-wise linear bounds
that either have closed-form solutions or can be easily calculated by numerical
methods. Consider a special case of “barriers” that depend directly on the Brow-
nian motionZn. For example, the payoff of the European “barrier” call option
is (S(T ) − K)+ or 0, depending on whetherZ(s) ≡ Zn(t + s) − Zn(t) hits a
piece-wise linear barrierbm(s). The pricing equation (19) implies that the price
for an up-and-out call option is given by

Cuo
Z (t, S(t), ηi(t), ηp(t); T, K; bm) =

δ(t)e−ρnτ

1 + λiηi(t) + λpηp(t)
En

[
1{Z(s)<bm(s),s≤τ}

11Potzelberger and Wang (2001) also develop a similar linear approximation for double deter-
ministic Brownian barriers, which can be used to price double barrier options.
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Figure 5: Linear approximations of stock barriers. The parameters are as follows:
beliefsµn = 1%, µi = −50%, µp = 30%; discount ratesρn = 3%, ρi = 10%,
ρp = 1%; volatility of dividendσδ = 5%; initial wealth ratiosηi = 0.1, ηp = 0.05.
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×
(

1 + ηi(T ) + ηp(T )

ρn

− 1 + λiηi(T ) + λpηp(T )

δ(T )
K

)+
∣∣∣∣∣∣
F δ(t)


 , (23)

whereτ = T − t. As shown by Lemma B.1, the probability density function
of {Z(s) = Zn(t + s) − Zn(t) < bm(s), s ≤ τ = T − t} depends only on the
joint distribution of the Brownian motionZ atm turning points(s1, ..., sm). This
observation yields the following proposition.

Proposition 3 Given a piece-wise linear barrierbm(s) as previously defined,
then, if bm(0) > 0, then the price of a European up-and-out call option with a
strike priceK and a barrierbm(s) such thatZn(t + s)− Zn(t) < bm(s) is

Cuo
Z (t, S(t), ηi(t), ηp(t); T, K; bm)

= e−ρnτ
∫

p(x, bm)1{xm≥y}

(
1 + ηi(t)fi(τ)eβixm + ηp(t)fp(τ)eβpxm

1 + ηi(t) + ηp(t)
S(t)

− 1 + λiηi(t)fi(τ)eβixm + λpηp(t)fp(τ)eβpxm

[1 + λiηi(t) + λpηp(t)]g(τ)eσδxm
K

)
dx, (24)

wherep(x, bm) is as defined in Lemma B.1,x andbm = (bm(s1), ..., bm(sm))> are
m-dimensional vectors,̄y is determined by equation (18), andfk for k ∈ {i, p}
andg are as defined in Lemma 2.

The formula given by equation (24) is quite easy to calculate either by numer-
ical integration whenm is small or by simulation. It turns out that the simulation
is easier to implement by using a slightly different density functionp(x, bm). That
is, by change of variablex = bm − x̃, p(x, bm) = p̃(x̃, bm), wherep̃ is as defined
in Lemma B.1 and̃x is anm-dimensional normal random variable with a mean of
bm and a variance matrix ofΣ = M diag(s1 − s0, ..., sm − sm−1)M

>, andM is
lower triangular matrix with nonzero elements that is equal to1. The price of a
European call barrier option can then be approximated by averaging

A(x) = 1{x̃m≤bm(τ)−ȳ}
m∏

j=1

1{x̃j>0}

(
1− exp

[
− 2x̃j−1x̃j

sj − sj−1

])

×e−ρnτ

(
1 + ηi(t)fi(τ)eβi(bm(τ)−x̃m) + ηp(t)fp(τ)eβp(bm(τ)−x̃m)

1 + ηi(t) + ηp(t)
S(t)

− 1 + λiηi(t)fi(τ)eβi(bm(τ)−x̃m) + λpηp(t)fp(τ)eβp(bm(τ)−x̃m)

[1 + λiηi(t) + λpηp(t)]g(τ)eσδ(bm(τ)−x̃m)
K

)
(25)
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over a sample of draws, wherẽx0 = bm(0) and all other relevant variables and
functions are as defined in Proposition 3. When using simulation to estimate
integral (24) byĀ =

∑
j A(xj)/N , the standard error of this estimator is given by

(see Wang and Potzelberger (1997))
√√√√

∑
j[A(xj)− Ā]2

(N − 1)N
, (26)

wherexj is thejth sample ofx andN is the sample size. This enables the as-
sessment of accuracy when using the simulation to approximate barrier options
prices.

As for the case of vanilla options, this pricing formula also enables the imple-
mentation of a simple formula for the hedging delta of barrier options.

Corollary 2 The hedging delta for the special barrier options that are described
in Proposition 3 is given by

Σuo
Z (t, S(t), ηi(t), ηp(t); T, K; bm)

S(t)σS(t, ηi(t), ηp(t))
,

where

Σuo
Z (t, S(t), ηi(t), ηp(t); T,K; bm) =

e−ρnτ
∫

1{x̃m≤bm(τ)−ȳ}p̃(x̃, bm)

[(
[1 +

∑
k∈{i,p} ηk(t)fk(τ)eβk(bm(τ)−x̃m)]σδ

1 + ηi(t) + ηp(t)

+

∑
k∈{i,p}[fk(τ)eβk(bm(τ)−x̃m) − λk]ηk(t)βk

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]

+
[λifp(τ)eβp(bm(τ)−x̃m) − λpfi(τ)eβi(bm(τ)−x̃m)]ηi(t)ηp(t)(βp − βi)

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]

)
S(t)

