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1 Introduction

In a classical paper (Merton, 1971) Merton solved, in closed form, the optimal consumption

and investment problem for investors. The solution included an expected additive utility

(HARA utility) and a constant investment opportunity set. Recently, Merton’s solution

has been applied to a stochastic investment opportunity set with affine dynamics (e.g.,

Kim & Omberg, 1996; Liu, 1998; Liu & Pan, 2003; Wachter, 2002). Merton’s problem

has also been extended to more generalized preferences, the recursive utility, which nests

the expected additive utility (e.g., Campbell & Viceira, 2002; Giovannini & Weil, 1989).

Although Schroder and Skiadas (1999), who solved Merton’s problem with recursive utility

in a complete market setting with affine state variable processes, provide a more extensive

approach, they showed that an analytical solution exists only for special parametrization of

recursive utility. In this study, the existing literature is extended by exploring approximate

analytical solutions for a general class of parametrization of recursive utility. Recursive util-

ity, inspired by Koopmans (1960) and Kreps and Porteus (1978), was developed for general

discrete-time multiperiod asset-pricing applications by Epstein-Zin (1989), the continuous

limit of which was formulated by Duffie and Epstein (1992). In this article, the solution is

based on continuous formulation of recursive utility.

Recursive utility can be considered as an extension of expected additive utility. The

additive utility model is extremely restrictive, and found to be inconsistent with experi-

mental evidence on choice under uncertainty (Plott, 1986). A drawback of additive utility

is that the two psychologically separate concepts of risk aversion (the desire to stabilize

consumption across states of nature) and the elasticity of intertemporal substitution (the

desire to stabilize consumption over time) are constrained to be reciprocal of one another.

Recursive utility allows for the separation of these two parameters; thus, it promotes a

clean analysis of the comparative statics of risk. As pointed out by Dumas et al (1997),
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“even if it were true that, in the real world, each person’s risk aversion were always exactly

equal to the inverse of his/her elasticity of intertemporal substitution, it is still important

to distinguish between the two concepts, in order to determine the size and direction of the

effects of a change in the risks that investors face.”

This article contributes to the existing literature by providing a solution method for

general cases of recursive utility approximately. A stochastic volatility example is used to

show the approximate solution that should satisfy investors with reasonable preferences.

Specifically, the dynamic asset allocation problem is solved with derivative security as

a trading instrument in Heston’s (1993) stochastic volatility model. This example is of

practical interest by itself and, in fact, was chosen based on interest in the demand behavior

for various volatility products (such as VIX index and its related derivatives, OTC variance

swaps, etc.), which have recently become popular in the marketplace. It has been well

documented in the empirical literature that the variance risk premium of S&P 500 index

is significant and negative (Bakshi & Kapadia, 2003; Bondarenko, 2004). This implies

that investors who want long volatility will have to pay. One might argue that risk-averse

investors are willing to accept a negative excess return because of the insurance provided

by long volatility, such as put options. Bondarenko (2004) has shown that a wider class

of investment strategies is exposed to volatility risk other than options trading. However,

the exception is most hedge funds; most are short in volatility. Liu and Pan (2003) solved

the problem of demand for volatility trading for CRRA investors without intertemporal

consumption. They argue for more risk-averse investors as opposed to investors who prefer

logarithmic utility; the demand for volatility is always negative. In this sense, hedge funds

provide a service for investors who seek short volatility. In this article, Liu and Pan’ solution

to generalized preference is expanded in an effort to gain richer insights into the hedging

demand for volatility products.

In a different setting, Chacko and Vicera (2005) solved a similar problem with recursive
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utility. They concentrated on the hedging demand of stocks due to stochastic volatility

without the trading of volatility, i.e., the incomplete market case. Here their study is

supplemented by a solution for recursive preference under a complete market scenario in a

stochastic volatility setting.

Campbell and Vicera (2001) state that in a constant volatility setting, “the elasticity

of intertemporal substitution is of second order importance for portfolio demand.” In this

article, it is shown that this statement is no longer valid in terms of volatility demand. In

fact, in a stochastic volatility setting, investor’s willingness to substitute consumption over

time has first-order impact on demand for volatility trading. In addition, there is also a

horizon effect on this demand behavior for volatility.

The remainder of the article is organized as follows. In the next section, the theoretical

background is given as well as a general presentation and approach of the solution method.

The solution method is then described in detail; the exact solution for unit elasticity of

intertemporal substitution is presented first, followed by the derivation of the approximated

solution for more general cases, which is based on the exact solution. An application in a

stochastic volatility model is detailed and the comparative statics of volatility demand are

shown for different investor preferences and different investment horizons. A conclusion

and a discussion of future research directions complete the article.

2 The Intertemporal Consumption and Portfolio Choice

Problem

2.1 Investment Opportunity Set and Pricing Kernel

We discuss in the setting of an Arrow-Debreu market. The general formulation of which

can be found in, e.g., Duffie (1996). The state price density process, or pricing kernel φt is
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determined by

dφt

φt

= −[rdt + η′tdBt] (1)

φ0 = 1

where ηt is the market-price-of-risk process.

We assume n risky assets2 with price process

dSt

St

= (r + µR
t )dt + σR

t dBt (2)

where µR
t and σR

t are progressively measurable processes valued in Rn and Rn×n. r is the

risk-free interest rate. µR
t is the expected excess return at time t. We define the excess

return process

dRt = µR
t dt + σR

t dBt

A trading strategy is any progressively measurable process, Ψt, valued in Rn. Given

any initial wealth W0, consumption plan Ct, and trading strategy Ψt, the corresponding

wealth process Wt is defined by the budget constraint equation:

dWt = Wt(Ψ
′
tdRt + rdt)− Ctdt (3)

with Wt=0 = W0.

