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Abstract

In this paper, we study the empirical performance of structural credit risk models by exam-
ining the default probabilities calculated from these models with different time horizons. The
parameters of the models are estimated from firm’s bond and equity prices. The models stud-
ied include Merton (1974), Merton model with stochastic interest rate, Longstaff and Schwartz
(1995), Leland and Toft (1996) and Collin-Dufresne and Goldstein (2001). The sample firms
chosen are those that have only one bond outstanding when bond prices are observed. We
first find that when the Maximum Likelihood estimation, introduced in Duan (1994), is used to
estimate the Merton model from bond prices the estimated volatility is unreasonable high and
the estimation process does not converge for most of the firms in our sample. It shows that
the Merton (1974) is not able to generate high yields to match the empirical observations. On
the other hand, when equity prices are used as input we find find that the default probabilities
predicted for investment-grade firms by Merton (1974) are all close to zero. When stochastic
interest rates are assumed in Merton model the model performance is improved. Longstaff and
Schwartz (1995) with constant interest rate as well as the Leland and Toft (1996) model provide
quite reasonable predictions on real default probabilities when compared with those reported
by Moody’s and S&P. However, Collin-Dufresnce and Goldstein (2001) predicts unreasonably
high default probabilities for longer time horizons.

∗We are grateful for the help of Kevin Kelhoffer, Brooks Brady and Standard and Poor’s for the provision of their
LossStats database for the default and recovery data employed in this study. We would like to thank Hui Hao at
Queen’s University and Swati Parikh at Thomson Financial Services for their constant help on the data issue.
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1 Introduction

Since the seminal work of Merton (1974), many structural credit risk models have been proposed,

including Longstaff and Schwartz (1995), Leland and Toft (1996), and Collin-Dufresne and Gold-

stein (2001), among others. In this type of models, both the equity and the debt of a firm are

modeled as contingent claims over the asset value of the issuing firm, and as a result, option pricing

theory can be applied. Defaults occur when the firm asset value, which is usually modeled as a

diffusion process, reaches a certain barrier either during the life of the debt or at the maturity of

the debt. This type of models establish the relationships between the returns of the firm’s equity

and debt, as well as the yield spreads and the firm’s balance sheet information such as leverage

ratio.

Structural models can also be used to estimate the default probabilities of the issuing firms. For

banks and regulators, timely and accurate predictions of borrowers default probabilities are essential

to developing responsive and effective risk management tools. Moreover, the newly adopted Basel

II specifically requires financial institutions to use credit risk models that are conceptually sound

and empirically validated. Our main aim in this study is to empirically analyze the performance

of structural models, including the Merton model, Longstaff and Schwartz (LS) model, Leland and

Toft (LT) model, and the Collins-Dufresne and Goldstein (CDG) model, when they are used to

estimate the default probabilities of the debt issuing firms.

Many studies have been taken to investigate if structural models can explain yield spreads.

They include Jones et al. (1984), Wei and Guo (1997), Anderson et al. (2000), Lyden and Saraniti

(2000), Collin-Dufresne et al. (2001), Elton et al. (2001), Cooper and Devydenko (2003), Delianedis

and Geske (2003), Huang and Huang (2003), Eom et al (2004), Leland (2004), and Ericsson and

Reneby (2005), among others. Huang and Huang (2003) and Eom et al. (2004) provide the most

comprehensive comparison among various structural models. By calibrating different models to

default probabilities and historical equity premium, Huang and Huang (2003) find that the spread

implied by structural models are too low for investment grade bonds. Eom et al (2004) show that

the Merton (1974) model and the Geske (1977) model under-predict while the LT model over-

predicts the yield spreads. With stochastic interest rate, it is found that the LS model and the

CDG model do relatively better than the other models. However, they are sensitive to the choice

of interest rate parameters.

The poor empirical performance of structural models, especially in forecasting yield spreads of
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corporate debts over Treasury bonds for short term debts, are usually explained in the literature

by the following: it is believed that yield spreads consist of three distinct components that are

attributed to default risk, taxes and liquidity factors. Even though default risk is considered to

be the most important factor in determining the yield spreads, empirical studies, such as Elton et

al (2001) and Huang and Huang (2003), have argued that while default risk can explain a large

proportion of the yield spreads for low grade debts, it only account for a small proportion of the

yield spreads for high grade debt. The remaining portion of the spread are attributed to the risk

premium compensating the systematic risk of defaults (Elton et al. (2001) and Vassalou and Xing

(2004)), as well as to the different tax treatments between Treasury bonds and corporate bonds

(Elton et al (2001)).

On the contrary to the approach adopted in Huang and Huang (2003), Cooper and Devydenko

(2003), basing on the Merton (1974) model, calibrate on the yield spreads between corporate bonds

and otherwise-similar AAA-rated bond rather than using the spread between the corporate bond

and the Treasury to predict the expected default loss, given information on leverage, equity risk

premium, and equity volatility. Their results are consistent with Elton et al. (2001). Delianedis

and Geske (2003) study the the influence of several factors including tax, jump, and liquidity on

the level of credit spreads. They show that even with jumps in firm asset value the models are still

unable to explain the high yield spreads.

In this study, we use equity and bond prices to estimate the model parameters by the maximum

likelihood estimation developed in Duan (1994), when the likelihood function is available. When the

likelihood function can not be derived for some models the parameters are chosen to fit the observed

prices in order to predict default probabilities. We compare the predicted default probabilities

from each structural model, grouped by rating classes, with the historical default probabilities over

different time horizon reported by both Moody’s and S&P to assess the model performance.

Our results show that the one-year default probability from the Merton (1974) model are close to

zero for most of the investment-grade firms. However, it tends to over estimate default probabilities

for non-investment-grade firms. Its performance is improved when a stochastic term structure is

assumed, where the default probabilities from the model with stochastic interest rate. We also

find that the default probabilities calculated the LS model with constant interest rate and the

LT model are very close to the real world observations. However, with a mean-reverting capital

structure assumed, the CDG model over predicts default probabilities to a quite large extent.
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2 Structural Models and Default Probabilities

The core concept of the structure models, which originated in the seminal work of Merton (1974),

is to treat firm’s equity and debt as contingent claims written on its asset value. Default is modeled

as either when the underlying asset process reaches the default threshold or when the asset level

is below the debt face value at the maturity date. More specifically, the asset value is assumed to

follow a diffusion process in the following form:

dVt

Vt
= (µv − δ)dt + σvdW v

t (1)

where µv is the expected asset return, δ is the asset payout ratio, σv is the volatility of firm

asset value, and W v
t is a Brownian motion. Structural models can be distinguished as either have

exogenous default barrier or endogenous default barrier.

2.1 Merton (1974) Model

In the Merton model a firm’s equity is treated as an European call option written on the firm’s

asset value. It is assumed that the issuing firm has only one outstanding bond, and thus that

firm does not default prior to the debt maturity date. In addition, the term structure of risk-free

interest rate r, firm’s asset volatility σv and asset risk premium πv are assumed to be constants.

At maturity time T , the payoff of the equity is

E(V, T ) = max(0, VT − F ),

and the payoff of the risky bond is

B(V, T ) = min(VT , F ) = F − max(0, F − VT )

where F denotes the face value of the promised payments of debt. The equity value can then be

written as,

Et(V, T ) = V e−δ(T−t)N(d1) − Fe−r(T−t)N(d2) (2)

where

d1 =
[ln(V/F ) + (r − δ + σ2

v/2)(T − t)]

σv

√
T − t

, d2 = d1 − σv

√
T − t,

δ is the asset payout ratio. The value of the risky bond is equal to the difference between the asset

value and the equity value,

Bt(V, T ) = Vte
−δ(T−t)N(−d1) + Fe−r(T−t)N(d2). (3)
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The yield spread over risk-free bond can be expressed as,

s = − 1

T − t
ln(B/F ) − r (4)

The asset volatility σv and the equity volatility, σe satisfy the following equation,

σe =
V

E

∂E

∂V
=

σve
−δ(T−t)N(d1)V

E
(5)

The asset risk premium πv and the equity risk premium πe can be linked by

πv =
πeσv

σe
(6)

Under the empirical probability measure, the probability of default over time interval [t, T ] is

derived as,

DPMerton = P (VT < FT ) = P



zT ≤ − ln(Vt/F ) + (µv − δ − σ2
v

2 )(T − t)

σv

√
T − t



 (7)

where z follows a standard normal distribution. The quantity

− ln(Vt/F ) + (µv − σ2
v

2 )(T − t)

σv

√
T − t

is referred to as the distance-to-default by Moody’s KMV. It is usually calculated by the the relevant

three-year asset value, asset volatility and the face value of debt, proxied by the sum of the total

short-term debt plus half of the long-term debt.

2.2 Merton(1974) with Stochastic Interest Rate

Merton model can easily be extended to the case where the risk-free interest rate is stochastic.

Consider the case the interest rate follows the Vasicek (1977) process,

dr = κr(r̄ − r)dt + σrdW r
t (8)

where κr is the rate of mean reversion, r̄ is the long term mean and σr is the short rate volatility,

W r
t is the standard Brownian motion and the instantaneous correlation between dW v

t and dW r
t is

ρvrdt. All the parameters in this model are assumed to be constant.

The value of a risk-free discount bond B̄(r, t, T ) is given by

B̄(r, t, T ) = eA(t,T )−C(t,T )r(t) (9)

where

C(t, T ) =
1

κr
(1 − e−κr(T−t)),

A(t, T ) =
1

κ2
r

(C(t, T ) − (T − t))

(

κ2
r r̄ −

σ2
r

2

)

− 1

4κr
σ2

rC(t, T )2.
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If we assume that the firm asset value V is tradable, the expected rate of return on firm’s value

and risk-free rate are connected through µv − λvσv = r, where λv denotes the market price of risk

of firm asset. Here we further assume that the market price of risk of asset is not constant and

described by,

dλv
t = κλ(λ̄v − λv

t )dt + σλdW λ
t (10)

where the instantaneous correlation coefficient between dW v
t and dW λ

t is ρvλdt and the correlation

coefficient between dW r
t and dW λ

t is ρrλdt.

If we let

y = −
∫ T

t
rsds, x =

VT

Vt
,

and τ = T − t then the value of equity can be written as,1

St = exp[µln(x) + µy +
1

2
(σ2

ln(x) + σ2
y + 2Covln(x),y)]VtN(d1) − B̄(t, T )FN(d2) (11)

where

µln(x) = µvτ − σ2
v

2
τ − δτ − σv[λ

v − (λ̄v − λv
t )C

v
λ(τ)]

µy = −r̄τ + (r̄ − rt)Cr(τ)

σ2
ln(x) =

σ2
vσ

2
λ

κ2
λ

[τ − Cλv (τ) − 1

2
κλCr(τ)2] + σ2

vτ − ρvλ
σ2

vσ
2
λ

κλ
[τ − Cλv (τ)]

σ2
y =

σ2
r

κ2
r

[τ − Cr(τ) − 1

2
κrCr(τ)2]

Cov(ln(x), y) = ρrλ
σrσvσλ

κrκλ
[τ − Cλv(τ) − Cr(τ) + Cλv ,r(τ)] − ρvr

σvσr

κr
[τ − Cr(τ)]

Cλv ,r(τ) =
1

κr + κλ
(1 − exp(−(κr + κλ)τ)

d1 =
ln(Vt

F ) + µln(x) + σ2
ln(x) + Covln(x),y

σln(x)

d2 = d1 − σln(x)

The above equation can be re-written as,

St = B̄(t, T ) exp

[

µln(x) +
1

2
(σ2

ln(x) + 2Cov(ln(x), y))

]

VtN(d1) − B̄(t, T )FN(d2) (12)

Correspondingly, from Vt = St + Bt and equation (11), the bond price can be written as,

Bt = Vt[1 − exp(µln(x) + µy +
1

2
σ2

ln(x) +
1

2
σ2

y + Covln(x),y)N(d1)] + B̄(r, t, T )FN(d2) (13)

1Derivation available upon request
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2.3 Exogenous Default Barrier Models

2.3.1 Constant Interest Rates

Black and Cox (1976) treat the firm’s equity as a down-and-out call option on firm’s value. In

their model, firm defaults when its asset value hits a pre-specified default barrier, V ∗, which can

be either a constant or a time varying variable. The default barrier is assumed to be exogenously

determined. When the risk-free interest rate, asset payout ratio, asset volatility and risk premium

are all assumed to be constant, the cumulative default probability over a time interval [t, t+ τ ] can

be calculated as

DPBlack−Cox(t, t+τ) = N

(

− ln( Vt

V ∗
) + (µv − δ − σ2

v/2)τ

σv
√

τ

)

+exp

(

−2 ln( Vt

V ∗
)(µv − δ − σ2

v/2)

σ2
v

)

N

(

− ln( Vt

V ∗
) − (µv − δ − σ2

v/2)τ

σv
√

τ

)

. (14)

2.3.2 Stochastic Interest Rates

Longstaff and Schwartz (1995) extends the Black-Cox model to the case when the risk-free in-

terest rate is stochastic and follows the Vasicek (1977) process. The default boundary, V ∗, is

pre-determined. When default occurs bondholders receive a fraction of (1 − ω) of the face value

of the debt at maturity. In the original LS model the payout ratio of the asset value process is

assumed to equal zero. Here we assume the asset value follows the process in (1). In their model,

the asset risk premium is assumed to be constant and the interest rate risk premium is of an affine

form in rt. The value of a risky discount bond with maturity T in the LS model is given as,

B(X, r, t, T ) = B̄(r, t, T )(1 − ωQt(X, r, T )) (15)

where Q(·) is the risk-neutral default probability and X = V/V∗ is the ratio of the asset value to

the default boundary. One can derive the valuation formula for a risky bond that pays semi-annual

coupons at an annual rate of c. Let Ti, i = 1, ..., 2(T − t), denote the i-th coupon payment date,

and the value of the bond is derived as,

B(X, r, t, T )coupon =
c

2

2(T−t)−1
∑

i=1

B̄(r, t, Ti)(1 − ωcouponQTi
t (r, Ti)