−
(∑

k∈{i,p} λk[fk(τ)eβk(bm(τ)−x̃m) − 1]ηk(t)βk

[1 + λiηi(t) + λpηp(t)]2g(τ)eσδ(bm(τ)−x̃m)

+
λiλp[fp(τ)eβp(bm(τ)−x̃m) − fi(τ)eβi(bm(τ)−x̃m)]ηi(t)ηp(t)(βp − βi)

[1 + λiηi(t) + λpηp(t)]2g(τ)eσδ(bm(τ)−x̃m)

)
K

]
dx̃

andσS(t, ηi(t), ηp(t)) is as defined in Corollary 1.
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Figure 6: Up-and-out European call option price and delta upper bounds against
wealth ratios. The parameters are as follows: beliefsµn = 1%, µi = −50%,
µp = 30%; discount ratesρn = 3%, ρi = 10%, ρp = 1%; volatility of dividend
σδ = 5%. Strike price:K = 1.1S; expiration:τ = 1; barrierSb = 1.2S. Plot (a):
price, (b) delta.
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Figure 6 plots the upper bounds of the prices and hedging deltas of a barrier
option under different wealth distributions. The numerical calculations are car-
ried out by setting a relative tolerance of0.1% between the true barrier and the
approximated piece-wise linear barrier. The sample size of the simulation is half
a million. The lower bounds are very similar. The relative differences between
the upper and lower bounds are very small with a mean of0.1% but the standard
errors that are caused by the simulation are relatively large with a mean of0.8%.
This indicates, roughly, that the simulation size has to be increased by64 times,
that is, to32 million, to make the standard error that is caused by the simulation
match the error that is caused by the piece-wise linear approximation of the non-
linear barrier. Keep in mind that the relative tolerance for the piece-wise linear
approximation is very easy to achieve, and that the main obstacle to gaining price
accuracy is the simulation size. However, this will not cause a serious problem,
because the simulation is for a multivariate normal random variable.

For the case ofm = 1, the pricing formula in Proposition 3 admits a closed-
form expression, which is able to provide tight price bounds for barrier options
under certain conditions. This closed-form formula can also be used to calculate
the hedging bounds.

Proposition 4 The price of an up-and-out European call option with a strikeK

and a special barrierb1(s) = α + µs such thatb1(τ) > ȳ is given by

Cuo
Z (t, S(t), ηi(t), ηp(t); T, K; α, µ)

= C(t, S(t), ηi(t), ηp(t); T,K)− Cu
Z(t, S(t), ηi(t), ηp(t); T, K; α + µτ, 0)

−e−2αµ [Cu
Z(t, S(t), ηi(t), ηp(t); T, K; ȳ, α)

− Cu
Z(t, S(t), ηi(t), ηp(t); T,K; α + µτ, α)] ,

where

Cu
Z(t, S(t), ηi(t), ηp(t); T, K; y, α) =

S(t)

1 + ηi(t) + ηp(t)

[
e−ρnτN

(
2α− y√

τ

)

+
∑

k∈{i,p}
ηk(t)e

−ρkτ+2αβkN

(
2α + βkτ − y√

τ

)


− Ke−2ασδ

1 + λiηi(t) + λpηp(t)

[
e−rnτN

(
2α− σδτ − y√

τ

)
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+
∑

k∈{i,p}
λkηk(t)e

−rkτ+2αβkN

(
2α + (βk − σδ)τ − y√

τ

)
 ,

whereȳ andrk for k = i, p is as defined in Proposition 2.

This special barrier option provides lower and upper bounds for the barrier
option prices with a constant barrier on stock price.

Similar to the barrier options, we can also find the bounds for an American
type one-touch option price.

Proposition 5 For a linear touch barrierb1(s) = α+µs, the price of a call option
that pays$1 at the moment when the barrier is reached byZn is

Cot
Z (t, ηi(t), ηp(t); T ; α, µ)

=
e−(µ+σδ)α−|α|

√
(µ+σδ)2+2rn

1 + λiηi(t) + λpηp(t)
N




√
(µ + σδ)2 + 2rnτ − |α|√

τ




+
e−(µ+σδ)α+|α|

√
(µ+σδ)2+2rn

1 + λiηi(t) + λpηp(t)
N


−

√
(µ + σδ)2 + 2rnτ + |α|√

τ




+
∑

k∈{i,p}

λkηk(t)e
−(µ+σδ−βk)α−|α|√Λk

1 + λiηi(t) + λpηp(t)
N

(√
Λkτ − |α|√

τ

)

+
∑

k∈{i,p}

λkηk(t)e
−(µ+σδ−βk)α+|α|√Λk

1 + λiηi(t) + λpηp(t)
N

(
−
√

Λkτ + |α|√
τ

)

if both(µ+σδ)
2 +2rn andΛk = (µ+σδ−βk)

2 +2rk, for k ∈ {i, p}, are positive.

This closed-form formula can be used to approximate the prices for one-touch
options if the touch barrierb(s) that is based on a constant strike has tight linear
bounds.

Figure 7 plots the linear barrier bounds that are calculated by the formula in
Proposition 4 for several examples. For these conditions, the stock barrierb(s) is
either concave or convex. In light of Proposition 5, one-touch options prices can
also be bounded by the prices under the linear barriers.