2.2 Recursive Utility and Martingale Approach

In this paper, we follow the recursive utility formulation of Duffie-Epstein (1992). The

intertemporal value function is defined recursively:

Vt = Et[

∫ T

t

f(Cs, Vs)ds] (4)

2In complete market with stochastic volatility, the risky assets include derivative securities that are
exposed to volatility risk. In this paper, we assume pure volatility derivatives that are not exposed to asset
price risk.
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with terminal condition VT = 0. f(Cs, Vs) is a normalized aggregator of current con-

sumption and continuation utility. The conventional additive intertemporal von Neumann-

Morgenstern utility is obtained by restricting the aggregator to be

f(Cs, Vs) = u(Cs)− βVs (5)

We further restrict the recursive utility (??) to be homothetic, i.e., for any consumption

processes C ′ and C, and any λ > 0, we have

U(λC ′) ≥ U(λC) ⇐⇒ U(C ′) ≥ U(C)

One class of homothetic recursive utility is the Kreps-Porteus utility (Kreps and Porteus

1978) generated by the aggregator f of the form

f(C, V ) =
β

1− 1
ψ

(1− γ)V [(
C

((1− γ)V )
1

1−γ

)1− 1
ψ − 1] (6)

where β is the rate of time preference, γ > 0 is the relative risk aversion, and ψ > 0 is the

elasticity of intertemporal substitution. It can be shown that if we set ψ = 1
γ

in (??), we

obtain expected additive utility of constant relative risk aversion (CRRA).

When ψ = 1, the normalized aggregator f(C, V ) becomes

f(C, V ) = β(1− γ)V [log(C)− 1

1− γ
log((1− γ)V )] (7)

Merton’s problem is formulated by:

max
C,Ψ

E0[

∫ T

0

f(Cs, Vs)ds]

with equation (??) as the intertemporal budget constraint.

In Merton (1971), the optimal investment problem is solved by dynamic programming.

In this paper, we follow the stochastic duality approach, or the so-called martingale ap-

proach, developed by Pliska (1986), Cox and Huang (1989), and Karatzas et al (1987) for
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expected additive utility, and generalized by Duffie and Skiadas (1994) to recursive utility.

The advantage of martingale approach is to transform the dynamic problem into a static

one through Arrow-Debreu state price density process (or the pricing kernel) in complete

market. Hence, this approach can be applied even to non-markovian setting.

Specifically, in our setting, we assume Markovian pricing kernel φt that satisfies equation

(??). Any security price Pt is related to its future payoff Ds, (s ≥ t) through

Pt = Et[

∫ T

t

φs

φt

Dsds]

The dynamic budget constraint (??) can be interpreted as an asset whose price is Wt

and pays instantaneous dividend equal to optimal consumption Ct. Hence, the optimally

invested wealth Wt must satisfy

Wt = Et[

∫ T

t

φs

φt

Csds]

With this reinterpretation, the dynamic optimal problem can be transformed into the static

problem

max
C

E0[

∫ T

0

f(Cs, Vs)ds]

s.t.

W0 = E0[

∫ T

0

φsCsds]

Note that in complete market, any consumption can be financed by certain self-financing

trading strategy. Therefore, once we obtain the optimal consumption, we can uniquely

solve the portfolio choice problem. The optimal consumption is solved through Lagrangian

multiplier:

max
C
{E0[

∫ T

0

f(Cs, Vs)ds]− λ(E0[

∫ T

0

φsCsds]−W0)} (8)

The first order condition of program (??) is obtained by the so-called gradient utility ap-

proach. For detailed exposition of gradient utility approach, refer to Duffie and Skiadas

(1994). For our purpose, we sketch the approach as follows.
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We first define a Hilbert functional space C consist of adaptive consumption process

{Ct, 0 ≤ t ≤ T} with inner product naturally defined as

< mt, ht >≡ E[

∫ T

0

mthtdt]

DefinitionUtility gradient is defined as

5V0(Ct; h) ≡ lim
α→0

V0(Ct; αh)− V0(Ct)

α
(9)

It was shown in Duffie and Skiadas (1994) that there exists an element in C, denoted

as mt(Ct), such that

5V0(Ct; h) = E[

∫ T

0

mthtdt] (10)

Furthermore, for general recursive utility defined in (??),

mt(C) = exp(

∫ t

0

fV (Cs, Vs(C))ds)fC(Ct, Vt(C)) (11)

Therefore, the first order condition of the program (??) becomes

mt(C) = λφt (12)

In conventional expected additive case defined in (??), mt takes a particularly simple

form, i.e.,

mt(C) = e−βtu′(Ct)

which is solved by Cox and Huang (1989). Notice that for expected additive utility, the

utility gradient at given state-time (Ct, t) is local, while in general recursive utility case,

mt(C) depends on the whole path of consumption process up to time t. To proceed with

our approximate solution, we summarize the relevant facts that we base our method on.

Lemma 1 (Schroder and Skiadas 1999) Suppose one of the following two conditions holds:

1. ψ = 1, or
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2. if the risk-premium ηt is constant.

Then

Ct

Wt

= [

∫ T

t

exp(−
∫ s

t

qτdτ)ds]−1 (13)

where

q = ψβ − (ψ − 1)(r +
1

2γ
ηt · ηt)

Proof: see Schroder and Skiadas (1999).

Notice for both cases the consumption-wealth ratio is deterministic. Technically, once

we solve for the optimal consumption process, the portfolio choice can be obtained directly

from the consumption process. Intuitively, this indicates that the “consumption-saving”

choice could be separated from the “portfolio selection” choice.3 Our solution method is

built upon this intuition.

3 Solution Method

In this section, we first show the solution method in special case for ψ = 1. We follow

the method in Schroder and Skiadas (1999). We then solve the problem for general ψ.

According to Lemma 1, for ψ = 1, consumption-wealth ratio is deterministic even for

stochastic investment opportunity. Our solution method is based on the assumption that

for general ψ 6= 1 the consumption-wealth ratio doesn’t vary too much. In this sense, our

approach is similar to loglinear approximation developed by Campbell (1993) and Campbell

and Viceira (2002). In their approach, loglinear approximation is used for long-term investor

only, while our approach extends to account for investment horizon effect. Moreover, we

use a different formulation and a broader angle to examine the solution method.