+

(

1 +
c

2

)

B̄(r, t, T )(1 − ωQT
t (r, T )) (16)

where ωcoupon is the loss rate on coupon,2 and QTi
t (Ti) is the time-t default probability over [t, Ti]

under the Ti-forward measure. The default probability QTi
t can be calculated analytically as in

2In practice, coupon payments due after the default event are typically written down completely and thus ωcoupon

is often set to equal to 1.
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Section 3.3 The yield to maturity for this risky coupon bond yc can be calculated through

B(X, r, t, T )coupon = e−yc(T−t) +
cF

2

2(T−t)
∑

i=1

e−ycTi (17)

The risk-free T-sport rate rc can be also implied in the same way,

B̄(r, t, T )coupon = e−rc(T−t) +
cF

2

2(T−t)
∑

i=1

e−rcTi (18)

The credit spread is defined as

sc = yc − rc (19)

2.3.3 Mean-Reverting Leverage Ratio

In the LS model, the default boundary is presumed to be a monotonic function of the amount of

outstanding debt. Since asset value follows geometric Brownian motion and increases exponentially

over time while the debt level remains constant it leads to a exponential decline of the expected

leverage ratios. However, this is not consistent with the empirical observations that most of firms

do keep stable leverage ratios (e.g. see Wang (2005)). Collin-Dufresne and Goldstein (2001) extends

the model by considering a general model that generates mean-reverting leverage ratios. In their

model, the risk-free interest rate is assumed to follow the same process as in (8), and the log-default

threshold is assumed to follow the process,

d ln V ∗

t = κl[lnVt − ν − φ(rt − r̄) − lnV ∗

t )]dt (20)

After applying Ito’s lemma we obtain a mean-reverting log-leverage process under the physical

measure as,

dlt = κl(l̄
P − lt)dt − σvdW vQ

t (21)

where

l̄P =
−µv + δ + σ2

v/2

κl
− ν + φ(r̄ − r) (22)

where we let, µv = πv + r. The asset payout ratio and the asset risk premium are assumed to be

constant in their model.

3Since the LS model can be nested in the CDG we will present the close-form solution for the default probability
in the following section.
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In order to calculate the default probability DPCDG, we need to calculate the conditional

and unconditional moments of the bivariate normal distribution of (lt, rt). The derivations of the

conditional moments of (ln(Xt), rt) are shown in the Appendix.4

The value of a coupon bond can be calculated similarly as in the LS model. Notice that we can

treat the LS model as a special case by setting κl = 0.

2.4 Endogenous Default Barrier Models

Leland (1994) and Leland and Toft (1996) assume that firm defaults when its asset value reaches

an endogenous default boundary. In order to avoid default a firm would issue equity to service its

debt and at default the value of equity goes to zero. The optimal default boundary is chosen by

the shareholders to maximize the value of equity at default-triggering asset level. Leland (1994)

postulates that the term structure, dividend payout rate and asset risk premium are constants. In

the event of default equity holders get nothing and debt holders receive a fraction (1 − ω) of the

firm’s asset value. Under these assumptions, the value of a perpetual bond that pays semi-annual

coupons at an annual rate of c and the optimal default boundary can be calculated analytically.

Leland and Toft (1996) relax the assumption of the infinite maturity of debt while keeping

the same assumptions for the term structure of interest rate and the fraction of loss upon default.

Under risk neutral valuation, the value of debt is the sum of the expected discounted value of the

coupon flow and the repayment of principal, and the expected value of the fraction of assets which

will go to debt upon default:

B(V, T )LT =
cF

r
+

(

F − cF

r

)

(

1 − e−rT

rT
− I(T )

)

+

(

(1 − ω)V ∗ − cF

r

)

J(T ) (23)

where

I(T ) =
1

rT
(G(T ) − e−rT F̃ (T )),

G(T ) = (X)−a+zN(q1(T )) + (X)−a−zN(q2(T ))

F̃ (T ) = G(T )|z = a

J(T ) =
1

zσv

√
T

[−(X)−a+zN(q1(T ))q1(T ) + (X)−a−zN(q2(T ))q2(T )].

with

a =
r − δ

σ2
v

− 1

2
, b = ln(X), X =

V

V ∗
, z = (a2 +

2r

σ2
v

)1/2,

4Their derivations are shown because there are some typos in the formulae presented in Eom et al. (2004) and
Huang and Huang (2003).
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q1(T ) =
−b − zσ2

vT

σv

√
T

, q2(T ) =
−b + zσ2

vT

σv

√
T

,

The default boundary takes the following form,

V ∗

LT =
(cF/r)(A/(rT ) − B) − AF/(rT ) − τcF (a + z)/r

1 + ω(a + z) − (1 − ω)B
(24)

where

A = 2ae−rT N(aσv

√
T ) − 2zN(zσv

√
T ) − 2

σv

√
T

n(zσv

√
T ) +

2e−rT

σv

√
T

n(aσv

√
T ) + (z − a)

B = −(2z +
2

zσ2
vT

)N(zσv

√
T ) − 2

σv

√
T

n(zσv

√
T ) + (z − a) +

1

zσ2
vT

with n(·) as the standard normal density function and τ as the marginal tax rate. The default

probability takes the similar form as (14) with the default boundary changed to V ∗

LT . The credit

spread is defined as cF/B(V, T )− r or it can be derived in the same way as in (17), (18), and (19).

3 Data Sample

Treasury Yield

Monthly observations on the yield of 3- and 6-month constant maturity U.S. Treasury bills, 1-, 2-,

3-, 5-, 7- and 10-year constant maturity Treasury Notes, and 20-year as well as 30-year constant

maturity Treasury Bonds from January 1983 to December 2004 are downloaded from the Federal

Reserve Board. We choose 1983 as our starting year to estimate the Vasicek (1977) model based

on the fact that several empirical studies have shown there is a regime change in U.S. interest rates

in the early 1980’s.5 We have missing observations for yields on the 20-year constant maturity

Treasury Bond from 1987 to 1993. In addition, monthly observations for yields on 30-year constant

maturity Treasury Bond ended in February 2002. For these reasons, we strict our sample for the

estimation of the riskfree rate to the time period between January 1983 and February 2002.

Corporate Bonds

Datastream provides weekly bond prices for which Merrill Lynch is the main data provider. It

contains daily evaluated bid pricse, which Datastream recorded as market prices, for bonds issued

with the amount outstanding above $100 million from 1989. It started providing ask price and mean

price only from February 2003. We restrict our sample period for issuance firms from January 1989

5See Butler et al. (2004)) Duffy and Engle-Warnick (2004) .
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to December 2004 and focus on bonds that were issued by nonfinancial firms.6 Bonds issued by

regulated utility firms (gas and electric) with SIC code between 4900 and 4999 are also excluded from

our sample as the risk of these bonds is directly related to the decisions of the utility commissions

(see Eom et al (2004)).

We have obtained information on bond issuing date, redemption date, dollar amount issued,

coupon payment schedules, derivative features, whether the bond is sinkable, whether the bond

is convertible, whether the coupon is floating rate and the most recent long-term credit ratings

assigned by both S&P and Moody’s. These static information on bonds is obtained on May 20,

2005. In order to retrieve a clean measure of corporate bond yields we follow the approaches

adopted by previous studies (Elton et al (2001) and Eom et al (2004)) to eliminate bonds with

special features such as callability/putability, a sinking fund schedule, floating rate coupons, and

odd frequency of coupon payments such as quarterly coupons or monthly coupons. Thus we keep

only straight bonds with no options features. We also exclude bonds that do not have credit ratings

from either S&P or Moody’s or have ratings lower than CCC- in S&P measure or Caa3 in Moody’s

measure.

Next we exclude bonds with maturities of under one year.7 In order to keep capital structure

simple, we include a firm in our analysis only if the firm has only one bond outstanding at the time

when market price is observed,8 and Datastream has kept observations of their prices for at least

100 weeks. The bond issuance information is also manually checked with the SDC U.S. Market

New Issue database to ensure the bonds included in our sample are indeed the single outstanding

bonds for each firm. Since the bond price must be close to its par value when bonds are close to

maturity we do not keep the observations of the last 6-month to maturity date. All bonds in our

sample are senior unsecured.

Due to the availability of bond prices provided by Datastream, we are able to obtain weekly

evaluated bid price for most of the bonds after year 1995. The focus time period of this study is

from 1996 to 2004. Information on corporate bonds obtained from Datastream is matched to the

COMPUSTAT and CRSP by CUSIPs and they are manually checked by company names. A firm

6In contrast, Lyden and Saraniti (2000) include both nonfinancial and financial firms in their sample. As studies
have shown, financial firms usually have unique financial characteristics (e.g. they keep leverage ratios as high as 90%
while industrial firms usually have leverage ratios about 35%). In order to reduce the heterogeneity of our sample
firms it is better to keep our focus on industrial firms only.

7Warga (1991) suggests that bonds with such short maturities are highly unlikely to be traded. This practice was
also adopted in studies such as Eom et al (2004) and Driesson (2005).

8Jones et al. (1984) show that in the contingent claim analysis for corporate liability the presence of multiple debt
issues increases the complexity of the problem dramatically.
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is dropped from our sample if its accounting information is not recorded in Compustat or if it does

not have outstanding common stocks. We are able to obtain a sample of 55 single bonds issued by

55 firms with a total of 6,787 weekly observations.

Finally, historical average cumulative default probabilities for different ratings classes are ob-

tained from the latest report produced by both Moody’s and S&P (see Hamilton et al. (2005) and

Vassa et al. (2005)).

4 Estimation Method

There are usually two approaches to estimate the structural models. One is from stock market as

well as balance sheet information (Jones et al. (1984), Ronn and Verma (1986), Duan and Simonato

(2002), Delianedis and Geske (2003), and Ericsson and Reneby (2005)). The other approach uses

information from bond market or credit derivative market (Wei and Guo (1997), Cooper and

Davydenko (2004), and Longstaff et al. (2004)). In this section, we use information from both the

equity market and the bond market for our empirical implementation.

4.1 The Merton (1974) Model

From the perspective of estimation procedures and methodology we can distinguish among four

approaches that have been employed in the past to deal with the Merton type of models. First, a

proxy for asset value may be computed as the sum of the market value of the firm’s equity and the

book value of liabilities. Asset volatility can be derived by computing the annualized volatility of

the asset returns from the quarterly balance sheet from COMPUSTAT. This approach is adopted

by studies such as Brockman and Turtle (2003) and Eom et al. (2004).

The second approach to estimate the initial value of the asset or the initial leverage ratio and

the asset volatility is to solve the system equations of (2) and (5) simultaneously. This method has

been employed by earlier studies such as Jones et al. (1984) and Ronn and Verma (1986) and later

by Cooper and Davydenko (2003) and Delianedis and Geske (2003), among others. However, as

outlined in Crosbie and Bohn (2002), equation (5) holds only instantaneously since in reality both

the leverage ratio and hedge ratio N(d1) are not stable. Thus this approach forces a stochastic

variable to be constant. Instead they illustrate an iterative procedure of backing out the current

leverage ratio and the equity volatility though equation (2) (see also Ronn and Verma (1986)).

This approach has been experimented by studies such as Du and Suo (2004) and Vassalou and

Xing (2004).
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Another estimation approach is the maximu likelihood estimation proposed by Duan (1994).

A likelihood function based on the observed equity price is derived by employing the transformed

data principle to obtain the parameters related to unobserved firm’s asset. Maximum likelihood

estimates and statistical inference can be directly obtained from maximizing the log-likelihood

function. This approach has been applied to several corporate bond pricing models by Ericsson

and Reneby (2005). One of the distinctive advantages of the maximum likelihood estimation is

that it directly provides an estimate for the drift of the unobserved asset value process under the

physical probability measure, which is critical to obtaining the default probability of the firm.9 In

this section we follow Duan (1994) to obtain parameters associated with the asset value process.

In structural models, ln(Vti) is assumed to be normally distributed and its conditional moments

are given by

Eti−1

[

ln

(

Vti

Vti−1

)]

=

(

µv − δ − 1

2
σ2

v

)

∆t = αv∆t,

V arti−1

[

ln

(

Vti

Vti−1

)]

= σ2
v∆t, (25)

the log-likelihood function for ln(Vti) can be, therefore, written as,

Lln(Vti
)(Vti , i = 1, 2, · · · , n;µv, σv) =

−n − 1

2
ln(2π) − n − 1

2
ln(σ2

v∆t) − 1

2σ2
v∆t

n
∑

i=2

[

ln

(

Vti

Vti−1

)

− αv∆t

]2

. (26)

Since both bonds and equity are derivatives written on firm’s asset, we are able to use the

observed bond prices or the equity prices and the transformed log-likelihood function to estimate

the parameters associated with the asset value process. From equation (3),

∂Bt(V, T )

∂ ln(Vt)
= Vte

−δ(T−t)N(−d1),
∂Et(V, T )

∂ ln(Vt)
= Vte

−δ(T−t)N(d1).