We also use these price bounds to evaluate a common practice in pricing bar-
rier options. Because the price for an up-and-out barrier option does not have a
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Figure 7: Up-and-out European call option price and delta against wealth ratios.
The parameters are as follows: beliefsµn = 1%, µi = −50%, µp = 30%; discount
ratesρn = 3%, ρi = 10%, ρp = 1%; volatility of dividendσδ = 5%.

monotone relation to its underlying’s volatility in the Black-Scholes model, some
practitioners use two implied volatilities to price up-and-out options: the implied
volatility for a vanilla call with the same strike price and the implied volatility
for a liquid one-touch option with the same stock barrier. As the price for an up-
and-out option equals a vanilla call price minus the price for an up-and-in barrier
option. The call price is valuated by using the first implied volatility and, the “in”
option is valuated by the one-touch implied volatility in the Black-Scholes model.
For our numerical examples, there are two implied volatility bounds that are based
on the two price bounds for the one-touch options. Such bounds for up-and-out
prices are labeled “implied bounds” in Figure 7.
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Figure 7 shows that the price bounds for barrier options are quite tight. Any
other barrier option with an expiration that is shorter than those in the examples
has even tighter bounds. Therefore, the closed-formulae given in Propositions 4
and 5 can be used to price such barrier and one-touch options. In addition, the
bounds for hedging deltas can also be bounded by closed-form formulae, which
are given in Appendix B.

The practice of using two implied volatilities to price up-and-out options does
not seem to work well, especially for in-the-money options. This is another in-
dication that the implied volatility does not fully account the details of stock dy-
namics.

5 Conclusion

This paper studies option pricing by deriving the underlying asset price in an equi-
librium model. Although options are redundant assets and can be hedged by the
underlying asset only, the equilibrium asset price dynamics do not admit any exist-
ing reduced-form option pricing models. However, option pricing for both vanilla
and certain exotic options in this model is straightforward, and simpler than it is in
most of the reduced-from models, such as stochastic volatility model. The hedg-
ing strategies are also straightforward in our model. However, the option prices in
this model are not trivial, and share the major characteristics that are observed in
various options markets.

Although option pricing is presented in the context of the stock market, the
model can also be applied in other options markets, such as the currency options
market, because of the ability of the model to generate various smiles of implied
volatility — both symmetric and asymmetric — and different term structures of
implied volatility.

There are several ways to extend the current model. Adding more classes of
investors appears to be straightforward if richer price dynamics are needed. The
pricing other exotic options is also plausible and interesting. A more challenging
vein of future research might be to study the implications of margin requirements
for both the underlying stock and options. Of course, the ultimate test of an op-
tions pricing model is to examine its empirical performance. We leave this task to
future research.
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Appendix A: Proofs

Proof of Lemma 1

These are standard results. 2

Proof of Proposition 1

The definition of state price (7) and optimal consumption plan (9) imply that

dc∗k(t) = c∗k(t)
(
−ρk + r(t) + θ2

k(t)
)

dt + c∗k(t)θk(t) dZk(t)

= c∗k(t)
(
−ρk + r(t) + θ2

k(t)− βkθk(t)
)

dt + c∗k(t)θk(t) dZn(t).

Using this, an application of the Itô Lemma to (12) shows that
∑

k∈{n,i,k} dc∗k(t)∑
k∈{n,i,k} c∗k(t)

=
dδ(t)

δ(t)
.

Noticing that the expression for consumption ratios (11) andλn ≡ 1, ηn ≡ 1 leads
to ∑

k∈{n,i,k} λkηk(t) (−ρk + r(t) + θ2
k(t)− βkθk(t))∑

k∈{n,i,k} λkηk(t)
= µn

and ∑
k∈{n,i,k} λkηk(t)θk(t)∑

k∈{n,i,k} λkηk(t)
= σδ.

Using (8), we can first solveθk(t), thenr(t).
For the stock price, it is trivial by the recognition that

S(t) =
∑

k∈{n,i,p}
Wk(t)

by the clearing conditions in the securities markets. Using the clearing condition
for the good market (12), we have

S(t)

δ(t)
=

∑
k∈{n,i,p} Wk(t)∑
k∈{n,i,p} c∗k(t)

.
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Finally, using the definitions of wealth ratio (10) and consumption ratio (11), we
have

S(t)

δ(t)
=

Wn(t)

c∗n(t)

∑
k∈{n,i,p} ηk(t)∑

k∈{n,i,p} λkηk(t)
=

1

ρn

∑
k∈{n,i,p} ηk(t)∑

k∈{n,i,p} λkηk(t)
.

This is the stock price that is stated in the proposition. 2

Proof of Lemma 2

Let y = Zn(T )− Zn(t) andτ = T − t. Substituting equations (16) and (17) into
stock price expression (15) then yields

S(T ) =
1

ρn

× 1 + fi(τ)ηi(t)e
βiy + fp(τ)ηp(t)e

βpy

1 + λifi(τ)ηi(t)eβiy + λpfp(τ)ηp(t)eβpy
g(τ)δ(t)eσδy.

From this, we have

∂S(T )

∂y
=

1

ρn

× 1 + fi(τ)ηi(t)e
βiy + fp(τ)ηp(t)e

βpy

1 + λifi(τ)ηi(t)eβiy + λpfp(τ)ηp(t)eβpy
g(τ)δ(t)eσδy (27)

×

σδ +

∑
k∈{i,p}(1− λk)fk(τ)ηk(t)e

βkyβk + (λi − λp)ηi(t)ηp(t)(βp − βi)[
1 +

∑
k∈{i,p} λkfk(τ)ηk(t)eβky

] [
1 +

∑
k∈{i,p} fk(τ)ηk(t)eβky

]

 ,

which is positive for ally ∈ R whenβi ≤ 0 andβp ≥ 0, because1− λi < 0 and
1 − λp > 0. That is,S(T ) ≥ K if and only if y = Zi(T ) − Zi(t) ≥ ȳ, which
solves

1

ρn

× 1 + fi(τ)ηi(t)e
βiy + fp(τ)ηp(t)e

βpy

1 + λifi(τ)ηi(t)eβiy + λpfp(τ)ηp(t)eβpy
g(τ)δ(t)eσδy = K.