3Notice that Merton (1971) indicated that this is true for CRRA utility with deterministic investment
opportunity.
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3.1 Unit Elasticity of Intertemporal Substitution: ψ = 1

When ψ = 1, the normalized aggregator f(C, V ) takes the form of equation (??), by

differentiating utility gradient mt of (??), we have:

dmt

mt

= fV dt +
dfC

fC

(14)

Define auxiliary variable Xt ≡ ln fC , and restate the first order condition (??) as:

dmt

mt

=
φt

φt

we have

dXt = −[(r + fV )dt +
1

2
ηt · ηtdt + η′tdBt] (15)

Let α = 1− γ, and

f(C, V ) = β(1 + αV )[log C − 1

α
log(1 + αV )] (16)

we have

fV = βα[log C − 1

α
log(1 + αV )]− β

= βα[log
C

1 + αV
+ (1− 1

α
) log(1 + αV )]

Notice that

fC = β
1 + αV

C
= eX

We further define

1 + αVt = exp(Jt + (1− kt)Xt) (17)

and substitute the above equation into equation (??), we have

dXt = −[(β(1− α)kt − β)Xt + β(α− 1)Jt −B + γ +
ηt · ηt

2
]dt− η′tdBt

≡ µxdt− η′tdBt (18)
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where we define −B ≡ αβ log β − β And

αf(C, V )

1 + αV
= fV (C, V ) + β

Let

Ct = βe−Xt(1 + αVt) = βeJt−KtXt (19)

dJt = µJdt + ZtdB̃t = µJdt + (1− kt)Ztηtdt + ZtdBt

where we define

B̃t = Bt +

∫ t

0

(1− ks)ηsds

In order to find µJ we use the fact that

α

1 + αVt

[dVt + f(Ct, Vt)dt)]

is a martingale, we have (for computation details, refer to Appendix)

β(1− α)k2
t − βkt − k̇t = 0, kT = 1 (20)

−µJ = (1− kt)(B − r − kt
ηt · ηt

2
) + ktβ(α− 1)Jt −B + β +

1

2
Zt · Zt (21)

Hence we get the following Backward Stochastic Differential Equation for Jt,

dJt =− [(1− kt)(B − r − kt
ηt · ηt

2
) + ktβ(α− 1)Jt −B + g1 +

1

2
Zt · Zt]dt + ZtdB̃t

JT =0

(22)

Notice that the above equation for Jt doesn’t involve Xt.

Once we solve for the process of Jt, we can solve for Xt by substituting Jt into equation

(??). Then we can find the consumption process using

Ct = βeJt−ktXt

According to Lemma 1, for ψ = 1, we have

Ct

Wt

=
β

1− e−β(T−t)
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The fact that C/W ratio is deterministic implies that the stochastic term of Ct and Wt

are the same, so the stochastic term of Wt is equal to the portfolio holding. Once we solve

for the optimal consumption, we can obtain the optimal portfolio. We defer the explicit

expression for optimal portfolio to the next session, where the solution for ψ = 1 becomes

a special case of Proposition 1.

3.2 Approximate Solution for ψ 6= 1

For ψ 6= 1, define

G ≡ (
C

((1− γ)V )
1

1−γ

)1− 1
ψ

the intertemporal aggregator (??) becomes

f(C, V ) =
β

1− 1
ψ

(1− γ)V [G(C, V )− 1] (23)

First, let’s consider the function form of value function V . Due to the homotheticity of the

Kreps-Porteus utility generated by (??), the value function V can be written as

V (Y, W, t) = I(Y, t)W 1−γ

This has been established in Duffie and Epstein (1992). Taking partial derivative with

respect to W , we obtain

VW = (1− γ)
V

W
(24)

Furthermore, by using dynamic programming, Duffie and Epstein (1992) show that the

consumption choice at each instant must satisfy the envelop condition:

fC(C, V ) = VW (25)

Condition (??) can be derived from first order condition of Hamilton-Jacobi-Bellman’s

equation. Take the first order derivative with respect to C in equation (??), we have

fC = β
G

C
(1− γ)V (26)



13

By substituting (??) and (??) into the envelop condition (??), we have

β
G(1− γ)V

C
= (1− γ)

V

W
⇒ βG =

C

W
= exp(c− ω) (27)

where we define c ≡ ln C, and ω ≡ ln W . In the spirit of loglinear approximation, we assume

that the consumption-wealth ratio doesn’t vary too much around its mean, combining with

(??) we have

βG =
Ct

Wt

≡ exp(c0 − ω0) ≈ exp(c0 − ω0) + exp(c0 − ω0) · [(c− ω)− (c0 − ω0)] (28)

for some reference point of c0 − ω0. Define

g1 ≡
(

Ct

Wt

)

0

= exp(c0 − ω0)

g0 ≡ g1 − g1 ln g1

we have

βG ≈ g0 + g1 log(βG) = (g0 + g1 log β) + g1 log G (29)

Then the intertemporal aggregator of (??) becomes:

f(C, V ) ≈ 1

1− 1
ψ

(1− γ)V [(g0 + g1 log β) + g1 log G− β]

=
1

1− 1
ψ

(1− γ)V [g1(1− 1

ψ
)(ln C − 1

1− γ
log(1− γ)V ) + g0 + g1 ln β − β]

= g1(1− γ)V [log C − 1

1− γ
log((1− γ)V ) + (

g0

g1

+ ln β − β

g1

)/(1− 1

ψ
)]

= g1(1− γ)V [log C − 1

1− γ
log((1− γ)V ) + h0]

(30)

where we have defined h0 ≡ (g0

g1
+ ln β − β

g1
)/(1− 1

ψ
).

There are a couple of ways to choose the reference point g1(t) ≡
(

Ct

Wt

)
0
. For example, in

Campbell (1993) suggested using the unconditional mean of the consumption-wealth ratio.

In Chacko and Viceira (2005), the reference point was chosen to be the deterministic limit
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of risk-premium. In this paper, we also use this approach, i.e., we approximate the C/W

ratio around the ratio when ηt approaches its deterministic limit. According to Lemma 1,

g1 ≡
(

Ct

Wt

)

0

=
q

1− e−q(T−t)
(31)

with

q = ψβ − (ψ − 1)(r +
1

2γ
(ηt · ηt)d) (32)

where (ηt · ηt)d is the deterministic limit of the risk-premium squared.