Applying the results in Duan et al (2004), we can write the log-likelihood function for the bond

price as

L(Bti , i = 1, 2, · · · , n;µv, σv) = −n − 1

2
ln(2π) − n − 1

2
ln(σ2

v∆t)

−
n
∑

i=2

ln(V̂ti) −
n
∑

i=2

ln(N(−d̂1)) +
n
∑

i=2

δ(T − ti) −
1

2σ2
v∆t

n
∑

i=2

[

ln

(

V̂ti(σv)

ˆVti−1
(σv)

)

− αv∆t

]2

(27)

9Duan et al (2004) show that the KMV approach turns out to produce the same point estimate as the maximum
likelihood estimate. However, the advantage of the maximum likelihood estimation over the KMV approach is that
it not only produces asymptotically convergent estimates but also provide sampling error of the estimate to allow for
statistical inference to assess the quality of parameter estimates.
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where V̂t(σv) is the unique solution to equation (3) at each time t. When the value of equity is

used, the log-likelihood function for equity can be obtained as,

L(Eti , i = 1, 2, · · · , n;µv , σv) = −n − 1

2
ln(2π) − n − 1

2
ln(σ2

v∆t)

−
n
∑

i=2

ln(V̂ti) −
n
∑

i=2

ln(N(d̂1)) +
n
∑

i=2

δ(T − ti) −
1

2σ2
v∆t

n
∑

i=2

[

ln

(

V̂ti(σv)
ˆVti−1

(σv)

)

− αv∆t

]2

(28)

We should notice that in the Merton model, the bonds are assumed to be zero coupon bonds.

However, most of the corporate bonds observed in reality are coupon bearing bonds. Therefore we

must first stripe out the coupons from the bond prices observed in order to get a clean measure of

the zero coupon bond price. This is accomplished by the following formula

Bzc
t = Bcoupon

t −






exp[−r

2
× rem(

T − t

2
)]

cF

2
+

minint(T−t

2
)

∑

i=1/2

exp

[

−r

2
× (T − i)

]

cF

2







where rem(T−t
2 ) denote the remainder term when T − t is divided by 2, and minint( T−t

2 ) denotes

the minimum integer obtained after T − t is divided by 2.

There have been debates on how to measure the face value of debt in Merton (1974) model. The

simplest approach is to set the face value of debt equal to the total amount of bond outstanding.

However, it has been shown that this approach tends to underestimate the credit risk of the bond.

Another approach is to set the debt face value equal to the total amount of short-term and long-

term liabilities. However, as argued by KMV, the probability of the asset value falling below the

total face value of debt may not reflect an accurate measure of the actual default probability.

Instead they set the face value of debt equal to the total amount of short-term debt plus half of

the long-term debt. In this study, we will use three different measures independently and compare

their performance.

The payout ratio of asset δ is calculated as a weighted average of bond’s coupon rate and

dividend payout ratio on equity where the weights are taken according to the leverage ratio measured

as the book value of total debt to the sum of book value of debt and market value of equity. The

risk free interest rate is set equal to the annual average of weekly observation of one-year constant

maturity Treasury note for the year when bond prices are observed.

4.2 Merton (1974) with Stochastic Interest Rate

We apply a two-stage MLE estimation as that adopted in Duan and Simonato (2002). In the

first stage, the MLE is applied to obtain the parameter estimates for the Vasicek process. The
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parameters µv, σv and the market price of risk λ, which are assumed to be constants, are estimated

in the second stage by the MLE.

First Stage: Parameter Estimation of the Vasicek (1977) Process

The parameters to be estimated in equation (8) are θ = (κr, r̄, σr). By following Duan (1994) we

are able to obtain the first and second conditional moment for the short rate as,

E(rt+1|rt) = r̄ + (rt − r̄)e−κr , V ar(rt+1|rt) =
σ2

r

2κr
(1 − e−2κr).

The log-likelihood function for the short rate rt, t = 1, , , , .n is written as,

L(rt, t = 1, ..., n; θ) = −n − 1

2
ln(2π) − n − 1

2
ln(V ar(rt|rt−1))

− 1

2V ar(rt|rt−1)

n
∑

t=2

[rt − E(rt|rt−1)]
2 (29)

From the risk-free bond price formula in (9), we are able to obtain the yield to maturity y(r) as

yt = − 1

T − t
ln(B̄(r, t, T )) = − 1

T − t
A(t, T ) +

1

T − t
C(t, T )rt. (30)

The above equation defines a data transformation from the unobserved short rate process to the

observed yield process. As shown in Duan et al (2004), the resulting likelihood function for the

observed yield process becomes the likelihood function of the unobserved short rate process multi-

plied by the Jacobian of the transformation evaluated at the implied value for the short rate. Since

the transformation from the yield to the short rate is of element-by-element nature the resulting

log-likelihood function of yt is written as,

L(yt, t = 1, ..., n; θ) = (n − 1) ln(T − t) − (n − 1) ln(C(t, T ; θ)) − n − 1

2
ln(2π)

−n − 1

2
ln(V ar(r̂t|rt−1; θ))

− 1

2V ar(r̂t|rt−1; θ)

n
∑

t=2

[r̂t − E(r̂t|r̂t−1; θ)]2 (31)

where

r̂t ≡
1

C(t, T )
[(T − t)yt + A(t, T )]

The parameters can be estimated by maximizing the likelihood function.
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Second Stage: Estimation of the Parameters Related to the Asset Value Process

In this stage we apply the maximum likelihood estimation method to obtain the parameters that

are related to the asset value process and the market price of risk of asset. The parameters to

be estimated are θ = (µv, σv, κλ, σλ, λ̄v , ρrλ, ρvλ). In order to keep the problem simple we assume

constant market price of risk, λv and thus ρvλ equal to zero. The correlation ρrv is proxied by the

correlation between daily returns of firm’s asset, which is defined as the sum of the market value

of equity and the book value of total debt, and the changes of 1-year constant maturity Treasury

bill rates over the period when bond prices are observed.10

It can be shown from equation (12) that,

∂S

∂Vt
= B̄(t, T ) exp

(

µln(x) +
1

2
(σ2

ln(x) + 2Covln(x), σy)

)

e−δ(T−t)N(d1)

and thus

∂S

∂ lnVt
= B̄(t, T ) exp

(

µln(x) +
1

2
(σ2

ln(x) + 2Covln(x), σy)

)

Vte
−δ(T−t)N(d1).

.

Therefore, by following the argument in Duan (1994), we are able to obtain the log-likelihood

function as,

L(St, t = 1, 1 + ∆t, · · · , n; θ) = −n − 1

2
ln(2π) − n − 1

2
ln((

σln(x)

τ
)2∆t)

− 1

2σ2
v

n
∑

i=2

[

ln
Vi

Vi−1
−

µln(x)

τ
∆t

]2

−
n
∑

i=2

ln B̄(ti, T ) −
n
∑

i=2

[

µln(x) +
1

2
(σ2

ln(x) + Covln(x),y)

]

−
n
∑

i=2

N(d1(i)) −
n
∑

i=2

ln(Vi).

with τ = T − t.

4.3 The LT model

In order to calculate the default probabilities from this model we need to estimate the parameters

θ = (σv , π
v, V ∗). Since the risk-free interest rate r is assumed to be constant, the average of weekly

observations of one year constant maturity Treasury note yield of each year is treated as the risk-

free interest rate for the year when bond prices are observed. Asset payout ratio δ is calculated as

10Eom et al. (2004) use the correlation between equity returns and the changes of 3-month T-bill rates over a
window of five years to proxy ρrv.
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the dividend yield weighted by the leverage. Face value F , coupon rate c, and time maturity τ ,

which is a time varying variable, are directly observed from the sample.

Two different assumptions are made on the recovery rate 1−ω. The first one assumes that the

recovery rate is homogeneous across industries. The mean recovery rate of more than one thousand

bonds of different industries that defaulted during the period of 1987 to 2004 is calculated based on

the S&P LossStats database, and a 39% recovery rate of all defaulted bonds across all industries

is obtained.11 The second assumption on the recovery rate assumes that different industries differ

on their expected recovery rate. The mean recovery rate is calculated for each industry from 1987

to 2004. The marginal corporate tax rate is set to equal to 35%.12

Since bond prices are observed weekly for each firm, the firm asset value each week is proxied

by the sum of the market value of equity and the book value of total liabilities from quarterly

COMPUSTAT record. Thus a weekly time series of market value of assets is obtained. After the

weekly bond prices are fit into the LT model, σv for each firm is estimated while V ∗

t is calculated

for each firm weekly. In order to predict the default probabilities under the physical measure we

need to estimate the asset risk premium for each firm. From the relationship presented in (6),

once the estimates of asset volatility are achieved we could infer the asset risk premium from the

historical equity premium and equity volatility. The equity premium is estimated by the average of

the difference of the annualized equity returns and the 3-month T-bill rate for the ten year period

from 1995 to 2004. The estimates of historical equity volatility are calculated as the 10-year average

annualized volatility of the stocks of each firm.

4.4 The LS model and the CDG model

For exogenous default barrier models, V ∗ is set to be equal to total liabilities of the firm so that

the ratio of V/V ∗ is simply the reciprocal of the leverage ratio. The parameters in the LS model

and the CDG model are

θ = (µv, σv, δv , V
∗, κr, r̄, σr, rt, ρvr, κl, φ, ν̄)

except that for the LS model κl is restricted to be zero. The parameters related to the short rate

process can be estimated first by applying the MLE to the one-year constant maturity Treasury

note. The correlation coefficient ρvr is estimated in the same way as in the Merton model with

11The recovery rate obtained from S&P LossStats database is lower than that shown in Acharya et al.(2004) due
to the fact that our study covering a different time period from their study.

12Huang and Huang (2003) and Eom et al. (2004) assume the same marginal tax rate
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stochastic interest rate. Both δv and V ∗ can be obtained from COMPUSTAT. Once σv is estimated

πv is achieved through πv = πeσv/σe. By assuming asset is tradable we have µv = πv + r.

From equation (32), a regression of the changes in the log-leverage ratio against lagged log-

leverage ratio and the yield of one year constant maturity Treasury note will generate estimates

of parameters κl, φ and ν̄. Suppose the estimated coefficients from the linear regression are b0, b1

and b2, where b0 is the constant and b1 and b2 are coefficients on lagged log-leverage and risk-free

interest rate, we then have κl = −b1, φ = −b2/b1, and µv + κlν̄ = −b0. Since µv = πv + R,

ν̄ = (b0 − µv)/κl. The time period used for the regression is from 1995 to 2004.

5 Results and Discussions

5.1 Merton Model

The results from the maximum likelihood estimation of Merton (1974) model are consistent with

the empirical findings from other studies when bond prices are used. The asset volatility estimates

are unreasonably high for 52 firms out of the whole sample. The implied asset value for some of the

firms reaches a value of as low as one tenth of the sum of the market value of equity and the book

value of debt. One of the explanations is that firms are assumed to default only at the maturity

of debt in Merton (1974) models. The implied default probabilities prior to maturity are lower

than those implied by other type of models. It has been shown that with reasonable parameters

Merton (1974) model and its variations are only able to generate fairly low yields for corporate

bonds (see Jones et al. (1984), Kim et al. (1993), and Huang and Huang (2003)). Therefore,

it is not surprising that when bond prices or yields are fit into Merton type of models either the

estimates of asset volatility need to be very high or the implied asset values need to be very low in

order for the model to match the market prices.

Instead, we apply the MLE on the daily equity prices observed in the same period when bond

prices are obtained for each firm, with the time to maturity assumed to be one year.13 After the

estimates of µv and σv are obtained we calculate the implied asset value given the observed equity

value each day. The predicted default probabilities are assessed daily for each firm correspondingly.

Figure 1shows the distribution of the predicted 1-year and 4-year default probabilities for the pooled

observations when the bond face value is used as proxy for the face value of debt.

With Moody’s and Standard and Poor’s historical default probabilities used as benchmarks,

13We also estimate our model with time to maturity equal to 10 years. The estimation results for µv and σv are
very close to those obtained when the time to maturity is assumed to be one year for equity.
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Table 1 and 2 provide the summary of the performance of Merton (1974) model at predicting 1-

and 4-year default probabilities. The model performance is measured by means of mean error,

mean absolute error, root mean squared error, minimum error and maximum error. When deciding

the face value of debt we use three different structures. The first structure assumes the corporate

bonds outstanding as the only debt that needs to be retired at the maturity date of the debt.

The “KMV” measure uses the sum of short-term debt and half long-term debt as a proxy for

the face value of debt. “Equal All” structure envisions that all debts are retired at the maturity

of debt. In Table 1 all the mean errors except for B-rated firms are found to be negative and

mean absolute errors are close to the absolute value of mean errors, which shows that most of the

predicted default probabilities are lower than the historical observations. It implies that Merton

(1974) model provides under-estimation for the default probabilities under the real world measure.

This holds true for both pooled and per-bond basis observations. However, for B-rated firms the

predicted default probabilities tend to be larger than the historical observations. This is possible

due to the fewer number of observations of B-rated firms.

Table 2 shows similar results as Table 1 except for “Equal All” structure where the mean

errors are found to be positive for investment-grade bonds. Merton (1974) model is found to over-

predict default probabilities of longer time span for investment-grade firms when the face value

of debt is set to equal to the total liability. When comparing mean errors of the three different

debt structures we find that “Bond Face” implies the lowest while “Equal All” implies the highest

default probabilities in Merton (1974) model, which is consistent with previous findings such as

Lyden and Saraniti (2000) at explaining bond yield spreads.

5.2 Merton Model with Stochastic Interest Rate

Table 3 shows the maximum likelihood estimation results for the Vasicek (1977) process. The

estimation is conducted for the monthly yields of 3-month and 6-month constant maturity Treasury

bills and 1-year, 2-year and 5-year Treasury notes. Our estimates are consistent with previous

findings (e.g. Duan (1994)).

In the Merton model with stochastic interest rate, interest rates either have to be very volatile

or have strong positive correlation with the asset value in order to have significant effect on the

credit yields and default probabilities. Since the volatility estimated for the interest rate process

is not large, for stochastic interest rate to generate higher default probabilities the correlation

coefficient needs to be positive. the intuitive explanation is that when asset value falls, interest
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rates have a tendency to fall as well, thereby decreasing the drift of asset process, which causes a

higher probabilities of default for a longer time span. We find that for our sample of firms, the

correlation coefficients range from -0.25 to 0.25 with most of them being positive.