Using stock price expression (15) again shows that the foregoing equation is
equivalent to equation (18) in the lemma. 2

Proof of Proposition 2

Rewrite equations (16) and (17) as

ηk(T ) = ηk(t)fk(τ)eβk(Zn(T )−Zn(t)), δ(T ) = δ(t)g(τ)eσδ(Zn(T )−Zn(t)).
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Substituting these identities into pricing equation (19) and using the fact that
Zn(T ) − Zn(t) follows a normal distribution with a mean of0 and a variance
of τ = T − t means that Lemma 2 implies that

C(t) =
δ(t)e−ρn(T−t)

1 + λiηi(t) + λpηp(t)
× 1√

2πτ

∫ ∞

ȳ

(
1 +

∑
k∈{i,p} ηk(t)fk(τ)eβkx

ρn

− 1 +
∑

k∈{i,p} λkηk(t)fk(τ)eβkx

δ(t)g(τ)eσδx
K

)
e−

x2

2τ dx. (28)

Using the identity

1√
2πτ

∫ ∞

ȳ
eγxe−

x2

2τ dx = exp

(
γ2τ

2

)
N

(
− ȳ − γτ√

τ

)
, (29)

we have

1√
2πτ

∫ ∞

ȳ

(
1 +

∑
k∈{i,p} ηk(t)fk(τ)eβkx

ρn

− 1 +
∑

k∈{i,p} λkηk(t)fk(τ)eβkx

δ(t)g(τ)eσδx
K

)
e−

x2

2τ dx

=
1

ρn


N

(
− ȳ√

τ

)
+

∑

k∈{i,p}
ηk(t)fk(τ) exp

(
β2

kτ

2

)
N

(
− ȳ − βkτ√

τ

)


− K

δ(t)g(τ)

[
exp

(
σ2

δτ

2

)
N

(
− ȳ + σδτ√

τ

)

+
∑

k∈{i,p}
λkηk(t)fk(τ) exp

(
(βk − σδ)

2τ

2

)
N

(
− ȳ − (βk − σδ)τ√

τ

)


=
1

ρn


N

(
− ȳ√

τ

)
+

∑

k∈{i,p}
ηk(t)e

(ρn−ρk)τN

(
− ȳ − βkτ√

τ

)


− K

δ(t)

[
e−(µn−σ2

δ )τN

(
− ȳ + σδτ√

τ

)

+
∑

k∈{i,p}
λkηk(t)e

(ρn−ρk−µk+σ2
δ )τN

(
− ȳ − (βk − σδ)τ√

τ

)
 ,

where the equality is obtained by the definitions offk, g, andβk. This shows that

C(t) =
1

ρn

δ(t)

1 +
∑

k∈{i,p} λkηk(t)


e−ρnτN(dn

1 ) +
∑

k∈{i,p}
ηk(t)e

−ρkτN(dk
1)



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− K

1 +
∑

k∈{i,p} λkηk(t)


e−rnτN(dn

2 ) +
∑

k∈{i,p}
λkηk(t)e

−rkτN(dk
2)


 .

Using the expression of the stock price then yields the call option price that is
stated in the proposition.

Finally, the bond price is a direct calculation of1
ξn(t)

En[ξn(T )|F δ(t)]. 2

Proof of Corollary 1

It seems to be messy to work directly with the option price. Instead, it is quite sim-
ple to work with the formula that is given in the proof of Proposition 2. Rearrange
equation (28) as

C(t) =
e−ρnτ

√
2πτ

∫ ∞

ȳ

(
1 +

∑
k∈{i,p} ηk(t)fk(τ)eβkx

ρn[1 +
∑

k∈{i,p} λkηk(t)]
δ(t)

− 1 +
∑

k∈{i,p} λkηk(t)fk(τ)eβkx

[1 +
∑

k∈{i,p} λkηk(t)]g(τ)eσδx
K

)
e−

x2

2τ dx.

Note that the partial derivative ofC(t) with respect tōy equals 0, though̄y depends
on ηi(t), ηp(t), and δ(t). Using It̂o’s Lemma and ignoring the drift term, the
diffusion term of the option is then

ΣC(t, S(t), ηi(t), ηp(t); T, K)

=
e−ρnτ

√
2πτ

[∫ ∞

ȳ

(
1 +

∑
k∈{i,p} ηk(t)fk(τ)eβkx

ρn[1 +
∑

k∈{i,p} λkηk(t)]
σδδ(t)

+

∑
k∈{i,p}[fk(τ)eβkx − λk]ηk(t)βk

ρn[1 +
∑

k∈{i,p} λkηk(t)]2
δ(t)

+
[λifp(τ)eβpx − λpfi(τ)eβix]ηi(t)ηp(t)(βp − βi)

ρn[1 +
∑

k∈{i,p} λkηk(t)]2
δ(t)

−
∑

k∈{i,p} λk[fk(τ)eβkx − 1]ηk(t)βk

[1 +
∑

k∈{i,p} λkηk(t)]2g(τ)eσδx
K

− λiλp[fp(τ)eβpx − fi(τ)eβix]ηi(t)ηp(t)(βp − βi)

[1 +
∑

k∈{i,p} λkηk(t)]2g(τ)eσδx
K

)
e−

x2

2τ dx

]

=e−ρnτ





δ(t)

ρn[1 +
∑

k∈{i,p} λkηk(t)]


σδ


N(dn

1 ) +
∑

k∈{i,p}
ηk(t)fk(τ)e

β2
k
2

τN(dk
1)



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+
1

1 +
∑

k∈{i,p} λkηk(t)