Once we have approximated the intertemporal aggregator as (??), the procedure for

solving the optimal consumption and portfolio selection problem becomes exactly the same

as the case for ψ = 1, except for some redefinition of parameters. The details can be found

in Appendix. In order to solve for an analytical form, we further restrict the dynamics of

the investment opportunity process of ηt to a class of affine process.

3.3 Investment Opportunity: Affine Dynamics

Analytical solution can be obtained by assuming affine structure of the pricing kernel. Affine

model has been extensively used in interest rate term structure modelling (e.g., Duffie and

Kan 1996). Later on, it has been used in portfolio selection problem to derive analytical

form solution, e.g. Liu (1999), Wachter (2002), and Schroder and Skiadas (1999).

Let

ηt · ηt = L0(t) + L1(t) · Yt (33)

where

dYt = (K0(t) + KY
1 (t)Yt)dt + σtdBt

σtσ
T
t = H0(t) +

n∑

k=1

H
(k)
1 (t)Y k

t (34)

The main result is summarized in the following proposition.
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Proposition 1 Let kt solves

g1γk2
t − g1kt − k̇t = 0, kT = 1

where g1 is defined in (??). Then the portfolio holding is solved as:

Ψt = kt(σ
R
t σR′

t )−1µR
t + (σR′

t )−1Z ′
t (35)

with

Zt = βT
t σ(Yt, t)

and µR and σR defined in (??), and βt solves the following ODE:

β̇t + K
′T
1 (t)βt +

1

2
βT

t H1(t)βt − ρ1(t) = 0, β(T ) = 0 (36)

where

K ′
1(t) = K1(t)−M1(t) + ktg1(α− 1)

K ′
0(t) = K0(t)−M0(t)

with M0(t) and M1(t) defined as

(1− kt)σtηt = M0(t) + M1(t) · Yt

and ρ0(t) and ρ1(t) defined as

ρ0(t) = −[(1− kt)(B − r) + αtktg1(α− 1) + (g1 −B)− kt(1− kt)

2
L0(t)]

ρ1(t) =
L1(t)

2
kt(1− kt)− ktg1(α− 1)βt

Corollary 1 For ψ = 1, the solution is given by Proposition 1 by setting g1 = β, and the

solution is exact.

The first term in (??) is the myopic portfolio holding, the second term is the hedging

demand due to changing investment opportunity. In the next session, we apply the solution

method developed above to Heston (1993) stochastic volatility model which belongs to the

affine class.
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4 Application: Heston Stochastic Volatility Model

We consider an economy consisting of a risk-free asset with price process Pt, a risky asset

with price process St. The risky asset follows a stochastic volatility diffusive process. In

particular, we assume Heston (1993) model of stochastic volatility. To complete the market,

we include a derivative security on the risky asset in our portfolio choice problem. Without

loss of generality, we assume the additional derivative security is a pure volatility derivative

without exposure to underlying price risk. For example, this could be a delta-hedged option

position, “delta-neutral” straddle that’s considered in Liu and Pan (2003), OTC variance

swaps, or exchange traded volatility derivatives such as VIX futures, etc.

Definition Let g(V ) denote the price of the pure volatility derivative that is used for

hedging, and gV ≡ ∂g
∂V

is the vega, and gV

g
measures the per dollar exposure to aggregate

market volatility.

The price processes follow:

dPt

Pt

= rdt

dSt

St

= (r + η1Vt)dt +
√

VtdB1
t

dVt = κ(V̄ − Vt)dt + σV

√
Vt(ρdB1

t +
√

1− ρ2dB2
t )

where r is risk-free interest rate which can be time varying. B1 and B2 are independent

Brownian motions. The variance of risky asset, Vt, follows a square-root process with

mean reversion coefficient κ, long term mean V̄ , and volatility coefficient σV , which are all

assumed to be constants.

In addition, the instantaneous correlation coefficient between Vt and St is ρ. ρ is neg-

ative. The risk-premium of risky asset is assumed to be proportional to square root of

variance. These two specifications correspond to two well-known effects of S&P500 index,

i.e., the “leverage effect” and the “positive feedback effect”, resp. These two effects are



17

different explanations on the stylized fact that the price of market decreases tend to be

accompanied by volatility increases.

The pricing kernel is specified as

dφt

φt

= −[rdt + η1

√
VtdB1

t + η2

√
VtdB2

t ] (37)

φ0 = 1

We are particularly interested in the property of hedging demand for the volatility risk B2
t .

4.1 Exact Solution: ψ = 1

We summarize the exact solution for unit elasticity of intertemporal substitution, for the

purpose to compare with our approximate solution.

Proposition 2 Under unit elasticity of intertemporal substitution, i.e., ψ = 1, the optimal

volatility holding can be decomposed to myopic and hedging components:

ΨV
myopic = (kt

η2

σV

√
1− ρ2

)
g

gV

ΨV
hedge = βt

g

gV

where βt for 0 < t < T solves the following Ricatti equation:

β̇t + K1(t)βt +
1

2
σ2

V β2
t −

η2
1 + η2

2

2
kt(1− kt) = 0, β(T ) = 0 (38)

where

kt =
1

1− (1− γ)(1− e−β(T−t))

and

K1(t) = −κ− (1− kt)σV (ρη1 + η2

√
1− ρ2)− ktγβ.

Proof: see Appendix.
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Both hedging demand and myopic demand are proportional to the dollar value of unit

exposure to volatility risk, which is measured by g
gV

. For long term investors,

ΨV
hedge ∝ βt =

δ

κ1 + κ2

as T → +∞ (39)

where

κ1 = κ + (1− 1

γ
)σV (ρη1 + η2

√
1− ρ2) + β

κ2 =
√

κ2
1 − δσ2

V

δ =
1− γ

γ2
(η2

1 + η2
2)

In order to consider the impact of investment horizon T on the portfolio hedging de-

mand, we define the concept of half life.