The model performance of Merton (1974) with stochastic interest rate is summarized in Table

1 and Table 2. One year default probabilities predicted by the Merton model with stochastic

interest rate tend to be lower than those reported by Moody’s and S&P. Among the three different

proposed debt structures, KMV’s approach provides the best prediction. This is also the case

for the predicted four-year default probabilities. Figure 2 presents the summary of the predicted

default probabilities from this model, when bond face value is assumed to be equal to the total face

value of debt.

5.3 The LT Model

The results for the LT model performance are reported by rating classes in Table 6 and Table 7.

The first table provides the model performance at predicting one-year default probabilities while the

second table shows the results of predicting four-year default probabilities. Results are reported in

two panels, where the left panel reports model error statistics for the pooled time series and cross-

sectional observations and the right panel reports error statistics by averaging model errors across

bonds. We use historical cumulative default rates reported by Moody’s and S&P independently to

report our results as before. The recovery rate is assumed to be either constant or industry specific

in the LT model and model performance is reported correspondingly.14

When predicting one year default probabilities Table 6 shows the mean error to be negative for

investment-grade bonds and positive for speculative-grade bonds, which provides evidence that the

LT model under-predicts the default probabilities for investment-grade bonds while over-predicts

the default probabilities for non-investment-grade bonds. The mean errors estimated in the LT

model are found to be much smaller than those obtained in the Merton model. Figure 3 shows the

distribution of the predicted one-year default probabilities across rating classes in the LT model.

We find that the default probabilities predicted by investment-grade firms tend to cluster close to

zero while for speculative-grade firms they tend to spread out to the higher end of the distribution.

14Recent studies (Huang and Huang (2003), Leland (2004), Eom et al. (2004) etc.) treat the recovery rate or the
loss given default as a constant across industries. The LossStats database provided by S&P shows that the recovery
rate of corporate bonds differ significantly across industries. The value-weighted mean recovery rate for industries
such as Chemicals and Petroleum can be as high as 60%. However, industries such as Real Estate only have a mean
recovery rate of 24%. Based on these observations it is important to treat recovery rate differently across industries
and implement the model with industry specific expected recovery rate.
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When compared with Figure 1, Figure 3 provides evidence that the LT model predicts higher default

probabilities on average than Merton model. In addition, by comparing the model performance

with the assumption of constant recovery rate and industry specific recovery rate we do not find

much difference between their model error statistics when predicting one year default probabilities.

Table 7 shows quite different results. The LT model provides higher predicted default probabil-

ities than the historical average for all rating classes. The means errors and mean absolute error are

much larger for non-investment-grade firms than for investment-grade firms. From the distribution

of the predicted default probabilities shown in Figure 3 we are able to observe that the some of the

predicted four-year default probabilities for BB-rated and B-rated firms are as high as 80-90%. It

reflects that the LT model over-predict the default rates for a longer span of time horizon. Table 7

also shows that using industry specific recovery rate on average produces higher model errors than

assuming constant recovery rates across industries.

5.4 The LS model

Table 8 and 9 provide the model performance of the LS model with constant interest rate at

predicting 1-year and 4-year default probabilities respectively. Results are reported in two panels ,

where the left panel reports error statistics for the pooled time series and cross-sectional observations

and the right panel reports the statistics by averaging model errors of each individual bonds.

Historical default rates from Moody’s and S&P are used to calculate model errors independently.

We also report our results by treating the recovery rate as a constant of 39% across industries and

using the calculated average recovery rate of each industry respectively.

In general, when the interest rate is assumed to be constant, the LS model provides reasonable

prediction of 1-year default probabilities for investment-grade bonds while provides over-prediction

for the non-investment-grade bonds. It’s consistent with the findings from the Merton type of

models. However, the LS model provides higher predicted default probabilities than the Merton

type of models with the mean errors at predicting 1-year default probabilities of all rating classes

in the LS model being smaller. When predicting 4-year default probabilities from the bond prices,

the LS model with constant term structure provides slightly higher predictions than the historical

average. When comparing the predicted 4-year default probabilities from the LS model with those

from the LT model we find that the former provides more reasonable predictions.

When comparing the model performance with a constant recovery rate assumed and industry

specific recovery rate assumed, we find that, on average, industry specific recovery rate assumption
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predicts higher default probabilities for the time horizon of both one year and four years. Since the

LS model is very sensitive to the recovery rates as implied by the bond formula, our results suggest

that the loss-upon-default for the sample of firms used in this study is higher than that for S&P’s

whole sample on average.

The model performance of the LS model with the interest rate assumed stochastic is summarized

in Table 10 and Table 11. Different assumptions are made on the recovery rates as the last section.

Figure 5 provides the distribution of the 1-year and 4-year default probabilities of the LS model

respectively. We find that the LS model with stochastic interest rate predicts lower 1-year default

probabilities but higher 4-year default probabilities. Our results are consistent with Huang and

Huang (2003), who find that the LS model with stochastic interest rate generates lower bond yield

spread than that with constant term structure when the correlation between the asset value process

and short rate process is assumed to be -0.25. As mentioned earlier, in order for a structural model

to generate higher predicted default probabilities the asset value and the term structure process

must be positively correlated. However, our estimation results show that the correlation coefficients

range from -0.25 to 0.25 and the volatility of the short rate process is rather small. This possibly

explains why when a stochastic term structure is added to the basic structure the LS model does not

provide higher predicted default probabilities. In addition, the effects of a stochastic term structure

on the predicted default probabilities are more relevant for a longer time span. Therefore, when the

correlation coefficients between asset value process and short rate process are positive the stochastic

interest rate framework generates higher predicted default probabilities for a longer time span. Our

results show that the predicted 4-year default probabilities are higher under the framework of a

stochastic term structure due to the correlation coefficients for most firms being positive.

5.5 The CDG model

Used as benchmark, the interest rate is first assumed to be constant in the CDG model. As

described in the earlier section the CDG model assumes a mean reverting leverage ratio in order

to generate higher default probabilities and yield spreads for a longer time span. This is the case

only when the mean reverting rate is positive and large. In their original paper, Collin-Dufresne

and Goldstein (2001) consider a mean reverting rate of 0.18 in order to simulate high yield spreads

compared to the LS model. Huang and Huang (2003) also assume such high mean reverting rate.

However, our regression results show that the maximum mean reverting rate of the leverage ratio

can only reach as high as 0.1 while with most of the coefficients being close to zero. It explains
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why the default probabilities predicted by the CDG model as summarized in Table 12 and 13 are

only slightly higher than those provided by the LS model.

Figure 6 presents the distribution of the predicted 1-year and 4-year default probabilities. They

are very similar to those for the LS model except for B-rated bond, for which we have the least

number of observations.

Next, we study the CDG model with a stochastic term structure. The results are summarized

in Table 14 and 15. As has been shown by Eom et al. (2004), the CDG model generates much

higher yield spreads than the observed values. It can be inferred that the risk-neutral measure of

default probabilities predicted by the CDG model must be the highest among all the structural

models if all the paramors are held the same. Our estimation results show that the asset volatility

estimates for a number of investment-grade firms are very close to zero, which reflects the fact that

in order to generate low yields for investment-grade bonds the asset volatility needs to have very

low values.

Table 14 summarizes the model performance of the CDG model at predicting 1-year default

probabilities when interest rates are assumed stochastic. Surprisingly, we find that the predicted

values are lower than the real world observations on average. On the other hand, Table 14 shows

that the predicted 4-year default probabilities are much higher than the real world observations.

Our estimation results for a longer time span, which are not presented here, show that the predicted

default probabilities for the CDG model with stochastic interest rate increase exponentially with

the time span. It reflects that the effect of the mean reverting leverage ratios assumed in their

model tend to be more pronounced in the long run.

The distribution of predicted default probabilities are shown in Figure 7.

5.6 Comparison of Model Performance

Table 16 provides the comparison of the structural models at predicting one-year and four-year

default probabilities when equity and bond prices are used to obtain estimates. Merton (1974)

predicts the lowest default probabilities of one year and four years for investment-grade bonds.

Adding stochastic interest rate does increase model performance. However, the default probabilities

predicted for B-rated bonds tend to be large from Merton type of models. One could argue that

it may be due to that the six B-rated firms chosen for estimation may not be a perfect replicating

group for the whole B-rated firm sample.

The performance of Merton type models are depicted in Figure 8, Figure 9, Figure 10, and

23



Figure 11 for different rating classes, where three different debt structures are assumed. “Bond

Face” structure assumes only the corporate bond itself is retired at maturity. If the asset value

falls below the bond face value at the time firm defaults. “KMV” structure follows Moody’s KMV

approach by setting the face value of debt equal to the short-term debt plus long-term debt. “Equal

All” envisions that all debt being retired at the maturity of the bond. Not surprisingly, ’Equal All’

predicts the highest default probabilities while ’Bond Face’ under-predicts default probabilities for

firms of all ratings except for B-rated firms. The debt structure assumed by the KMV makes the

default probabilities predicted by the Merton model most attractable. Except for B-rated bonds,

the default probabilities predicted by the “KMV” are very close to the real world observations for

both a short and medium time span.

The LT model tends to underestimate the one year default probabilities but provides over-

prediction for four year default probabilities. The LS model with constant interest rate provides

quite reasonable predictions for both one year and four year default probabilities. Adding stochastic

interest rates significantly increase the four year predicted default probabilities but have neglectable

effect on the one year default probabilities. This can be explained as, due to the low volatility of the

term structure and the low correlation coefficients between the asset value process and the interest

rate process estimated from historical observations, stochastic interest rates have a major effect on

whether the firm value hits a pre-specified default barrier for a longer time span. Figure 12, Figure

13, Figure 14, and Figure 15 show that the difference between the cumulative default probabilities

predicted by the LS model with or without stochastic interest rates tends to increase with time. At

last, we find that the CDG model predicts unreasonably high default probabilities across all rated

firms. This effect is more pronounced for a longer time span.

6 Conclusions

In this paper, we study the empirical performance of structural credit risk models by examining the

default probabilities calculated from these models with different time horizons.The models studied

include Merton (1974), Merton model with stochastic interest rate, Longstaff and Schwartz (1995),

Leland and Toft (1996) and Collin-Dufresne and Goldstein (2001).

The parameters of these models are estimated from firm’s bond and equity prices. The sample

firms chosen are those that have only one bond outstanding when bond prices are observed. We

first find that when the Maximum Likelihood estimation, introduced in Duan (1994), is used to

estimate the Merton model from bond prices the estimated volatility is unreasonable high and
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the estimation process does not converge for most of the firms in our sample. It shows that the

Merton (1974) is not able to generate high yields to match the empirical observations. On the other

hand, when equity prices are used as input we find find that the default probabilities predicted for

investment-grade firms by Merton (1974) are all close to zero. When stochastic interest rates are

assumed in Merton model the model performance is improved.

We find that Longstaff and Schwartz (1995) with constant interest rate as well as the Leland and

Toft (1996) model provide quite reasonable predictions on real default probabilities when compared

with those reported by Moody’s and S&P. However, Collin-Dufresnce and Goldstein (2001) predicts

unreasonably high default probabilities for longer time horizons. This is mainly due to the mean

reverting leverage feature of the model, which tend to increase the default probability of a firm in

the long run.
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Appendix: Derivation of the Conditional Moments and Default Probabilities in the

CDG Model

Under the real world probability the ln(Xt) process is given as,

d ln(Xt) = κl(ln(Xt) − ln(Xt))dt + σvdW v
t

= [(µv + κlν̄) − κl ln(Xt) + κlφrt]dt + σvdW v
t (32)

where

ln(Xt) =
πt − δ − σ2

v/2

κl
+ ν − φr̄ + rt(

1

κl
+ φ)

ν̄ ≡ (ν − φr̄) − δ + σ2
v/2

κl
(33)

We can rewrite the above equation and the interest rate process as the following,

eκlt ln(Xt) = ln(X0) + (πv + κlν̄)
eκlt − 1

κl
+

∫ t

0
(1 + κlφ)rueκludu +

∫ t

0
σve

κludW v
u (34)

rt = r0e
−κrt + r̄(1 − e−κrt) + σre

−κrt
∫ t

0
eκrudW r

u (35)

From the above equations it is not hard to obtain the following results:

eκltE0[ln(Xt)] = ln(X0) + [(πv + κlν̄) + (1 + κlφ)r̄]
eκlt − 1

κl
+ (1 + κlφ)(r0 − r̄)

e(κl−κr)t − 1

κl − κr

and

Cov0[ln(Xt), ln(Xu)]eκl(t+u) = σ2
vE0[

∫ t

0
eκlsdW v

s

∫ u

0
eκlsdW v

s ]

+σv(1 + κlφ)E0[

∫ t

0
eκlsdW v

s

∫ u

0
eκlsrsds]

+σv(1 + κlφ)E0[

∫ u

0
eκlsdW v

s

∫ t

0
eκlsrsds]

+(1 + κlφ)2Cov0[

∫ t

0
eκlsrs,

∫ u

0
eκlsrsds]

In the above equation if the first, the second, the third and the fourth term are denoted as I1, I2,

I3, and I4, we can show that for t ≥ u,

I1 =
σ2

v

2κl
(e2κlu − 1)

I2 = (1 + κlφ)
ρvrσvσr

κl + κr
[
e2κlu − 1

2κl
− e(κl−κr)u − 1

κl − κr
]

I3 = (1 + κlφ)
ρvrσvσr

κl + κr
[
e2κlu − 1

2κl
+

1 − e(κl−κr)t

κl − κr
+ e(κl+κr)u e(κl−κr)t − e(κl−κr)u

κl − κr
]

I4 = (1 + κlφ)2
σ2

r

2κr
[−(e(κl−κr)t − 1)(e(κl−κr)u − 1)

(κl − κr)2
+ (e(κl+κr)u − 1)

e(κl−κr)t − e(κl−κr)u

κ2
l − κ2

r

− κr

κ2
l − κ2

r

e2κlu − 1

κl
+

1

κ2
l − κ2

r

(1 − 2e(κl−κr)u + e2κlu).
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By following the approach of Collin-Dufresne and Goldstein (2001) we are able to obtain the

default probabilities under the real world measure in the following way. Let U be any time point

between time zero to time T, the default probability in the CDG model for U ∈ (0, T ) is given as,

DPCDG(X0, r0, U) =
n
∑

i=1

q(ti; t0), ti = iU/n,

q(t1; t0) =
N(a(t1; t0))

N(b(t1; t 1

2

))

q(ti; t0) =
1

N(b(ti; ti− 1

2

))
[N(a(ti; t0)) −

i−1
∑

j=1

q(tj− 1

2

; t0)N(b(ti; tj− 1

2

))],

a(ti; t0) = − M(ti, T |X0, r0)
√

S(ti, T |X0, r0)

b(t1; tj) = − M(ti, T |Xj)
√

S(ti, T |Xj)

with

M(t, T |X0, r0) ≡ E0[ln(Xt)]

S(t|X0, r0) ≡ V ar0[ln(Xt)]

M(t, T |Xu) = M(t, T |X0, r0) − M(u, T |X0, r0)
Cov0[ln(Xt), ln(Xu)]

S(u|X0, r0)
, u ∈ (t0, t)

S(t|Xu) = S(t|X0, r0) −
Cov0[ln(Xt), ln(Xu)]2

S(u|X0, r0)
, u ∈ (t0, t).