∑

k∈{i,p}
βkηk(t)

(
fk(τ)e

β2
k
2

τN(dk
1)− λkN(dn

1 )

)

+
ηi(t)ηp(t)(βp − βi)

1 +
∑

k∈{i,p} λkηk(t)

(
λifp(τ)e

β2
p
2

τN(dp
1)− λpfi(τ)e

β2
i
2

τN(di
1)

)]

− K

[1 +
∑

k∈{i,p} λkηk(t)]2g(τ)


 ∑

k∈{i,p}
λkηk(t)βk

(
fk(τ)e

(βk−σδ)2

2
τN(dk

2)

−e
σ2

δ
2

τN(dn
2 )

)

− λiηi(t)λpηp(t)(βp − βi)
(
fp(τ)e

(βp−σδ)2

2
τN(dp

2)− fi(τ)e
(βi−σδ)2

2
τN(di

2)
)]}

=
S(t)

1 +
∑

k∈{i,p} ηk(t)

[
e−ρnτ

(
σδ −

∑
k∈{i,p} λkηk(t)βk

1 +
∑

k∈{i,p} λkηk(t)

)
N(dn

1 )

+ e−ρiτηi(t)

(
σδ +

βi + λpηp(t)(βi − βp)

1 +
∑

k∈{i,p} λkηk(t)

)
N(di

1)

+ e−ρpτηp(t)

(
σδ +

βp + λiηi(βp − βi)

1 +
∑

λkηk(t)

)
N(dp

1)

]

− K

[1 +
∑

k∈{i,p} λkηk(t)]2


 ∑

k∈{i,p}
λkηk(t)βk

(
e−rkτN(dk

2)− e−rnτN(dn
2 )

)

+ λiηi(t)λpηp(t)(βp − βi)
(
e−rpτN(dp

2)− e−riτN(di
2)

)]
,

where we use identity (29) in the proof of Proposition 2 to obtain the second
equality and use the definitions offk, g, and the stock price to obtain the third
equality. Then, by the definition of the delta of the option (the ratio of diffusions
between the option and its underlying stock) yields the result. 2

Proof of Lemma 3

Taking the derivatives of both sides of equation (18) with respect tos yields

σδ

(
∂b(s)

∂s
− h

)

+ βi

(
∂b(s)

∂s
− li

) (
1− λi + (λp − λi)fpηpe

βpb
)
fiηie

βib

(1 +
∑

k∈{i,p} λkfkηkeβkb)(1 +
∑

k∈{i,p} fkηkeβkb)
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+ βp

(
∂b(s)

∂s
− lp

) (
1− λp + (λi − λp)fiηie

βib
)
fpηpe

βpb

(1 +
∑

k∈{i,p} λkfkηkeβkb)(1 +
∑

k∈{i,p} fkηkeβkb)
= 0.

Rearranging terms gives

∂b(s)

∂s
=

σδh + Σi(s, b(s))li + Σp(s, b(s))lp
σδ + Σi(s, b(s)) + Σp(s, b(s))

.

As bothσδ andΣk for k ∈ {i, p} are positive, the lemma follows. 2

Proof of Proposition 3

After noting thatδ(T ), ηk(T ) for k ∈ {i, p} can be rewritten as time to expiration
τ andxm, the result is straightforward by applying Lemma B.1 to the expectation
in pricing equation (23).

Proof of Corollary 2

Following a similar method as for the case of vanilla call options, we have

Σuo
Z (t, S(t), ηi(t), ηp(t); T,K; bm) =

e−ρnτ
∫

1{xm≤bm(τ)−ȳ}p̃(x̃, bm)

(
1 +

∑
k∈{i,p} ηk(t)fk(τ)eβk(bm(τ)−x̃m)

ρn[1 +
∑

k∈{i,p} λkηk(t)]
σδδ(t)

+

∑
k∈{i,p}[fk(τ)eβk(bm(τ)−x̃m) − λk]ηk(t)βk

ρn[1 +
∑

k∈{i,p} λkηk(t)]2
δ(t)

+
[λifp(τ)eβp(bm(τ)−x̃m) − λpfi(τ)eβi(bm(τ)−x̃m)]ηi(t)ηp(t)(βp − βi)

ρn[1 +
∑

k∈{i,p} λkηk(t)]2
δ(t)

−
∑

k∈{i,p} λk[fk(τ)eβk(bm(τ)−x̃m) − 1]ηk(t)βk

[1 +
∑

k∈{i,p} λkηk(t)]2g(τ)eσδ(bm(τ)−x̃m)
K

− λiλp[fp(τ)eβp(bm(τ)−x̃m) − fi(τ)eβi(bm(τ)−x̃m)]ηi(t)ηp(t)(βp − βi)

[1 +
∑

k∈{i,p} λkηk(t)]2g(τ)eσδ(bm(τ)−x̃m)
K

)
dx̃.

Rearranging the terms and using the expression for the stock price in Proposition
1 yields the result. 2
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Proof of Proposition 4

From equation (23), the pricing of the option means the calculation of

I = En

[
1{Z(s)<b1(s),0≤s≤τ}

(
1 +

∑
k∈{i,p} ηk(T )

ρn

−1 +
∑

k∈{i,p} λkηk(T )

δ(T )
K

)+
∣∣∣∣∣∣
F δ(t)


 .