Definition The half life τ for the solution of ΨV
hedge to go to steady state, i.e.,

βτ → β+∞

The half life is indicative of the investment horizon impact on the solution of βt.

The property of Ricatti equation for βt, equation (??), shows that

τ =
1

κ2

+
1

β

Finally, we consider the relative importance of demand for volatility between hedge

portfolio and myopic portfolio:

dt ≡
ΨV

hedge

ΨV
myopic

=
βtσV

√
1− ρ2

ktη2

4.2 Solution for ψ 6= 1

Now we turn to the approximate solution for general value of ψ 6= 1. We pay special atten-

tion to hedging demand for the volatility risk. As discussed in Section 3, we approximate
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the solution around the deterministic case, where the investment opportunity set becomes

constant. Therefore, equation (??) becomes

q = ψβ − (ψ − 1)(r +
1

2γ
η2

1V̄ ) (40)

A direct computation based on Proposition 1 can be found in Appendix. The result is

summarized in the following proposition.

Proposition 3 For recursive utility with ψ 6= 1, the optimal volatility holding can be

decomposed to myopic and hedging components:

ΨV
myopic = (

η2

γσV

√
1− ρ2

)
g

gV

(41)

ΨV
hedge = βt

g

gV

(42)

where

β̇t + K1(t)βt +
1

2
σ2

V β2
t +

1− γ

2γ2
(η2

1 + η2
2) = 0, β(T ) = 0 (43)

with

K1(t) = −κ− (1− 1

γ
)σV (ρη1 + η2

√
1− ρ2)− g1

Proof: see Appendix.

The hedging demand for long term investors is proportional to

ΨV
hedge ∝ βt =

δ

κ1 + κ2

as T → +∞ (44)

where

κ1 = κ + (1− 1

γ
)σV (ρη1 + η2

√
1− ρ2) + q (45)

κ2 =
√

κ2
1 − δσ2

V (46)

δ =
1− γ

γ2
(η2

1 + η2
2) (47)
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The property of Ricatti equation for βt, equation (??), shows that the half life τ for the

solution of βt is

τ =
1

κ2

+
1

q
(48)

where q is defined in (??).

The relative importance of demand for volatility between hedge portfolio and myopic

portfolio:

dt ≡
ΨV

hedge

ΨV
myopic

=
βtσV

√
1− ρ2

ktη2

The diagram of βt, half life τ and relative importance dt are shown in Figure ??, ??

and ??, resp.

4.3 Model Calibration and Comparative Statics

To examine the impact of both investor preferences and market opportunity on the optimal

portfolio holding, we fix a set of base-case parameters for the model. In a companion paper

Zhu (2005), we obtain these base-case parameters from a joint estimation of time series of

S&P500 index and VIX index dating from Jan. 1990 to Dec. 2005. We set the long-run

mean at V̄ = (0.16)2, the rate of mean reversion at κ = 5.14, and the volatility coefficient

σV = 0.37. The correlation between price and volatility risk is ρ = −0.6658. The stock

risk premium η1 = 4, and the volatility risk premium is η2 = −10. These are in general

agreement with the existing literature, e.g., Anderson et al (2002), Pan (2002).

For long-term investor, hedging demand for volatility is proportional to (??), i.e., δ
κ1+κ2

,

with parameters defined in (??) to (??). The sensitivity of hedging demand for volatility,

ΨV
hedge, to risk aversion γ and elasticity of intertemporal substitution ψ for long-term in-

vestors are shown in Figure ??.

The sign of hedging demand is always negative when γ > 1, and positive for γ < 1.

The magnitude of hedging demand for volatility ΨV
hedge decreases as γ increases. In fact,

risk-aversion γ has much less impact on the hedging demand when γ becomes larger, (e.g.,
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Figure 1: Hedging demand ΨV
hedge v.s. γ and ψ, with base case parameters defined as:

risk aversion γ = 3, β = 0.99, η1 = 4, η2 = −10, σV = 0.37, ρ = −0.6658, κ = 5.14,
V̄ = 0.0267 = 16%2.

γ > 20). ψ doesn’t affect the myopic demand for volatility, but it has first order impact on

ΨV
hedge. In fact, ΨV

hedge increases as ψ decreases. Intuitively, lower elasticity of intertemporal

substitution, i.e., less willing to substitute for future consumption, there would be higher

hedging demand for volatility exposure.
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Risk Aversion γ

Half Life 

0 0.5 1 1.5 2 2.5 3
0

1
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3

4

5

6

Elasticity of Intertemporal Substitution ψ

Half Life 

Figure 2: Half life τ v.s. γ and ψ, with base case parameters defined as: risk aversion
γ = 3, β = 0.99, η1 = 4, η2 = −10, σV = 0.37, ρ = −0.6658, κ = 5.14, V̄ = 0.0267 = 16%2.

Second, we consider the investment horizon effect on hedging demand for volatility.

Notice that Chacko and Viceria (2005) considers long-term investment horizon where T →
+∞. In addition to the steady state approximation results, we provide the horizon effect
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on the optimal portfolio problem when investment horizon is near. This can be obtained

either through numerical approximation or analysis on the half life for βt characterized by

equation (??). Figure ?? shows the half life for ΨV
hedge, the hedging demand for volatility,

to go to steady state. The magnitude of the half life is indicative of different behavior for

long or short term investors. The elasticity of intertemporal substitution has much bigger

impact on the horizon effect than risk aversion does. Specifically, for investors who are less

willing to substitute for future consumptions, the optimal holding of volatility for hedging

purpose has higher half life, hence horizon effect has bigger impact. In addition, horizon

effect has bigger impact on more risk averse investors.

2 4 6 8 10
−4

−3.5

−3

−2.5

−2

Additive

ψ=0.3

ψ=1.0

ψ=2.0

investment horizon T (yr)

ψ=1.0 Exact

Figure 3: Hedging demand ΨV
hedge, with base case parameters defined as: risk aversion

γ = 3, β = 0.99, η1 = 4, η2 = −10, σV = 0.37, ρ = −0.6658, κ = 5.14, V̄ = 0.0267 = 16%2.