However, in order to price corporate bond we are no longer able to use the default probability

under the real probability measure but need to obtain the default probability under T forward

measure. Under such measure ln(Xt) and rt can be shown to follow,

d ln(Xt) = ((1 + κlφ)rt + κlν̄ − κl ln(Xt) − ρvrσvσrC(t, T ))dt + σvdW
v(FT )
t (36)

drt = (κr(r̄ − rt) − κ2
rC(t, T ))dt + κrdW

r(FT )
t (37)

where ν̄ is defined in (33) and C(t, T ) is defined in (9). Under T -forward measure the first moment

of ln(Xt) is now expressed as,

eκltEFT

0 [ln(Xt)] = ln(X0) + ν̄(eκlt − 1) +

∫ t

0
(1 + κlφ)eκluEFT

0 [ru]du

−ρvrσvσr

κr
[
eκlt − 1

κl
− eκrT e(κl+κr)t − 1

κl + κr
] (38)

where

EFT

0 [ru] = r0e
−κrt + (b − σ2

r

κ2
r

)(1 − e−κrt) +
σ2

r

2κ2
r

e−κrT (1 − e−2κrt) (39)
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Thus we obtain the expectation of ln(Xt) under the T forward measure as,

eκltEFT

0 (lnXt) = lnX0 + ν̄(eκlt − 1)

+(1 + φκl)[(r0 −
α

β
+

σ2
r

β2
+

σ2
r

2β2
e−βT )

e(κl−β)t − 1

κl − β

+(
α

β
− σ2

r

β2
)
(eκlt − 1)

κl
+

σ2
r

2β2
e−βT e(κl+β)t − 1

κl + β
]

−ρvrσvσr

β
[
(eκlt − 1)

κl
− e−βT e(κl+β)t − 1

κl + β
]

For the covariance, we have CovFT

0 [ln(Xt), ln(Xu)] = Cov0[ln(Xt), ln(Xu)].
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Figure 1: Distribution of predicted 1-year and 4-year default probabilities of Merton
(1974) model with F=Bond Face Value
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Figure 2: Distribution of predicted 1-year and 4-year default probabilities of Merton
(1974) model with stochastic interest rate and F=Bond Face Value
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Figure 3: Distribution of predicted 1- and 4-year default probabilities of the LT
model with industry recovery rates
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Figure 4: Distribution of predicted 1- and 4-year default probabilities of the LS
model with constant interest rate and industry recovery rate
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Figure 5: Distribution of predicted 1- and 4-year default probabilities of the LS
model with stochastic interest rate and industry recovery rate
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Figure 6: Distribution of predicted 1-year default probabilities of the CDG model
with constant interest rate and industry recovery rate
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Figure 7: Distribution of predicted 1- and 4-year default probabilities of the CDG
model with stochastic interest rate and industry recovery rate
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Figure 8: The Performance of Merton Models with Various Debt Structure at Predicting Default
Probabilities for A-Rated Bonds
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Figure 9: The Performance of Merton Models with Various Debt Structure at Predicting Default
Probabilities for BBB-Rated Bonds
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Figure 10: The Performance of Merton Models with Various Debt Structure at Predicting Default
Probabilities for BB-Rated Bonds
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Figure 11: The Performance of Merton Models with Various Debt Structure at Predicting Default
Probabilities for B-Rated Bonds
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Figure 12: The Performance of Other Structural Models at Predicting Default Probabilities for
A-Rated Bonds
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Figure 13: The Performance of Other Structural Models at Predicting Default Probabilities for
BBB-Rated Bonds
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Figure 14: The Performance of Other Structural Models at Predicting Default Probabilities for
BB-Rated Bonds
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Figure 15: The Performance of Other Structural Models at Predicting Default Probabilities for
B-Rated Bonds
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Table 1: Performance of Merton model at predicting 1-year default probability*
Panel A: All Observations Pooled

Using Historical DP from Moody’s Using Historical DP from S&P
Statistics Bond Face KMV Equal All Bond Face KMV All Equal

Rating Class: A
Mean Error -0.0200 -0.0199 -0.0191 -0.0500 -0.0499 -0.0491
Mean Abs-Err 0.0200 0.0199 0.0194 0.0500 0.0499 0.0491
Root Mean Sq-Err 0.0200 0.0200 0.0196 0.0500 0.0499 0.0493
Minimum Error -0.0200 -0.0200 -0.0200 -0.0500 -0.0500 -0.0500
Maximum Error -0.0198 -0.0133 0.0424 -0.0498 -0.0433 0.0124

Rating Class: BBB
Mean Error -0.1892 -0.1176 -0.0446 -0.2792 -0.2076 -0.1346
Mean Abss-Err 0.1892 0.2526 0.3154 0.2792 0.3386 0.4003
Root Mean Sq-Err 0.1893 0.5154 0.9814 0.2792 0.5430 0.9896
Minimum Error -0.1900 -0.1900 -0.1900 -0.2800 -0.2800 -0.2800
Maximum Error -0.0407 7.6108 13.9740 -0.1307 7.5208 13.8840

Rating Class: BB
Mean Error 0.1416 -0.2847 1.7137 0.2216 -0.2047 1.7937
Mean Abs-Err 2.2001 1.7716 3.6544 2.1400 1.7090 3.6017
Root Mean Sq-Err 4.7731 3.0039 9.5811 4.7762 2.9974 9.5957
Minimum Error -1.2200 -1.2200 -1.2200 -1.1400 -1.1400 -1.1400
Maximum Error 45.5912 25.9293 59.3509 45.6712 26.0093 59.4309

Rating Class: B
Mean Error 9.7976 14.1573 17.2791 9.9976 14.3573 17.4791
Mean Abs-Err 14.5634 17.0248 20.0143 14.5744 17.0846 20.0892
Root Mean Sq-Err 21.5413 26.4531 28.9074 21.6330 26.5607 29.0274
Minimum Error -5.8100 -5.8082 -5.8095 -5.6100 -5.6082 -5.6095
Maximum Error 78.8910 84.8290 87.2280 79.0910 85.0290 87.4280
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Panel B: Per-Bond Basis
Using Historical DP from Moody’s Using Historical DP from S&P

Statistics Bond Face KMV Equal All Bond Face KMV All Equal
Rating Class: A

Mean Error -0.0200 -0.0199 -0.0189 -0.0500 -0.0499 -0.0489
Mean Abs-Err 0.0200 0.0199 0.0189 0.0500 0.0499 0.0489
Root Mean Sq-Err 0.0200 0.0199 0.0191 0.0500 0.0499 0.0490
Minimum Error -0.0200 -0.0200 -0.0200 -0.0500 -0.0500 -0.0500
Maximum Error -0.0200 -0.0193 -0.0090 -0.0500 -0.0493 -0.0390

Rating Class: BBB
Mean Error -0.1892 -0.1169 -0.0433 -0.2792 -0.2069 -0.1333
Mean Abs-Err 0.1892 0.2422 0.3061 0.2792 0.3227 0.3867
Root Mean Sq-Err 0.1892 0.3295 0.6004 0.2792 0.3711 0.6135
Minimum Error -0.1900 -0.1900 -0.1900 -0.2800 -0.2800 -0.2800
Maximum Error -0.1741 1.1900 2.4966 -0.2641 1.1000 2.4066

Rating Class: BB
Mean Error 0.1408 -0.3073 1.6445 0.2208 -0.2273 1.7245
Mean Abs-Err 2.1441 1.6715 3.4152 2.0907 1.6104 3.3729
Root Mean Sq-Err 3.6028 2.3022 8.6688 3.6068 2.2929 8.6843
Minimum Error -1.2200 -1.2200 -1.2200 -1.1400 -1.1400 -1.1400
Maximum Error 11.6205 7.0928 34.6931 11.7005 7.1728 34.7731

Rating Class: B
Mean Error 7.8165 12.3814 14.5467 8.0165 12.5814 14.7467
Mean Abs-Err 10.8998 14.4395 17.0695 10.9665 14.5062 17.1095
Root Mean Sq-Err 12.9940 17.9129 22.7503 13.1153 18.0518 22.8787
Minimum Error -5.8062 -5.6827 -5.4687 -5.6062 -5.4827 -5.2687
Maximum Error 24.0358 28.7307 44.1220 24.2358 28.9307 44.3220

This table reports the summary of the means and standard deviations of the difference
between model prediction and the actual default probabilities (predicted-actual) for the
Merton (1974) model. The performance of Merton (1974) model is performed under three
different assumed debt structure. “Bond Face” structure assumes only the corporate bond
itself is retired at maturity. If the asset value falls below the bond face value at the time
firm defaults. ”KMV” structure follows Moody’s KMV approach by setting the face value
of debt equal to the short-term debt plus long-term debt. “All Equal” envisions that all
debt being retired at the maturity of the bond. The results are reported by rating classes
in two panels. The first panel reports model error statistics for the pooled time series and
cross-sectional observations. The second panel reports error statistics by averaging model
error for each bond.
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Table 2: Performance of Merton model at predicting 4-year default probability*
Panel A: All Observations Pooled

Using Historical DP from Moody’s Using Historical DP from S&P
Statistics Bond Face KMV Equal All Bond Face KMV All Equal

Rating Class: A
Mean Error -0.0588 -0.0440 0.8746 -0.1688 -0.1540 0.7646
Mean Abs-Err 0.4747 0.4903 1.3589 0.5508 0.5551 1.4045
Root Mean Sq-Err 0.7723 0.7190 2.5953 0.7884 0.7340 2.5603
Minimum Error -0.3600 -0.3600 -0.3600 -0.4700 -0.4700 -0.4700
Maximum Error 4.1192 4.5513 17.4781 4.0092 4.4413 17.3681

Rating Class: BBB
Mean Error -1.0573 -0.2293 0.5536 -1.4273 -0.5993 0.1836
Mean Abs-Err 1.6726 2.3018 2.8046 1.9874 2.5903 3.0452
Root Mean Sq-Err 2.0351 5.2207 6.5579 2.2496 5.2499 6.5371
Minimum Error -1.5500 -1.5500 -1.5500 -1.9200 -1.9200 -1.9200
Maximum Error 13.5919 40.7915 48.6232 13.2219 40.4215 48.2532

Rating Class: BB
Mean Error -2.4627 -1.9687 0.5993 -2.7527 -2.2587 0.3093
Mean Abs-Err 10.4370 11.2646 13.1534 10.6256 11.4731 13.3526
Root Mean Sq-Err 13.8716 15.1526 21.1197 13.9260 15.1930 21.1135
Minimum Error -8.2700 -8.2700 -8.2700 -8.5600 -8.5600 -8.5600
Maximum Error 65.0146 58.0085 78.6222 64.7246 57.7185 78.3322

Rating Class: B
Mean Error 16.1139 19.4257 22.7886 19.2739 22.5857 25.9486
Mean Abs-Err 26.3307 25.2271 30.0049 27.6754 26.7245 31.5296
Root Mean Sq-Err 32.0763 31.1179 36.0871 33.7744 33.1826 38.1614
Minimum Error -24.5003 -21.2126 -23.4106 -21.3403 -18.0526 -20.2506
Maximum Error 69.0814 70.3604 71.4729 72.2414 73.5204 74.6329
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Panel B: Per-Bond Basis
Using Historical DP from Moody’s Using Historical DP from S&P

Statistics Bond Face KMV Equal All Bond Face KMV All Equal
Rating Class: A

Mean Error -0.0890 -0.0058 0.9126 -0.1990 -0.1158 0.8026
Mean Abs-Err 0.4218 0.5000 1.3625 0.5099 0.5500 1.3925
Root Mean Sq-Err 0.6230 0.6535 2.3693 0.6479 0.6637 2.3291
Minimum Error -0.3600 -0.3600 -0.3600 -0.4700 -0.4700 -0.4700
Maximum Error 1.8197 1.8177 5.6241 1.7097 1.7077 5.5141

Rating Class: BBB
Mean Error -1.0526 -0.2029 0.5809 -1.4226 -0.5729 0.2109
Mean Abs-Err 1.6087 2.2494 2.7811 1.9080 2.5415 3.0342
Root Mean Sq-Err 1.8207 3.9832 5.3707 2.0569 4.0191 5.3434
Minimum Error -1.5500 -1.5500 -1.5500 -1.9200 -1.9200 -1.9200
Maximum Error 4.9811 15.9737 21.3466 4.6111 15.6037 20.9766