Since bothηk(T ) and δ(T ) are functions of time andZn(T ) − Zn(t), the cal-
culation of the foregoing expectation is straightforward if the distribution density
function ofZn(T )−Zn(t) is known. By Lemma B.1 or equation (36) in Appendix
B, the probability density function ofZ(s) = Zn(t + s) − Zn(t) is p(x, b1), and
we then have

I =
∫ (

1 +
∑

k∈{i,p} ηk(T )

ρn

− 1 +
∑

k∈{i,p} λkηk(T )

δ(T )
K

)+

p(x, b1)dx

=
1√
2πτ

∫ α+µτ

ȳ

(
1 +

∑
k∈{i,p} ηk(T )

ρn

− 1 +
∑

k∈{i,p} λkηk(T )

δ(T )
K

)
e−

x2

2τ dx

− e−2αµ

√
2πτ

∫ α+µτ

ȳ

(
1 +

∑
k∈{i,p} ηk(T )

ρn

− 1 +
∑

k∈{i,p} λkηk(T )

δ(T )
K

)
e−

(x−2α)2

2τ dx

= I(ȳ, 0)− I(α + µτ, 0)− e−2αµ[I(ȳ, α)− I(α + µτ, α)],

where

I(y, α) (30)

=
1√
2πτ

∫ ∞

y

(
1 +

∑
k∈{i,p} ηk(T )

ρn

− 1 +
∑

k∈{i,p} λkηk(T )

δ(T )
K

)
e−

(x−2α)2

2τ dx

=
1√
2πτ

∫ ∞

y

(
1 +

∑
k∈{i,p} ηkfke

βkx

ρn

− 1 +
∑

k∈{i,p} λkηkfke
βkx

δ(t)g(τ)eσδx
K

)
e−

(x−2α)2

2τ dx.

IntegralI(ȳ, 0) is calculated in the proof of Lemma 2, and the other integrals can
be calculated by using the following identity for any constantγ andy.

1√
2πτ

∫ ∞

y
eγxe−

(x−2α)2

2τ dx = exp

(
γ2τ + 4αγ

2

)
N

(
2α + γτ − y√

τ

)
.
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Then, for any constanty andα

I(y, α) =
1√
2πτ

×
∫ ∞

y

(
1 +

∑
k∈{i,p} ηkfk(τ)eβkx

ρn

− 1 +
∑

k∈{i,p} λkηkfk(τ)eβkx

δ(t)g(τ)eσδx
K

)
e−

(x−2α)2

2τ dx

=
1

ρn


N

(
2α− y√

τ

)
+

∑

k∈{i,p}
ηk(t)fk(τ)e

β2
k

τ+4αβk
2 N

(
2α + βkτ − y√

τ

)


− K

δ(t)g(τ)


e

σ2
δ

τ−4ασδ
2 N

(
2α− σδτ − y√

τ

)
+

∑

k∈{i,p}
λkηk(t)fk(τ)

× e
(βk−σδ)2τ+4α(βk−σδ)

2 N

(
2α + (βk − σδ)τ − y√

τ

)]

=
1

ρn


N

(
2α− y√

τ

)
+

∑

k∈{i,p}
ηk(t)e

(ρn−ρk)τ+2αβkN

(
2α + βkτ − y√

τ

)


− K

δ(t)

[
e−(µn−σ2

δ )τ−2ασδN

(
2α− σδτ − y√

τ

)

+
∑

k∈{i,p}
λkηk(t)e

(ρn−ρk−µk+σ2
δ )τ+2α(βk−σδ)N

(
2α + (βk − σδ)τ − y√

τ

)
 ,

where the last equality is the direct implication of the definitions offk, g, andβk.
Let

Cu
Z(t, S(t), ηi(t), ηp(t); T, K; y, α)

=
δ(t)e−ρiτ

1 +
∑

k∈{i,p} λkηk(t)
I(y, α) (31)

=
S(t)

1 +
∑

k∈{i,p} ηk(t)

[
e−ρnτN

(
2α− y√

τ

)

+
∑

k∈{i,p}
ηk(t)e

−ρkτ+2αβkN

(
2α + βkτ − y√

τ

)


− Ke−2ασδ

1 +
∑

k∈{i,p} λkηk(t)

[
e−rnτN

(
2α− σδτ − y√

τ

)

+
∑

k∈{i,p}
λkηk(t)e

−rkτ+2αβkN

(
2α + (βk − σδ)τ − y√

τ

)
 ,
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whererk for k = n, i, p is defined as in Proposition 2.
Given the results, we have

Cuo
Z (t, S(t), ηi(t), ηp(t); T, K; α, µ)

= Cu
Z(t, S(t), ηi(t), ηp(t); T, K; ȳ, 0)

−Cu
Z(t, S(t), ηi(t), ηp(t); T, K; α + µτ, 0)

−e−2αµ [Cu
Z(t, S(t), ηi(t), ηp(t); T,K; ȳ, α)

−Cu
Z(t, S(t), ηi(t), ηp(t); T,K; α + µτ, α)] .

Combining this with the fact that

Cu
Z(t, S(t), ηi(t), ηp(t); T, K; ȳ, 0) = C(t, S(t), ηi(t), ηp(t); T, K)

leads to the conclusion. 2

Proof of Proposition 5

Let Z(s) = Zn(t + s)− Zn(t). Then,

inf{s ≥ 0|Z(s) = α + µs} = inf{s ≥ 0|Z(s)− µs = α}.
From Karatzas and Shreve (1991) (see page 196-197), the probability density
function of the first touch times is

ψ(t) =
|α|√
2πs3

exp

[
−(α + µs)2

2s

]
.