Third, we shed some light on how the approximation method performs over time. Specif-

ically, we compare the approximate solution to the exact solution when available, i.e., when

ψ = 1. The comparison is shown in Figure ??. In this case, the approximation works very

well. The intuitive reason why the approximation works well around ψ = 1 is due to the

fact that there are two cases in which the consumption-wealth ratio is deterministic. One is

the case with constant opportunity set, and another is the case with ψ = 1. Moreover, the

consumption-wealth ratio coincides under these two cases. Our solution is an approxima-
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tion assuming the volatility coefficient σV to be small, which corresponds to the constant

opportunity case. It’s natural for the approximate solution to be exact when ψ = 1.

We also include the solution for expected additive CRRA utility in both Figure ??

and ??. The analytical solution for additive CRRA utility is provided in Appendix. We

can see that holding risk aversion γ constant, investors with lower ψ will demand more

(negative) volatility exposure for hedging purpose than additive investors. On the other

hand, investors with higher ψ may demand less (negative) volatility exposure.
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Figure 4: Hedging demand ΨV
hedge for long term investors, with base case risk aversion

γ = 3, η1 = 4, η2 = −10, σV = 0.37, ρ = −0.6658, κ = 5.14, V̄ = 0.0267 = 16%2.

Moreover, comparative statics for ΨV
hedge with varying parameters are presented in Fig-

ure ??. Both lower mean reversion rate κ and higher volatility coefficient σV lead to higher

demand for negative volatility exposure. The hedging demand for volatility is higher for
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lower absolute value of correlation between stock return and its volatility. In extreme case,

if stock return and volatility is perfectly correlated, either positive or negative, volatility

could be considered as redundant to stock, and wouldn’t serve the purpose for hedging.

It’s interesting to observe that neither the correlation ρ nor the volatility risk premium η2

changes the sign of volatility holding. In addition, the discount factor β doesn’t have much

impact on hedging demand for volatility.
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ψ=2.0

investment horizon T (yr)

ψ=1.0 Exact

Figure 5: Relative importance Hedging demand ΨV
hedge to myopic demand ΨV

myopic, with base
case parameters defined as: risk aversion γ = 3, β = 0.99, η1 = 4, η2 = −10, σV = 0.37,
ρ = −0.6658, κ = 5.14, V̄ = 0.0267 = 16%2.

Finally, we consider the myopic demand for volatility, ΨV
myopic. ΨV

myopic is the same

demand function for a risky asset (the volatility exposure in our case) by a single-period

mean-variance optimizer. It’s natural that ΨV
myopic doesn’t depend on ψ, which measures

the preference for consumption substitution over time. Moreover, ΨV
myopic is inversely pro-

portional to γ, and it doesn’t depend on time explicitly. Figure ?? shows the relative

importance of the hedging demand to myopic demand over time. As shown in equation

(??), the sign of ΨV
myopic is determined by volatility risk premium η2. Negative volatility

risk premium implies negative myopic demand.
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5 Concluding Remarks

In this article, a solution method for the optimal consumption and portfolio selection

problem for recursive utility with stochastic investment opportunity was explored. Previous

studies have provided analytical solutions for investors with unit elasticity of intertemporal

substitution of consumption and expected additive CRRA utility under the assumption of

an affine pricing kernel. The existing literature has now been extended by this proposed

method, which is a direct extension of the log-linear approximation method first developed

by Campbell (1993). For a long investment horizon, the approach detailed here leads to

the same analytical results of log-linear approximation. As in log-linear approximation, the

approximation solution method is based on the assumption that the optimal consumption-

wealth ratio does not vary too much around its unconditional mean.

To illustrate new insights that may be gained from the proposed method, it was used

as an application in Heston’s (1993) stochastic volatility model in complete market, with

special attention paid to the characterization of the hedging demand for volatility exposure.

Optimal portfolio demand on volatility is a combination of two components, a myopic

(or mean-variance component) and an intertemporal hedging component. The relative

importance of the two-demand component for volatility exposure is demonstrated through

calibration of the joint dynamics of stock market returns and the volatility process using

the joint data of the S&P 500 and the VIX volatility index from 1990-2005.

From the comparative statics of volatility trading both for myopic demand and for

hedging demand, it is clear that the elasticity of intertemporal substitution has first-order

effect on the demand for volatility exposure contrary to popular beliefs. Careful research

into the demand function for volatility may shed light on the large volatility risk premium,

the volatility-related market innovation, such as variance swaps and VIX futures as well as

hedge funds’ exposure to volatility.
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A Appendix: Proof of Proposition 1

We follow the derivation from Duffie and Skiadas, and Schroder and Skiadas (1999), we

have

mt(t) : 5V0(C; h) =< m(C), h >

−dφt

φt

= rtdt + η′tdBt

First order condition:

mt(c) = λφt on {Ct > 0} for a.e. t ∈ [0, T ]

mt(c) ≤ λφt on {Ct = 0} for a.e. t ∈ [0, T ]

Vt(C) = Et[
∫ T

t
f(s, Cs, Vs(C))ds], t ∈ [0, T )

mt(C) = exp(
∫ t

0
fV (s, Cs, Vs(C))ds)fC(t, Ct, Vt(C))




−dφt

φt
= rtdt + η′tdBt

fC(t, I(t, x, v), v) = ex

dXt = −[fV (t, Ct, Vt(C) + rt + 1
2
η′tηt]dt− η′tdBt

Vt = Et[
∫ T

t
f(s, I(s,Xs, Vs), Vs), Vs)ds]

Wt = Et[
∫ t

0
φs · I(s,Xs, Vs)ds]

SDU:f(C, V ) = β

1− 1
ψ

(1− γ)V [( C

((1−γ)V )
1

1−γ
)1− 1

ψ − 1]

ψ → 1 : f(C, V ) = β(1− γ)V [log(C)− 1

1− γ
log((1− γ)V )]