Rating Class: BB
Mean Error -2.5165 -2.1142 0.4057 -2.8065 -2.4042 0.1157
Mean Abs-Err 10.2780 10.7893 12.8481 10.4713 10.9769 13.0358
Root Mean Sq-Err 12.8905 14.0023 20.0570 12.9502 14.0490 20.0533
Minimum Error -8.2700 -8.2699 -8.2662 -8.5600 -8.5599 -8.5562
Maximum Error 38.1973 38.9780 69.5919 37.9073 38.6880 69.3019

Rating Class: B
Mean Error 11.3605 15.3476 17.0144 14.5205 18.5076 20.1744
Mean Abs-Err 25.3980 22.5027 27.1856 26.4513 23.5561 27.8176
Root Mean Sq-Err 28.0297 26.7195 32.4377 29.4524 28.6516 34.2011
Minimum Error -21.5981 -15.6592 -16.4228 -18.4381 -12.4992 -13.2628
Maximum Error 42.7849 45.6693 50.9484 45.9449 48.8293 54.1084

This table reports the summary of the means and standard deviations of the difference
between model prediction and the actual default probabilities (predicted-actual) for the
Merton (1974) model. The performance of Merton (1974) model is performed under three
different assumed debt structure. “Bond Face” structure assumes only the corporate bond
itself is retired at maturity. If the asset value falls below the bond face value at the time
firm defaults. ”KMV” structure follows Moody’s KMV approach by setting the face value
of debt equal to the short-term debt plus long-term debt. “All Equal” envisions that all
debt being retired at the maturity of the bond. The results are reported by rating classes
in two panels. The first panel reports model error statistics for the pooled time series and
cross-sectional observations. The second panel reports error statistics by averaging model
error for each bond.
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Table 3: Maximum Likelihood Estimates of the Vasicek (1977) Process Using the
Monthly Treasury Yield of the Constant Maturity from 1983 to 2002

Parameter 3-Month 6-Month 1-Year 2-Year 3-Year 5-Year

r̄ 0.0611 0.0637 0.0666 0.0721 0.0746 0.0783

(std) (0.0063) (0.0061) (0.0054) (0.0043) 0.0037 0.0032

κr 0.0629 0.0684 0.0809 0.1067 0.1235 0.1397

(std) (0.0190) (0.0207) (0.0203) (0.0201) 0.0196 0.0178

σr 0.0061 0.0063 0.0067 0.0076 0.0082 0.0092

(std) (0.0003) (0.0003) (0.0003) (0.0004) 0.0004 0.0006

Table 4: Performance of Merton model with stochastic interest Rate at predicting
1-year default probability*

Panel A: All Observations Pooled
Using Historical DP from Moody’s Using Historical DP from S&P

Statistics Bond Face KMV Equal All Bond Face KMV All Equal
Rating Class: A

Mean Error -0.0163 -0.0200 -0.0192 -0.0463 -0.0500 -0.0492
Mean Abs-Err 0.0210 0.0200 0.0194 0.0489 0.0500 0.0492
Root Mean Sq-Err 0.0237 0.0200 0.0196 0.0494 0.0500 0.0493
Minimum Error -0.0200 -0.0200 -0.0200 -0.0500 -0.0500 -0.0500
Maximum Error 0.1528 -0.0137 0.0373 0.1228 -0.0437 0.0073

Rating Class: BBB
Mean Error -0.1850 -0.1219 -0.0538 -0.2750 -0.2119 -0.1438
Mean Abs-Err 0.1861 0.2485 0.3072 0.2754 0.3344 0.3922
Root Mean Sq-Err 0.1869 0.4889 0.9268 0.2763 0.5187 0.9364
Minimum Error -0.1900 -0.1900 -0.1900 -0.2800 -0.2800 -0.2800
Maximum Error 0.2892 7.3105 13.5511 0.1992 7.2205 13.4611

Rating Class: BB
Mean Error 1.6383 -0.0975 2.6408 1.7183 -0.0175 2.7208
Mean Abs-Err 3.6164 1.8644 4.4497 3.5613 1.8079 4.4067
Root Mean Sq-Err 8.5988 3.3480 11.2268 8.6144 3.3466 11.2459
Minimum Error -1.2200 -1.2200 -1.2200 -1.1400 -1.1400 -1.1400
Maximum Error 53.2903 35.7548 74.5568 53.3703 35.8348 74.6368

Rating Class: B
Mean Error 26.9287 17.2928 25.5695 27.1287 17.4928 25.7695
Mean Abs-Err 29.8495 20.0767 27.7082 29.9203 20.1477 27.7965
Root Mean Sq-Err 39.5379 30.9186 38.9177 39.6744 31.0309 39.0494
Minimum Error -5.8092 -5.8083 -5.7940 -5.6092 -5.6083 -5.5940
Maximum Error 90.3644 89.7998 93.4690 90.5644 89.9998 93.6690
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Panel B: Per-Bond Basis
Using Historical DP from Moody’s Using Historical DP from S&P

Statistics Bond Face KMV Equal All Bond Face KMV All Equal
Rating Class: A

Mean Error -0.0169 -0.0199 -0.0190 -0.0469 -0.0499 -0.0490
Mean Abs-Err 0.0194 0.0199 0.0190 0.0469 0.0499 0.0490
Root Mean Sq-Err 0.0195 0.0199 0.0192 0.0479 0.0499 0.0491
Minimum Error -0.0200 -0.0200 -0.0200 -0.0500 -0.0500 -0.0500
Maximum Error 0.0137 -0.0193 -0.0099 -0.0163 -0.0493 -0.0399

Rating Class: BBB
Mean Error -0.1850 -0.1212 -0.0526 -0.2750 -0.2112 -0.1426
Mean Abs-Err 0.1850 0.2379 0.2979 0.2750 0.3185 0.3785
Root Mean Sq-Err 0.1856 0.3142 0.5643 0.2754 0.3587 0.5797
Minimum Error -0.1900 -0.1900 -0.1900 -0.2800 -0.2800 -0.2800
Maximum Error -0.1331 1.1086 2.3306 -0.2231 1.0186 2.2406

Rating Class: BB
Mean Error 1.6879 -0.1118 2.5657 1.7679 -0.0318 2.6457
Mean Abs-Err 3.5874 1.7605 4.1675 3.5274 1.7071 4.1408
Root Mean Sq-Err 8.0950 2.3262 9.7434 8.1121 2.3237 9.7647
Minimum Error -1.2200 -1.2200 -1.2200 -1.1400 -1.1400 -1.1400
Maximum Error 29.4878 6.6071 38.2904 29.5678 6.6871 38.3704

Rating Class: B
Mean Error 24.3393 15.2977 22.9444 24.5393 15.4977 23.1444
Mean Abs-Err 26.2189 17.3748 24.4933 26.3522 17.4415 24.6266
Root Mean Sq-Err 32.0332 22.0579 30.9305 32.1855 22.1970 31.0792
Minimum Error -5.6387 -5.6875 -4.6466 -5.4387 -5.4875 -4.4466
Maximum Error 54.2526 36.7271 51.2966 54.4526 36.9271 51.4966

This table reports the summary of the means and standard deviations of the difference
between model prediction and the actual default probabilities (predicted-actual) for the
Merton (1974) model with stochastic interest rate. The performance of the model is per-
formed under three different assumed debt structure. ”Bond Face” structure assumes only
the corporate bond itself is retired at maturity. If the asset value falls below the bond
face value at the time firm defaults. “KMV” structure follows Moody’s KMV approach by
setting the face value of debt equal to the short-term debt plus long-term debt. “All Equal”
envisions that all debt being retired at the maturity of the bond. The results are reported
by rating classes in two panels. The first panel reports model error statistics for the pooled
time series and cross-sectional observations. The second panel reports error statistics by
averaging model error for each bond.
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Table 5: Performance of Merton model with stochastic interest rate at predicting
4-year default probability*

Panel A: All Observations Pooled
Using Historical DP from Moody’s Using Historical DP from S&P

Statistics Bond Face KMV Equal All Bond Face KMV All Equal
Rating Class: A

Mean Error 1.1404 -0.0569 0.7929 1.0304 -0.1669 0.6829
Mean Abs-Err 1.6228 0.4800 1.2824 1.6866 0.5457 1.3307
Root Mean Sq-Err 4.4246 0.6950 2.4268 4.3975 0.7125 2.3932
Minimum Error -0.3600 -0.3600 -0.3600 -0.4700 -0.4700 -0.4700
Maximum Error 21.3248 4.3898 16.4942 21.2148 4.2798 16.3842

Rating Class: BBB
Mean Error -0.6614 -0.2599 0.4660 -1.0314 -0.6299 0.0960
Mean Abs-Err 1.8166 2.2849 2.7477 2.0718 2.5762 2.9907
Root Mean Sq-Err 2.5516 5.1409 6.4203 2.6716 5.1728 6.4041
Minimum Error -1.5500 -1.5500 -1.5500 -1.9200 -1.9200 -1.9200
Maximum Error 18.6714 40.3638 48.1882 18.3014 39.9938 47.8182

Rating Class: BB
Mean Error -2.3090 -1.1191 2.1694 -2.5990 -1.4091 1.8794
Mean Abs-Err 10.3025 11.4838 14.0670 10.4883 11.6667 14.2389
Root Mean Sq-Err 13.3555 14.7178 21.1219 13.4087 14.7427 21.0941
Minimum Error -8.2700 -8.2700 -8.2700 -8.5600 -8.5600 -8.5600
Maximum Error 52.7936 54.1271 76.7657 52.5036 53.8371 76.4757

Rating Class: B
Mean Error 24.9645 21.9194 26.6700 28.1245 25.0794 29.8300
Mean Abs-Err 30.4317 28.0865 32.3752 32.2380 29.7714 34.0485
Root Mean Sq-Err 36.4348 34.1429 38.6237 38.6686 36.2527 40.8697
Minimum Error -22.0392 -21.3089 -20.7768 -18.8792 -18.1489 -17.6168
Maximum Error 71.2446 70.6713 71.6464 74.4046 73.8313 74.8064
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Panel B: Per-Bond Basis
Using Historical DP from Moody’s Using Historical DP from S&P

Statistics Bond Face KMV Equal All Bond Face KMV All Equal
Rating Class: A

Mean Error 0.9193 -0.0192 0.8320 0.8093 -0.1292 0.7220
Mean Abs-Err 1.3681 0.4887 1.2821 1.4241 0.5387 1.3121
Root Mean Sq-Err 3.7459 0.6311 2.2152 3.7205 0.6439 2.1763
Minimum Error -0.3600 -0.3600 -0.3600 -0.4700 -0.4700 -0.4700
Maximum Error 12.3881 1.7443 5.1514 12.2781 1.6343 5.0414

Rating Class: BBB
Mean Error -0.6485 -0.2341 0.4923 -1.0185 -0.6041 0.1223
Mean Abs-Err 1.7378 2.2374 2.7316 1.9520 2.5296 2.9847
Root Mean Sq-Err 2.2491 3.9095 5.2280 2.3823 3.9489 5.2062
Minimum Error -1.5500 -1.5500 -1.5500 -1.9200 -1.9200 -1.9200
Maximum Error 7.6827 15.6317 20.7991 7.3127 15.2617 20.4291

Rating Class: BB
Mean Error -2.2726 -1.1977 2.0307 -2.5626 -1.4877 1.7407
Mean Abs-Err 10.3185 11.0700 13.8094 10.4998 11.2311 13.9705
Root Mean Sq-Err 12.9967 13.4994 19.9768 13.0506 13.5282 19.9494
Minimum Error -8.2700 -8.2699 -8.2673 -8.5600 -8.5599 -8.5573
Maximum Error 40.0721 29.5124 61.0245 39.7821 29.2224 60.7345

Rating Class: B
Mean Error 20.2219 17.4309 21.6537 23.3819 20.5909 24.8137
Mean Abs-Err 27.9194 25.9942 29.6660 28.9728 27.0475 30.7194
Root Mean Sq-Err 32.2782 29.8323 34.1674 34.3464 31.7823 36.2526
Minimum Error -15.0481 -15.8197 -12.1336 -11.8881 -12.6597 -8.9736
Maximum Error 52.6076 45.8641 51.4773 55.7676 49.0241 54.6373

This table reports the summary of the means and standard deviations of the difference
between model prediction and the actual default probabilities (predicted-actual) for the
Merton (1974) model with stochastic interest rate. The performance of the model is per-
formed under three different assumed debt structure. ”Bond Face” structure assumes only
the corporate bond itself is retired at maturity. If the asset value falls below the bond
face value at the time firm defaults. “KMV” structure follows Moody’s KMV approach by
setting the face value of debt equal to the short-term debt plus long-term debt. “All Equal”
envisions that all debt being retired at the maturity of the bond. The results are reported
by rating classes in two panels. The first panel reports model error statistics for the pooled
time series and cross-sectional observations. The second panel reports error statistics by
averaging model error for each bond.
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Table 6: Performance of LT model at predicting 1-year default probability
All Observations Pooled Per-Bond Basis

Moody’s S&P Moody’s S&P
Statistics Avg Ind Avg Ind Avg Ind Avg Ind

Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error -0.0108 -0.0105 -0.0408 -0.0405 -0.0129 -0.0126 -0.0429 -0.0426
Mean Abs-Err 0.0245 0.0249 0.0497 0.0498 0.0233 0.0236 0.0478 0.0481
Root Mean Sq-Err 0.0361 0.0370 0.0534 0.0538 0.0257 0.0263 0.0483 0.0484
Minimum Error -0.0200 -0.0200 -0.0500 -0.0500 -0.0200 -0.0200 -0.0500 -0.0500
Maximum Error 0.3550 0.3615 0.3250 0.3315 0.0573 0.0603 0.0273 0.0303