The one-touch digital price is then

Cot
Z (t, ηi(t), ηp(t); T ; α, µ)

=
1

ξn(t)

∫ τ

0
ξn(t + s)ψ(s) ds

=
δ(t)

1 +
∑

k∈{i,p} λkηk(t)

∫ τ

0

[1 +
∑

k∈{i,p} λkηk(t + s)]e−ρns

δ(t + s)
ψ(s) ds

=
e−σδα

1 +
∑

k∈{i,p} λkηk(t)

∫ τ

0
e−(rn+ 1

2
σ2

δ+σδµ)sψ(s) ds

+
∑

k∈{i,p}

λkηk(t)e
(βk−σδ)α

1 +
∑

k∈{i,p} λkηk(t)

∫ τ

0
e−(rk+ 1

2
(σδ−βk)2+(σδ−βk)µ)sψ(s) ds,(32)
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where we useZn(t + s)− Zn(t) = α + µs whenZ(s) hits the barrier.
Since, for anyγ ≥ −µ2/2, we have

∫ τ

0
e−γs |α|√

2πs3
exp

[
−(α + µs)2

2s

]
ds

= e−αµ
∫ τ

0

|α|√
2πs3

exp

[
−α2 + (µ2 + 2γ)s2

2s

]
ds

= e−αµ−|α|
√

µ2+2γ
∫ τ

0

1

2

|α|+√
µ2 + 2γs√
2πs3

exp

[
−(|α| − √µ2 + 2γs)2

2s

]
ds

+ e−αµ+|α|
√

µ2+2γ
∫ τ

0

1

2

|α| − √µ2 + 2γs√
2πs3

exp

[
−(|α|+√

µ2 + 2γs)2

2s

]
ds

= e−αµ−|α|
√

µ2+2γN

(√
µ2 + 2γτ − |α|√

τ

)

+ e−αµ+|α|
√

µ2+2γN

(
−
√

µ2 + 2γτ + |α|√
τ

)
. (33)

Substituting

γ = rn +
1

2
σ2

δ + σδµ

and

γ = rk +
1

2
(σδ − βk)

2 + (σδ − βk)µ

into (33) yields the result. 2

Appendix B: Auxiliary Lemmas and Further Results
for the Pricing of Barrier Options

Appendix B.1 Crossing Probability of a Brownian Motion for
a Piece-Wise Linear Barrier

Lemma B.1 Let0 = s0 < s1...sm−1 < sm = τ andbm(s) be linear functions ofs
on each of the intervals[sj−1, sj] for j = 1, ...,m. The probability density function
that a Brownian motionZ(s) does not cross barrierbm(s) for all 0 ≤ s ≤ τ is
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then

p(x, bm) = ψ(x, bm)
m∏

j=1

(
1{bm(0)>0}1{xj<bm(sj)} + 1{bm(0)<0}1{xj>bm(sj)}

)
,

where

ψ(x, bm) =
m∏

j=1

(
1− exp

[
−2[bm(sj−1)− xj−1][bm(sj)− xj]

sj − sj−1

])

× 1√
2π(sj − sj−1)

exp

[
(xj − xj−1)

2

2(sj − sj−1)

]
, (34)

whereb0 = bm(0), bm = (bm(s1), ..., bm(sm))>, x0 = 0, x = (x1, ..., xm)>.
Let x̃ = bm − x. The probability density function thatZ(s) does not cross the

piece-wise linear barrierbm(s) for 0 ≤ s ≤ τ is then

p̃(x̃, bm) = ψ̃(x̃, bm)
m∏

j=1

(
1{bm(0)>0}1{x̃j>0} + 1{bm(0)<0}1{x̃j<0}

)
,

where

ψ̃(x̃, bm) =
1√

det(2πΣ)

m∏

j=1

1{x̃j>0}

(
1− exp

[
− 2x̃j−1x̃j

sj − sj−1

])

× exp

[
−(x̃− bm)>Σ−1(x̃− bm)

2

]
, (35)

wherex̃0 = bm(0), Σ = M diag(s1 − s0, ..., sm − sm−1)M
>, andM is the lower

triangular matrix with all nonzero elements equal to 1.

Proof: See Wang and Potzelberger (1997). 2

In the case ofm = 1, let b1(s) = α + µs. Then,b1(0) = α andb1 = α + µτ .
Substituting these into equation (34) yields

p(x, b1) =
(
1{α>0}1{x<α+µτ} + 1{α<0}1{x>α+µτ}

)
ψ(x, b1),

where

ψ(x, b1) =
1√
2πτ

[
exp

(
x2

2τ

)
− e−2αµ exp

(
(x− 2α)2

2τ

)]
, (36)

where we have used the fact thatx = x1 for the case ofm = 1.

41



Appendix B.2 Pricing Other Barrier Options

There are basically four kinds of barrier option with a single barrier: down-and-in,
down-and-out, up-and-in, and up-and-out. The payoff for an “out” option is

Gout
Z (S(T ), K) =

{
1{H>τ}G(S(T ), K) if the barrier is NOT crossed

0 if the barrier is crossed,

whereG(S(T ), K) is a vanilla European option with a strike priceK. The “in”
option is defined in the opposite way. The immediate implication of these defini-
tions is that

Gin
Z(S(T ), K) + Gout

Z (S(T ), K) = G(S(T ), K).

This means that
V in

Z (t) + V out
Z (t) = V (t). (37)

This shows that the “in” options can be priced by the relevant “out” options and
vanilla European options. The prices for up-and-out options are given in the text,
and those of down-and-out options are given by the following lemma.

Lemma B.2 The price of a down-and-out call option with a constant barrier
based on the innovation processb1(s) = α + µs is given by

Cdo
Z (t, S(t), ηi(t), ηp(t); T,K; α, µ)

=





Cu
Z(t, S(t), ηi(t), ηp(t); T, K; α + µτ, 0)

−e−2αµCu
Z(t, S(t), η(t), ηp(t); T,K; α + µτ, α) ȳ ≤ α + µτ

Cu
Z(t, S(t), ηi(t), ηp(t); T, K; ȳ, 0)

−e−2αµCu
Z(t, S(t), ηi(t), ηp(t); T, K; ȳ, α) ȳ > α + µτ,

whereCu
Z(t, S(t), ηi(t), ηp(t); T, K; y, α) is defined as in Proposition 4.