For ψ 6= 1, we have

f(C, V ) =
β

1− 1
ψ

(1− γ)V [(
C

((1− γ)V )
1

1−γ

)1− 1
ψ − 1]

≡ β

1− 1
ψ

(1− γ)V [G(C, V )− 1]

(49)
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According to Bellman’s equation, we have

fC = VW ⇒ fC = β G
C
(1− γ)V

V = I · W 1−γ

1−γ
, VW = (1− γ) V

W



 ⇒ β

G(1− γ)V

C
= (1− γ)

V

W
(50)

Hence,

βG =
C

W
= exp(c− ω) (51)

Loglinear approximation:

βG ≈ g0 + g1 log(βG) = (g0 + g1 log β) + g1 log G (52)

Now the Stochastic Differential Utility of (??) becomes:

f(C, V ) ≈ 1

1− 1
ψ

(1− γ)V [(g0 + g1 log β) + g1 log G− β]

=
1

1− 1
ψ

(1− γ)V [g1(1− 1

ψ
)(ln C − 1

1− γ
log(1− γ)V ) + g0 + g1 ln β − β]

= g1(1− γ)V [log C − 1

1− γ
log((1− γ)V ) + (

g0

g1

+ ln β − β

g1

)/(1− 1

ψ
)]

= g1(1− γ)V [log C − 1

1− γ
log((1− γ)V ) + h0]

(53)

where we have defined h0 ≡ (g0

g1
+ ln β − β

g1
)/(1− 1

ψ
).

Let α = 1− γ,

f(C, V ) = g1(1 + αV )[log C − 1

α
log(1 + αV ) + h0] (54)

fC = g1
1 + αV

C
= eX

C = g1(1 + αV )e−X

We have

fV = g1(1− γ)[log C − 1

1− γ
log(ε + (1− γ)V ) + h0]− g1 (55)
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And

αf(C, V )

1 + αV
= fV (C, V ) + g1

Let

Ct = g1e
−Xt(1 + αVt) = g1e

Jt−KtXt (56)

Then we have

1 + αVt = exp(Jt + (1− kt)Xt) (57)

fV = g1α[ln g1 + Jt − ktXt − 1

α
(Jt + (1− kt)Xt) + h0]− g1 (58)

= (g1(1− α)kt − g1)Xt + g1(α− 1)Jt −B (59)

where we define −B ≡ αg1(ln g1 + h0)− g1. Therefore, we have

dXt = −[(g1(1− α)kt − g1)Xt + g1(α− 1)Jt −B + γ +
ηt · ηt

2
]dt− η′tdBt

≡ µxdt− η′tdBt

dJt = µJdt + ZtdB̃t = µJdt + (1− kt)Ztηtdt + ZtdBt

B̃t = Bt +
∫ t

0
(1− ks)ηsdS

αdVt

1 + αVt

= [µJ + (1− kt)Ztηt + (1− kt)µx − ktXt +
1

2
(Zt − (1− kt)η

′
t)

2]dt

+ (Zt − (1− kt)η
′
t)dBt (60)

αf(C, V )

1 + αV
dt = [g1(1− α)kt − g1]Xtdt + [g1(α− 1)Jt + αg1(ln g1 + h0)]dt (61)

α

1 + αVt

[dVt + f(Ct, Vt)dt)] = [AtXt + Bt]dt + [Zt − (1− kt)η
′
t]dBt (62)

At =g1(1− α)k2
t − g1kt − k̇t

Bt =µJ + (1− kt)(B − r − kt
ηt · ηt

2
) + ktg1(α− 1)Jt −B + g1 +

1

2
Zt · Zt

(63)
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g1(1− α)k2
t − g1kt − k̇t = 0, kT = 1 (64)

−µJ = (1− kt)(B − r − kt
ηt · ηt

2
) + ktg1(α− 1)Jt −B + g1 +

1

2
Zt · Zt (65)

dJt = −[(1− kt)(B − r − kt
ηt · ηt

2
) + ktg1(α− 1)Jt −B + g1 +

1

2
Zt · Zt]dt + ZtdB̃t

JT = 0

(66)

Under this assumption, we can solve (??) using Feymann-Kac formula by postulating a

solution of affine form

Jt = αt + βt · Yt (67)

According to Schroder and Skiadas (1999) Lemma A1, we have the following Feyman-kac

formula for Backward stochastic equation (??):

exp(Jt) = Ẽt[exp(

∫ T

t

ds(1− kt)(B − r − kt
ηt · ηt

2
) + ktg1(α− 1)Jt −B + g1)]

≡ Ẽt[exp(−
∫ T

t

R(Ys, s)ds)] (68)

Where

dYt = (K0(t) + KY
1 (t)Yt)dt + σtdB̃t

σtσ
T
t = H0(t) +

n∑

k=1

H
(k)
1 (t)Y k

t (69)

Yt can be expressed in terms of Bt:

dYt = (K0(t) + KY
1 (t)Yt + (1− kt)σtηt)dt + σtdBt

Let

Jt = αt + βt · Yt (70)

ηt · ηt = L0(t) + L1(t) · Yt (71)
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Using the formula in Duffie et al (2000), we obtain the following ODE for αt and βt

β̇t + KY T
1 (t)βt +

1

2
βT

t H1(t)βt − ρ1(t) = 0, β(T ) = 0 (72)

α̇t + K0(t)βt +
1

2
βT

t H0(t)βt − ρ0(t) = 0, α(T ) = 0 (73)

where we define

R(Yt, t) = ρ0(t) + ρ1(t) · Yt

ρ0(t) = −[(1− kt)(B − r) + αtktg1(α− 1) + (g1 −B)− kt(1− kt)

2
L0(t)]

ρ1(t) =
L1(t)

2
kt(1− kt)− ktg1(α− 1)βt

Further, define

K1(t) = KY
1 (t) + ktg1(α− 1)

Then

β̇t + KT
1 (t)βt +

1

2
βT

t H1(t)βt − L1(t)

2
kt(1− kt) = 0, β(T ) = 0 (74)

α̇t + K0(t)βt +
1

2
βT

t H0(t)βt − ρ0(t) = 0, α(T ) = 0 (75)