Rating Class: BBB
Mean Error -0.1844 -0.1843 -0.2744 -0.2743 -0.1849 -0.1848 -0.2749 -0.2748
Mean Abs-Err 0.1844 0.1843 0.2744 0.2743 0.1849 0.1848 0.2749 0.2748
Root Mean Sq-Err 0.1851 0.1850 0.2749 0.2748 0.1852 0.1851 0.2751 0.2750
Minimum Error -0.1900 -0.1900 -0.2800 -0.2800 -0.1900 -0.1900 -0.2800 -0.2800
Maximum Error -0.0414 -0.0507 -0.1314 -0.1407 -0.1461 -0.1456 -0.2361 -0.2356

Rating Class: BB
Mean Error 0.1920 0.1882 0.2720 0.2682 0.1919 0.1869 0.2719 0.2669
Mean Abs-Err 2.0379 2.0362 1.9812 1.9789 2.0121 2.0076 1.9588 1.9543
Root Mean Sq-Err 3.8992 3.8813 3.9040 3.8860 3.7386 3.7153 3.7436 3.7202
Minimum Error -1.2200 -1.2200 -1.1400 -1.1400 -1.2198 -1.2198 -1.1398 -1.1398
Maximum Error 20.4415 20.3694 20.5215 20.4494 14.8061 14.6983 14.8861 14.7783

Rating Class:B
Mean Error 6.1628 6.1978 6.3628 6.3978 4.0209 4.0530 4.2209 4.2530
Mean Abs-Err 9.6289 9.6502 9.6716 9.6954 8.0567 8.0812 8.0967 8.1212
Root Mean Sq-Err 18.0413 18.0695 18.1106 18.1391 10.4868 10.5148 10.5651 10.5935
Minimum Error -5.8000 -5.8005 -5.6000 -5.6005 -5.7929 -5.7935 -5.5929 -5.5935
Maximum Error 84.6863 84.7672 84.8863 84.9672 21.1214 21.1859 21.3214 21.3859

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 7: Performance of LT model at predicting 4-year default probability
All Observations Pooled Per-Bond Basis

Moody’s S&P Moody’s S&P
Statistics Avg Ind Avg Ind Avg Ind Avg Ind

Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 0.9952 1.0432 0.8852 0.9332 0.9245 0.9711 0.8145 0.8611
Mean Abs-Err 1.1741 1.2190 1.1452 1.1890 1.1253 1.1693 1.0953 1.1393
Root Mean Sq-Err 2.3066 2.3910 2.2613 2.3451 2.0419 2.1192 1.9945 2.0711
Minimum Error -0.3600 -0.3600 -0.4700 -0.4700 -0.3600 -0.3600 -0.4700 -0.47
Maximum Error 11.1301 11.4033 11.0201 11.2933 6.0641 6.3034 5.9541 6.1934

Rating Class: BBB
Mean Error 2.2879 2.3604 1.9179 1.9904 2.1049 2.1755 1.7349 1.8055
Mean Abs-Err 3.0965 3.1644 2.9866 3.0517 3.0161 3.0847 2.8964 2.9643
Root Mean Sq-Err 4.5231 4.6228 4.3476 4.4453 4.0714 4.1788 3.8931 3.9987
Minimum Error -1.5500 -1.5500 -1.9200 -1.9200 -1.5500 -1.5500 -1.9200 -1.92
Maximum Error 16.1227 16.1441 15.7527 15.7741 9.2398 9.7108 8.8698 9.3408

Rating Class: BB
Mean Error 9.3197 9.2934 9.0297 9.0034 9.2656 9.2055 8.9756 8.9155
Mean Abs-Err 13.1287 13.1195 13.0999 13.0910 13.0780 13.0370 13.0458 13.0047
Root Mean Sq-Err 20.6423 20.5076 20.5130 20.3779 20.3254 20.1479 20.1949 20.0171
Minimum Error -8.2463 -8.2464 -8.5363 -8.5364 -7.8186 -7.8182 -8.1085 -8.1082
Maximum Error 68.0688 67.8315 67.7788 67.5415 63.9234 63.6200 63.6334 63.33

Rating Class: B
Mean Error 27.0864 27.1548 30.2464 30.3148 26.2783 26.3499 29.4383 29.5099
Mean Abs-Err 27.0864 27.1548 30.2464 30.3148 26.2783 26.3499 29.4383 29.5099
Root Mean Sq-Err 32.5727 32.6724 35.2442 35.3425 30.4582 30.5764 33.2229 33.3382
Minimum Error 1.0869 1.1802 4.2469 4.3402 4.0786 3.7622 7.2386 6.9222
Maximum Error 69.4273 69.4758 72.5873 72.6358 46.8452 46.8599 50.0052 50.0199

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 8: Performance of LS model with constant term structure at predicting 1-year
default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 0.0194 0.0380 -0.0106 0.0080 0.0185 0.0347 -0.0115 0.0047
Mean Abs-Err 0.0472 0.0646 0.0623 0.0784 0.0415 0.0565 0.0523 0.0662
Root Mean Sq-Err 0.0983 0.1457 0.0969 0.1409 0.0613 0.0917 0.0595 0.0850
Minimum Error -0.0200 -0.0200 -0.0500 -0.0500 -0.0198 -0.0197 -0.0498 -0.0497
Maximum Error 1.2047 1.7393 1.1747 1.7093 0.1388 0.2435 0.1088 0.2135

Rating Class: BBB
Mean Error -0.0755 -0.0548 -0.1655 -0.1448 -0.0771 -0.0560 -0.1671 -0.1460
Mean Abs-Err 0.1985 0.2078 0.2690 0.2747 0.1282 0.1322 0.2005 0.1929
Root Mean Sq-Err 0.3426 0.3896 0.3729 0.4120 0.1555 0.1627 0.2148 0.2113
Minimum Error -0.1900 -0.1900 -0.2800 -0.2800 -0.1890 -0.1888 -0.2790 -0.2788
Maximum Error 4.3667 4.6958 4.2767 4.6058 0.3737 0.4298 0.2837 0.3398

Rating Class: BB
Mean Error 2.6177 2.4846 2.6977 2.5646 2.6698 2.4838 2.7498 2.5638
Mean Abs-Err 3.8069 3.6492 3.7878 3.6328 3.6478 3.4104 3.6300 3.4015
Root Mean Sq-Err 9.6912 9.2142 9.7131 9.2361 8.9636 8.4628 8.9878 8.4866
Minimum Error -1.2200 -1.2200 -1.1400 -1.1400 -1.1760 -1.1762 -1.0960 -1.0962
Maximum Error 51.4296 49.7846 51.5096 49.8646 36.2076 34.5219 36.2876 34.6019

Rating Class:B
Mean Error 7.0928 7.5025 7.2928 7.7025 8.1549 8.6745 8.3549 8.8745
Mean Abs-Err 11.3633 11.7074 11.3759 11.7237 10.4486 10.9592 10.5686 11.0792
Root Mean Sq-Err 17.1433 17.6441 17.2270 17.7301 14.3908 15.1295 14.5051 15.2450
Minimum Error -5.8100 -5.8100 -5.6100 -5.6100 -5.7344 -5.7116 -5.5344 -5.5116
Maximum Error 73.3357 74.2067 73.5357 74.4067 29.6690 31.3890 29.8690 31.5890

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 9: Performance of LS model with constant term structure at predicting 4-year
default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 3.0082 3.5983 2.8982 3.4883 2.9440 3.5151 2.8340 3.4051
Mean Abs-Err 3.1786 3.7447 3.1785 3.7387 3.0605 3.6166 3.0605 3.6114
Root Mean Sq-Err 6.5678 7.6455 6.5182 7.5944 5.9501 6.9432 5.8965 6.8881
Minimum Error -0.3327 -0.3388 -0.4427 -0.4488 -0.2197 -0.2411 -0.3297 -0.3511
Maximum Error 31.1940 34.6744 31.0840 34.5644 17.4138 20.4289 17.3038 20.3189

Rating Class: BBB
Mean Error 3.3990 3.7833 3.0290 3.4133 3.5712 3.9836 3.2012 3.6136
Mean Abs-Err 3.8501 4.1992 3.7173 4.0534 3.7080 4.1151 3.4640 3.8679
Root Mean Sq-Err 6.4541 6.8836 6.2671 6.6874 4.9406 5.3507 4.6802 5.0813
Minimum Error -1.5362 -1.5339 -1.9062 -1.9039 -0.9671 -0.9184 -1.3371 -1.2884
Maximum Error 36.6659 37.5704 36.2959 37.2004 10.4375 10.8953 10.0675 10.5253

Rating Class: BB
Mean Error 7.7360 7.7446 7.4460 7.4546 7.5568 7.4262 7.2668 7.1362
Mean Abs-Err 12.0506 12.0482 12.0217 12.0146 11.6375 11.5363 11.6053 11.5041
Root Mean Sq-Err 18.9095 18.4982 18.7927 18.3787 17.9411 17.3676 17.8209 17.2456
Minimum Error -8.2572 -8.2573 -8.5472 -8.5473 -7.3700 -7.3721 -7.6600 -7.6621
Maximum Error 66.2175 65.0224 65.9275 64.7324 55.3964 53.8698 55.1064 53.5798

Rating Class: B
Mean Error 6.2896 6.8353 9.4496 9.9953 9.1775 9.8777 12.3375 13.0377
Mean Abs-Err 21.8294 22.2303 22.3795 22.8398 19.5725 20.2519 21.0239 21.6870
Root Mean Sq-Err 25.2049 25.6788 26.1729 26.6943 23.5540 24.2354 24.9555 25.6860
Minimum Error -25.3300 -25.3300 -22.1700 -22.1700 -24.8760 -24.7833 -21.7160 -21.6233
Maximum Error 64.6457 65.1838 67.8057 68.3438 38.8640 40.4801 42.0240 43.6401

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 10: Performance of the LS model at predicting 1-year default probability
All Observations Pooled Per-Bond Basis

Moody’s S&P Moody’s S&P
Statistics Avg Ind Avg Ind Avg Ind Avg Ind

Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error -0.0186 -0.0184 -0.0486 -0.0484 -0.0180 -0.0182 -0.0480 -0.0483
Mean Abs-Err 0.0191 0.0193 0.0487 0.0486 0.0180 0.0182 0.0480 0.0483
Root Mean Sq-Err 0.0197 0.0196 0.0490 0.0489 0.0187 0.0185 0.0483 0.0484
Minimum Error -0.0200 -0.0200 -0.0500 -0.0500 -0.0200 -0.0200 -0.0500 -0.0500
Maximum Error 0.1391 0.0773 0.1091 0.0473 -0.0023 -0.0107 -0.0323 -0.0407

Rating Class: BBB
Mean Error -0.1689 -0.1657 -0.2589 -0.2557 -0.1716 -0.1687 -0.2616 -0.2587
Mean Abs-Err 0.2000 0.2025 0.2860 0.2881 0.1855 0.1875 0.2649 0.2669
Root Mean Sq-Err 0.2348 0.2468 0.3060 0.3144 0.1862 0.1876 0.2714 0.2714
Minimum Error -0.1900 -0.1900 -0.2800 -0.2800 -0.1900 -0.1900 -0.2800 -0.2800
Maximum Error 2.8459 3.1458 2.7559 3.0558 0.1183 0.1598 0.0283 0.0698

Rating Class: BB
Mean Error 0.6196 0.5680 0.6996 0.6480 0.6132 0.5603 0.6932 0.6403
Mean Abs-Err 2.7099 2.6229 2.6482 2.5615 2.6068 2.4987 2.5481 2.4416
Root Mean Sq-Err 6.8261 6.5153 6.8338 6.5228 6.0264 5.7114 6.0350 5.7198
Minimum Error -1.2200 -1.2200 -1.1400 -1.1400 -1.2200 -1.2200 -1.1400 -1.1400
Maximum Error 37.4180 35.1609 37.4980 35.2409 22.9313 20.9968 23.0113 21.0768

Rating Class:B
Mean Error 8.4548 8.8572 8.6548 9.0572 9.5702 10.0070 9.7702 10.2070
Mean Abs-Err 15.2389 15.4094 15.1711 15.3488 15.1038 15.4399 15.1038 15.4399
Root Mean Sq-Err 24.3422 24.5417 24.4124 24.6145 19.8727 20.0420 19.9698 20.1426
Minimum Error -5.8100 -5.8100 -5.6100 -5.6100 -5.7471 -5.7341 -5.5471 -5.5341
Maximum Error 68.7936 68.5997 68.9936 68.7997 36.9368 36.6812 37.1368 36.8812

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 11: Performance of LS model at predicting 4-year default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 6.3770 7.2487 6.2670 7.1387 6.9169 7.5725 6.8069 7.4625
Mean Abs-Err 6.4847 7.3266 6.4447 7.2738 6.9742 7.6085 6.9413 7.5471
Root Mean Sq-Err 10.6438 11.6431 10.5783 11.5749 10.9544 11.4804 10.8853 11.4082
Minimum Error -0.3399 -0.3480 -0.4499 -0.4580 -0.1842 -0.1741 -0.2942 -0.2841
Maximum Error 33.3412 32.9123 33.2312 32.8023 24.1673 21.7370 24.0573 21.6270

Rating Class: BBB
Mean Error 7.8825 8.8585 7.5125 8.4885 7.8762 8.9132 7.5062 8.5432
Mean Abs-Err 7.9990 8.9529 7.7131 8.6558 7.8762 8.9132 7.5245 8.5432
Root Mean Sq-Err 12.3725 13.3890 12.1401 13.1472 10.7178 11.8715 10.4489 11.5962
Minimum Error -1.4958 -1.4798 -1.8658 -1.8498 0.2150 0.4487 -0.1550 0.0787
Maximum Error 59.6602 60.3472 59.2902 59.9772 27.7588 28.5154 27.3888 28.1454