Proof. Since the distribution ofZ(s) = Zn(T )− Zn(t) conditional on the barrier
not having been hit up to timeT is p(x, b1) = 1{x>α+µτ}ψ(x, b1), whereψ is as
defined by equation (36), we have

Cdo
Z (t) =

1

ξn(t)
Ei

[
ξn(T )Gdown

out (S(T ), K)1{Z(s)>b1(s),s≤τ}
∣∣∣F δ(t)

]

=
δ(t)e−ρnτ

1 +
∑

λkηk

∫ ∞

α+µτ

(
1 +

∑
ηk(T )

ρn

− 1 +
∑

λkηk(T )

δ(T )
K

)+

ψ(x, b1)dx =
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δ(t)e−ρnτ

1 +
∑

λkηk





∫∞
α+µτ

(
1+

∑
ηk(T )

ρn
− 1+

∑
λkηk(T )

δ(T )
K

)
ψ(x, b1)dx ȳ ≤ α + µτ

∫∞
ȳ

(
1+

∑
ηk(T )

ρn
− 1+

∑
λkηk(T )

δ(T )
K

)
ψ(x, b1)dx ȳ > α + µτ

=
δ(t)e−ρnτ

1 +
∑

λkηk

{
I(α + µτ, 0)− e−2αµI(α + µτ, α) ȳ ≤ α + µτ

I(ȳ, 0)− e−2αµI(ȳ, α) ȳ > α + µτ,

where the last equality is obtained by using the identity (30) in the proof of Propo-
sition 4. The application of (31) as defined in the proof of Proposition 4 yields the
prices that are stated in the lemma. 2

Appendix B.3 Hedging Delta for the Special Linear Barrier

Similar to the case of vanilla European options, we calculate the diffusion terms
for the barrier and one-touch options. The hedging deltas then follow by taking
the ratios between the diffusion terms and the diffusion term of the stock.

Appendix B.3.1 Delta for Barrier Options

Substitutingx̃ = b1(τ)− x into the expression forΣuo
Z in Corollary 2 yields

Σuo
Z (t, S(t), ηi(t), ηp(t); T,K; b1)

=e−ρnτ
∫

1{x≥ȳ}p(x, b1)

[(
[1 +

∑
k∈{i,p} ηk(t)fk(τ)eβkx]σδ

1 + ηi(t) + ηp(t)

+

∑
k∈{i,p}[fk(τ)eβkx − λk]ηk(t)βk

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]

+
[λifp(τ)eβpx − λpfi(τ)eβix]ηi(t)ηp(t)(βp − βi)

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]

)
S(t)

−
(∑

k∈{i,p} λk[fk(τ)eβkx − 1]ηk(t)βk

[1 + λiηi(t) + λpηp(t)]2g(τ)eσδx

+
λiλp[fp(τ)eβpx − fi(τ)eβix]ηi(t)ηp(t)(βp − βi)

[1 + λiηi(t) + λpηp(t)]2g(τ)eσδx

)
K

]
dx

=

(
e−ρnτJ(0) + e−ρiτJ(βi) + e−ρpτJ(βp)

1 + ηi(t) + ηp(t)
σδ

+

∑
k∈{i,p}[e

−ρkτJ(βk)− λke
−ρnτJ(0)]ηk(t)βk

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]
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+
[λie

−ρpτJ(βp)− λpe
−ρiτJ(βi)]ηi(t)ηp(t)(βp − βi)

[1 + ηi(t) + ηp(t)][1 + λiηi(t) + λpηp(t)]

)
S(t)

−
(∑

k∈{i,p} λk[e
−rkτJ(βk − σδ)− e−rnτJ(−σδ)]ηk(t)βk

[1 + λiηi(t) + λpηp(t)]2

+
λiλp[e

−rpτJ(βp − σδ)− e−riτJ(βi − σδ)]ηi(t)ηp(t)(βp − βi)

[1 + λiηi(t) + λpηp(t)]2

)
K,

where we use the following identity
∫ α+µτ

ȳ
eγxp(x, b1) dx = e

γ2τ
2 J(γ), (38)

where

J(γ) =

[
N

(
α + µτ − γτ√

τ

)
−N

(
ȳ − γτ√

τ

)]

−e−2αµ+αγ

[
N

(−α + µτ − γτ√
τ

)
−N

(
ȳ − γτ − 2α√

τ

)]
.

Appendix B.3.2 Delta for One-Touch Options

Let

H(γ) = e−αµ−|α|
√

µ2+2γN

(√
µ2 + 2γτ − |α|√

τ

)

+ e−αµ+|α|
√

µ2+2γN

(
−
√

µ2 + 2γτ + |α|√
τ

)
.

Using this and equation (32) then yields

Σot
Z (t, ηi(t), ηp(t), b1) =

− e−ασδ

[1 + λiηi(t) + λpηp(t)]2

[
(λiηi(t)βi + λpηp(t)βp) H

(
rn +

1

2
σ2

δ + σδµ
)

−eαβiλiηi(t) (βi + λpηp(t)(βi − βp)) H
(
ri +

1

2
(σδ − βi)

2 + (σδ − βi)µ
)

−eαβpλpηp(t) (βp + λiηi(t)(βp − βi)) H
(
rp +

1

2
(σδ − βp)

2 + (σδ − βp)µ
)]

,

whereb1(s) = α + µs.
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