The solution for BSDE:

Zt = βT
t σ(Yt, t)

The portfolio holding:

Ψt = kt(σ
R
t σR′

t )−1µR
t + (σR′

t )−1Z ′
t

In order to obtain Zt, we need to solve for (??) for Jt. To obtain analytical solution, we

further assume the pricing kernel is affine. Specifically, in this paper, we assume constant

risk-free interest rate r, and ηt · ηt = L0(t) + L1(t)Yt, where Yt is the state variable process

dYt = (K0(t) + K1(t)Yt)dt + σ(Yt, t)dWt
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with σ(Yt, t)σ(Yt, t)
T = L0(t) + L1(t)Yt

βt solves a Racatti ODE, and the hedge demand for volatility is

Zt = βT
t σ(Yt, t)

B Example: Heston Stochastic Volatility Model

Pricing kernal φt

dφt

φt

= −[rdt + η1

√
VtdB1

t + η2

√
VtdB2

t ]

d ln St = (r + η1Vt − 1

2
Vt)dt +

√
VtdB1

t

dVt = κ(V̄ − Vt)dt + σV

√
Vt(ρdB1

t +
√

1− ρ2dB2
t )

The affine structure has one dimension with Y1(t) = Vt.

ηt =

(
η1

η2

) √
Y1 ⇒ ηt · ηt = (η2

1 + η2
2)Y1

Hence

L0(t) = 0, L1(t) = η2
1 + η2

2

ρ0(t) = −[(1− kt)(B − r) + αtktg1(α− 1) + (g1 −B)]

ρ1(t) = (1− kt)kt
η2

1 + η2
2

2
− g1(α− 1)ktβt

σt = (ρ
√

1− ρ2)σV

√
Y1

We have:

σtσ
T
t = σ2

V Y1

σtηt = σV (ρη1 + η2

√
1− ρ2)Y1

KY
1 (t) = −κ− (1− kt)σV (ρη1 + η2

√
1− ρ2)
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K1(t) = −κ− (1− kt)σV (ρη1 + η2

√
1− ρ2) + ktg1(α− 1)

For t < T :

β̇t + K1(t)βt +
1

2
σ2

V β2
t −

η2
1 + η2

2

2
kt(1− kt) = 0, β(T ) = 0 (76)

α̇t + κV̄ βt + [(1− kt)(B − r) + αtktg1(α− 1) + (g1 −B)] = 0, α(T ) = 0 (77)

Where kt solves:

g1(1− α)k2
t − g1kt − k̇t = 0, kT = 1

B.1 Portfolio

The hedging portfolio:

dSt

St

= (r + η1Vt)dt +
√

VtdBt

dgt

gt

= (r + σV ρ
gV

g
η1Vt + σV

√
1− ρ2

gV

g
η2Vt)dt + σV

gV

g

√
Vt(ρdBt +

√
1− ρ2dZt)

with

µR
t =

(
η1Vt

gV

g
σV Vt(ρη1 +

√
1− ρ2η2)

)

and

σR
t =

(
Vt 0

σV
gV

g

√
Vtρ σV

gV

g

√
Vt

√
1− ρ2

)

The portfolio:

ΨS
t = kt(η1 − ρη2√

1− ρ2
)

ΨV
t = (kt

η2

σV

√
1− ρ2

+ βt)
g

gV

The volatility holding can also be decomposed to myopic and hedging components:

ΨV
myopic = (kt

η2

σV

√
1− ρ2

)
g

gV

ΨV
hedge = βt

g

gV
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The relative importance of demand for volatility between hedge portfolio and myopic

portfolio:
ΨV

hedge

ΨV
myopic

=
βtσV

√
1− ρ2

ktη2

C Numerical Scheme for General Recursive Utility

Denote β(n) = β(T − n∆t). Let

c1 = −κ− (1− 1

γ
)σV (ρη1 + η2

√
1− ρ2)

and

c2 =
1− γ

2γ2
(η2

1 + η2
2)

then for

|q| · n∆t ≤ 1

2

β(n) =
1

1 + 1
n

[β(n− 1) · (1 + (c1 − 1

2
q)∆t) +

1

2
σ2

V β(n− 1)2∆t + c2∆t]

Otherwise, for |q| · n∆t > 1
2

β(n) = β(n− 1) + β(n− 1) · (c1 − g1(n∆t))∆t +
1

2
σ2

V β(n− 1)2∆t + c2∆t

Final condition being

β(0) = 0

D Exact Solution to Additive Utility

For comparison purpose, we give the following proposition on the additive utility:

Under additive utility, i.e., when ψ = 1
γ
, for γ 6= 1, the optimal volatility holding can be

decomposed to myopic and hedging components:

ΨV
myopic = (

η2

γσV

√
1− ρ2

)
g

gV

ΨV
hedge = βt

g

gV
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where

βt ≡ hy(t, Yt)

h(t, Yt)
=

∫ T

t
eG(s−t)+H(s−t)YtH(s− t)ds∫ T

t
eG(s−t)+H(s−t)Ytds

(78)

where

h(t, Yt) =
1

1− γ

∫ T

t

ep(s−t,Yt)ds

with p(τ, y) = Gτ + Hτy, and k = 1
γ
, and Gτ and Hτ are defined as

Hτ =
exp(K2τ)− 1

2K2 + (K1 + K2)(exp(K2τ)− 1)
δ

Gτ =
2κV̄

σ2
V

ln(
2K2 exp((K1 + K2)τ/2)

2K2 + (K1 + K2)(exp(K2τ)− 1)
) +

1− γ

γ
(r − β

1− γ
)τ

with

K1 = κ + (1− 1

γ
)σV (ρη1 + η2

√
1− ρ2)

δ =
1− γ

γ2
(η2

1 + η2
2)

K2 =
√

K2
1 − δσ2

V

The relative importance of demand for volatility between hedge portfolio and myopic

portfolio:

dt ≡
ΨV

hedge

ΨV
myopic

=
βtσV

√
1− ρ2

ktη2