Rating Class: BB
Mean Error 10.6557 11.5622 10.3657 11.2722 10.7985 11.4640 10.5085 11.1740
Mean Abs-Err 13.4621 14.5145 13.3842 14.4367 12.7529 13.6080 12.5789 13.4423
Root Mean Sq-Err 21.4892 21.9303 21.3469 21.7788 20.1435 20.2992 19.9896 20.1369
Minimum Error -7.9880 -7.8564 -8.2780 -8.1464 -5.5982 -5.6120 -5.8882 -5.9020
Maximum Error 71.8375 70.6447 71.5475 70.3547 63.3919 61.7486 63.1019 61.4586

Rating Class:B
Mean Error 16.2768 17.2630 19.4368 20.4230 20.1999 21.2941 23.3599 24.4541
Mean Abs-Err 31.5649 32.3187 32.6177 33.4976 31.7845 32.7521 33.3645 34.3321
Root Mean Sq-Err 36.3663 36.9657 37.8862 38.5428 34.8903 35.5993 36.8101 37.5749
Minimum Error -25.3300 -25.3300 -22.1700 -22.1700 -23.1692 -22.9158 -20.0092 -19.7558
Maximum Error 66.2602 66.1691 69.4202 69.3291 49.0663 48.7793 52.2263 51.9393

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 12: Performance of the CDG model with constant term structure at predicting
1-year default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 0.2200 0.3308 0.1900 0.3009 0.1781 0.2688 0.1481 0.2388
Mean Abs-Err 0.2488 0.3590 0.2662 0.3749 0.2049 0.2932 0.2215 0.3098
Root Mean Sq-Err 0.7116 1.0204 0.7029 1.0111 0.5606 0.8267 0.5518 0.8174
Minimum Error -0.0200 -0.0200 -0.0500 -0.0500 -0.0200 -0.0200 -0.0500 -0.0500
Maximum Error 5.8319 7.6054 5.8019 7.5754 1.6807 2.4791 1.6507 2.4491

Rating Class: BBB
Mean Error -0.0460 -0.0141 -0.1360 -0.1041 -0.0425 -0.0083 -0.1325 -0.0983
Mean Abs-Err 0.2601 0.2854 0.3284 0.3510 0.2255 0.2495 0.2855 0.3012
Root Mean Sq-Err 0.4704 0.5381 0.4875 0.5479 0.2801 0.3259 0.3069 0.3403
Minimum Error -0.1900 -0.1900 -0.2800 -0.2800 -0.1900 -0.1900 -0.2800 -0.2800
Maximum Error 5.4143 5.8148 5.3243 5.7248 0.7305 0.8531 0.6405 0.7631

Rating Class: BB
Mean Error 2.4061 2.2115 2.4861 2.2915 2.4130 2.1782 2.4930 2.2582
Mean Abs-Err 4.0281 3.7933 3.9891 3.7564 3.8783 3.5556 3.8338 3.5201
Root Mean Sq-Err 9.9114 9.4053 9.9311 9.4244 9.1047 8.5850 9.1262 8.6057
Minimum Error -1.2200 -1.2200 -1.1400 -1.1400 -1.2196 -1.2197 -1.1396 -1.1397
Maximum Error 51.0283 49.1430 51.1083 49.2230 35.6728 33.7181 35.7528 33.7981

Rating Class:B
Mean Error 10.4147 11.0712 10.6147 11.2712 11.4956 12.3005 11.6956 12.5005
Mean Abs-Err 13.2002 13.7597 13.2652 13.8283 11.4956 12.3005 11.6956 12.5005
Root Mean Sq-Err 19.4297 20.1606 19.5377 20.2712 16.6579 17.6954 16.7965 17.8350
Minimum Error -5.7999 -5.8001 -5.5999 -5.6001 1.4794 2.1858 1.6794 2.3858
Maximum Error 73.8393 74.8082 74.0393 75.0082 31.3557 33.4784 31.5557 33.6784

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 13: Performance of the CDG model with constant term structure at predicting
4-year default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 4.1582 4.8147 4.0482 4.7047 3.8744 4.4911 3.7644 4.3811
Mean Abs-Err 4.4619 5.0969 4.4691 5.0977 4.1274 4.7350 4.1152 4.7227
Root Mean Sq-Err 8.7773 9.9193 8.7257 9.8664 7.9317 8.9622 7.8786 8.9076
Minimum Error -0.3599 -0.3599 -0.4699 -0.4699 -0.3589 -0.3592 -0.4689 -0.4692
Maximum Error 33.7620 36.9166 33.6520 36.8066 22.0879 25.1346 21.9779 25.0246

Rating Class: BBB
Mean Error 3.5508 4.0230 3.1808 3.6530 3.8188 4.3317 3.4488 3.9617
Mean Abs-Err 4.2856 4.7196 4.1913 4.6134 4.2073 4.7051 4.0182 4.4996
Root Mean Sq-Err 7.0357 7.6167 6.8564 7.4279 6.0986 6.6973 5.8740 6.4641
Minimum Error -1.5500 -1.5500 -1.9200 -1.9200 -1.3829 -1.3594 -1.7529 -1.7294
Maximum Error 32.2416 33.0143 31.8716 32.6443 15.1525 16.1500 14.7825 15.7800

Rating Class: BB
Mean Error 6.7559 6.7723 6.4659 6.4823 6.7825 6.6457 6.4925 6.3557
Mean Abs-Err 12.3549 12.3591 12.3663 12.3643 11.5567 11.4715 11.5567 11.4715
Root Mean Sq-Err 19.0690 18.6647 18.9682 18.5614 17.9842 17.4147 17.8769 17.3061
Minimum Error -8.2525 -8.2526 -8.5425 -8.5426 -7.1862 -7.2779 -7.4762 -7.5679
Maximum Error 66.6363 65.5300 66.3463 65.2400 55.7878 54.3145 55.4978 54.0245

Rating Class: B
Mean Error 16.6978 17.3898 19.8578 20.5498 18.3604 19.2298 21.5204 22.3898
Mean Abs-Err 21.2370 21.7761 23.0449 23.6656 18.3604 19.2298 21.5204 22.3898
Root Mean Sq-Err 25.5561 26.1695 27.7242 28.3678 22.7600 23.6530 25.3780 26.2866
Minimum Error -20.1619 -20.1862 -17.0019 -17.0262 3.8415 3.7990 7.0015 6.9590
Maximum Error 64.4213 64.9182 67.5813 68.0782 38.8733 40.4590 42.0333 43.6190

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 14: Performance of the CDG model with stochastic term structure at predict-
ing 1-year default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error -0.0199 -0.0199 -0.0499 -0.0499 -0.0198 -0.0199 -0.0498 -0.0499
Mean Abs-Err 0.0199 0.0199 0.0499 0.0499 0.0198 0.0199 0.0498 0.0499
Root Mean Sq-Err 0.0199 0.0199 0.0499 0.0499 0.0198 0.0199 0.0498 0.0499
Minimum Error -0.02 -0.02 -0.05 -0.05 -0.02 -0.02 -0.05 -0.05
Maximum Error -0.0046 -0.0131 -0.0346 -0.0431 -0.0193 -0.0197 -0.0493 -0.0497

Rating Class: BBB
Mean Error -0.1579 -0.1588 -0.2479 -0.2488 -0.1623 -0.1637 -0.2523 -0.2537
Mean Abs-Err 0.2039 0.205 0.287 0.2889 0.1796 0.1843 0.2523 0.2593
Root Mean Sq-Err 0.2439 0.2497 0.3098 0.3147 0.1822 0.1852 0.2656 0.2681
Minimum Error -0.19 -0.19 -0.28 -0.28 -0.19 -0.19 -0.28 -0.28
Maximum Error 2.4089 2.6687 2.3189 2.5787 0.0861 0.1238 -0.0039 0.0338

Rating Class: BB
Mean Error 1.308 0.9785 1.388 1.0585 1.3119 0.9799 1.3919 1.0599
Mean Abs-Err 3.193 3.013 3.1439 2.9546 3.0772 2.9639 3.0327 2.9039
Root Mean Sq-Err 7.0955 6.621 7.1107 6.6333 6.1098 5.6805 6.1275 5.6948
Minimum Error -1.22 -1.22 -1.14 -1.14 -1.22 -1.22 -1.14 -1.14
Maximum Error 31.89 29.0552 31.9703 29.1352 17.9875 15.775 18.0675 15.855

Rating Class:B
Mean Error -4.8247 -0.4288 -4.6247 -0.2288 -5.0082 0.2557 -4.8082 0.4557
Mean Abs-Err 5.1529 7.3362 4.9766 7.2221 5.0082 6.8688 4.8082 6.8021
Root Mean Sq-Err 5.3304 11.4405 5.1501 11.4348 5.0484 7.3954 4.85 7.405
Minimum Error -5.81 -5.81 -5.61 -5.61 -5.6437 -5.5387 -5.4437 -5.3387
Maximum Error 6.6981 60.2265 6.8981 60.4265 -4.3728 10.6867 -4.1728 10.8867
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Table 15: Performance of the CDG model with stochastic term structure at predict-
ing 4-year default probability

All Observations Pooled Per-Bond Basis
Moody’s S&P Moody’s S&P

Statistics Avg Ind Avg Ind Avg Ind Avg Ind
Recov Recov Recov Recov Recov Recov Recov Recov

Rating Class: A
Mean Error 9.7024 11.8245 9.5924 11.7145 11.6916 12.8945 11.5816 12.7845
Mean Abs-Err 9.8286 11.9091 9.7754 11.841 11.7718 12.9381 11.7168 12.8721
Root Mean Sq-Err 13.4093 14.5592 13.3299 14.47 14.5615 14.7412 14.4733 14.6451
Minimum Error -0.3435 -0.3364 -0.4535 -0.4464 -0.1603 -0.109 -0.2703 -0.219
Maximum Error 33.6211 31.1166 33.5111 31.0066 23.5244 21.1298 23.4144 21.0198

Rating Class: BBB
Mean Error 10.0061 9.9633 9.6361 9.5933 10.4214 10.1796 10.0514 9.8096
Mean Abs-Err 10.1166 10.0986 9.8263 9.8139 10.4214 10.1796 10.0514 9.8096
Root Mean Sq-Err 14.5695 14.6648 14.3179 14.416 12.8456 13.0312 12.5473 12.7442
Minimum Error -1.1259 -1.5066 -1.4959 -1.8766 0.5346 0.5225 0.1646 0.1525
Maximum Error 56.3731 57.0137 56.0031 56.6437 27.1473 27.84 26.7773 27.47

Rating Class: BB
Mean Error 20.5935 18.0142 20.3035 17.7242 20.724 17.7747 20.434 17.4847
Mean Abs-Err 22.623 20.1618 22.4498 19.9978 21.5397 18.6951 21.3141 18.4776
Root Mean Sq-Err 30.9756 28.3088 30.7835 28.1252 29.6928 26.8474 29.4912 26.6563
Minimum Error -8.1777 -8.1786 -8.4677 -8.4686 -3.6708 -3.6816 -3.9608 -3.9716
Maximum Error 73.0057 71.89 72.7157 71.6 64.1321 62.531 63.8421 62.241

Rating Class: B
Mean Error 10.7537 20.6833 13.9137 23.8433 10.8786 22.6718 14.0386 25.8318
Mean Abs-Err 15.3221 23.7637 16.6094 25.7625 10.8786 22.6718 14.0386 25.8318
Root Mean Sq-Err 19.337 29.2623 21.2572 31.5751 10.8872 27.1482 14.0453 29.8378
Minimum Error -16.182 -16.2246 -13.022 -13.0646 10.4464 10.3915 13.6064 13.5515
Maximum Error 44.9042 66.2994 48.0642 69.4594 11.3108 43.692 14.4708 46.852

The results provided in the columns of Moody’s and S&P are those obtained by using the
historical default probabilities from Moody’s and S&P respectively. The columns of “Avg
Recov” and “Ind Recov” refers to the results obtained by using the average recovery rate
and the industry specific recovery rates provided by S&P LossStats database.
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Table 16: Comparison of the model performance
Predicting 1-Year Default Probabilities

Rating classes A BBB BB B
Moody’s Historical 0.0200 0.1900 1.2200 5.8100
S&P Historical 0.0500 0.2800 1.1400 5.6100
Merton 0.0000 0.0008 1.3616 15.6076
Merton with Stochastic Interest Rate 0.0037 0.4926 2.8583 32.7387
LT 0.0092 0.0056 1.4120 11.9728
LS with Constant Interests Rate 0.0394 0.1145 3.8377 12.9028
LS with Stochastic Interest Rate 0.0014 0.0211 1.8396 14.2648
CDG with Constant Interest Rate 0.2400 0.1440 3.6261 16.2247
CDG with Stochastic Interest Rate 0.0001 0.0264 2.1991 6.0669

Predicting 4-Year Default Probabilities
Rating classes A BBB BB B
Moody’s Historical 0.3600 1.5500 8.2700 25.3300
S&P Historical 0.4700 1.9200 8.5600 22.1700
Merton 0.3012 0.4926 5.8073 41.4439
Merton with Stochastic Interest Rate 1.5004 0.8886 5.9610 50.2945
LT 1.3552 3.8379 17.5897 52.4164
LS with Constant Interests Rate 3.3682 4.9490 16.0060 31.6196
LS with Stochastic Interest Rate 6.7370 9.4325 18.9257 41.6068
CDG with Constant Interest Rate 4.5182 5.1008 15.0260 42.0278
CDG with Stochastic Interest Rate 13.2539 11.7302 26.0447 47.9995
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