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Are Bull and Bear Markets Economically Important?

ABSTRACT

As fluctuations of the stock market have long been classified into bull and bear markets,

investors encounter regime-switching uncertainty in investing. In this paper, we propose a

novel way of incorporating regime-switching and model uncertainties into portfolio choice

decisions. We find that risks and returns vary greatly across bull and bear regimes, and

the certainty-equivalent losses associated with ignoring bull and bear markets are fairly

large. Therefore, the economic value of incorporating regime-switching is substantial from

an investment perspective.



THE STOCK MARKET GOES through periods of time when equity prices generally rise

and other periods when they generally fall, and so investors have long recognized that the

market’s movements are more like bull and bear markets. Based on the belief that the stock

price behavior in a bull market should be different from that in a bear market, Levy (1974)

suggests calculating the beta coefficients for bull and bear markets separately. However,

Fabozzi and Francis (1977) find that the betas of a market model are not significantly differ-

ent across bull and bear markets. Based on a different approach, Kim and Zumwalt (1979)

reach similar conclusions, although they do find that some securities respond differently in

up- and down-markets. Because the bull/bear state is not observable, many of the existing

studies use the realized returns to determine whether the market is in a bull or bear state at

a given time. This ad hoc way of determining the market state is problematic. For instance,

Elton (1999) finds that there are large differences in realized versus expected stock returns

over specific periods. Therefore, the unknown bull/bear state and the associated expected

returns should be modelled rather than being solely determined by the realized return at

certain times.

Hamilton’s (1989) path-breaking work provides a rigorous econometric model for ana-

lyzing bull and bear markets and the switching between the two regimes. Based on this

framework, Schwert (1989) and Hamilton and Susmel (1994) study regime changes and mar-

ket volatility, while Turner, Startz, and Nelson (1989) find that the S&P 500 index can have

different mean and variance across bull and bear markets. Recently, Ang and Bekaert (2002)

and Guidolin and Timmermann (2004) examine portfolio decisions when asset returns are

subject to regime-switching that provide insights on investments across bull and bear mar-

kets. However, existing studies are limited to either the single market portfolio or the market

portfolio plus one or two other assets.

In this article, we propose a Bayesian framework for analyzing the regime-switching

model, and we study how regime-switching uncertainty affects investors’ portfolio decisions.
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Our approach distinguishes itself from existing ones in three major ways. First, our approach

applies to a large number of assets. In particular, it is feasible to apply it to the Fama-

French’s (1993) three factors and to the 25 book-to-market and size portfolios, a total of 28

assets. In contrast, it would be very difficult if not possible to apply the existing approaches

to such a high-dimensional regime-switching model because the likelihood function is too

complex to be evaluated and optimized. In contrast, using a Bayesian approach, we can

estimate the model with hundreds of parameters fairly easily, and our approach allows also a

deeper understanding of the regime model by obtaining small sample distributions for various

functions of interests, such as the probability of the market in a bull market and the standard

errors of the associated bull risk-premium. The small sample inference is important because

the asymptotic results of the classical approach are either unavailable or questionable in a

regime-switching model.

Secondly, the approach in this article provides a way to incorporate regime-switching

into portfolio decisions under asset pricing model uncertainty. In financial decision-making,

asset pricing models often have useful assertions and suggestions, but they may not be 100%

correct. For example, consider the portfolio choice problem when the investment universe

consists of the Fama-French three factors and the 25 book-to-market and size portfolios.

Under the Fama-French three-factor model, a mean-variance investor would only hold the

three factor portfolios and none of the 25 assets because any mean-variance efficient portfo-

lio is a combination of the three factors. The Fama-French three-factor model is, however,

likely to be neither perfect nor useless. Therefore, investors encounter asset pricing model

uncertainty when they are uncertain about the pricing ability of an asset pricing model.

Pástor and Stambaugh (2000) and Avramov(2004), among others, investigate how mispric-

ing uncertainty associated with an asset pricing model can fundamentally change the way we

make portfolio decisions in the i.i.d. context. However, it is unknown how such mispricing

uncertainty might change the asset allocation decisions when the data follow a more reason-
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able regime-switching process. The approach of this paper makes answers to this question

possible.

Thirdly, our Bayesian framework fully recognizes and incorporates parameter uncertainty

into the computation of the portfolio weights and the utility gain of investors. Barberis

(2000), among others, shows that estimation errors can alter investors’ optimal portfolios

significantly. Therefore, besides taking into account the asset pricing model and the regime-

switching uncertainties, our approach also incorporates parameter uncertainty into portfolio

decisions. In contrast, the existing approaches are classical and ignore estimation errors.

We apply the proposed approach to study the portfolio choice problem of a risk-averse

investor faced with a collection of benchmark and non-benchmark assets, and we examine

the economic gains that accrue from incorporating regime-switching in light of an asset

pricing model, regime-switching, and parameter uncertainties. Because the Fama-French

three-factor model is now the standard benchmark model in the current literature, their

three factors are chosen as the benchmark assets. The investment universe, in addition,

consists of three alternative sets of non-benchmark assets, the Fama-French 25 assets sorted

by book-to-market and size, the 10 standard size portfolios of the Center for Research in

Security Prices (CRSP), and a set of Fama-French’s 17 industry portfolios. In the spirit of

Kandel and Stambaugh (1996) and Pástor and Stambaugh (2000), we question what utility

gains an investor can achieve if he switches from a belief in no regime-switching return

distributions to a belief in regime-switching ones. If the investor, does not believe in regime-

switching returns, assuming the normal data-generating process is the true data-generating

process (DGP), he would choose his optimal portfolio in the usual way, based on the Fama-

French three-factor model. On the other hand, if he believes in regime-switching returns, he

would choose his optimal portfolio based on the regime-switching model that incorporates

the regime-switching characteristics into decision making. Thus, any utility gains beyond

that of using the normal data-generating process may be interpreted as a measure of the
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economic gain of an investor who switches from a belief in no regime-switching returns to a

belief in regime-switching ones.

Empirically, we find strong evidence of regime-switching between bull and bear markets.

First, a bull regime has a market expected return of 9.0% per year, substantially different

from the market expected return of -10.4% per year in a bear regime.1 Second, not only

does the market portfolio perform very differently across the two regimes, but the other two

Fama-French factors, the size and value factors, do the same. The size premium is only

-0.1% per year during the bear market, though it shows up significantly at 3.4% per year

in the bull market. The value premium alters significantly across regimes, too. It shows up

strongly in the downturn, at 13.8% per year, but only weakly in the upturn, at 2.9% per

year. All the Fama-French 25 assets have significant positive returns in the bull market,

but insignificant, small positive or even negative returns in the bear market. For instance,

the first asset S1B1 has a negative return, -17.0% per year, in the bear market, but has a

significantly positive return, 13.0 % per year, in the bull market. As for higher moments,

the bear market generally has much higher volatilities than the bull market. For instance,

the market volatility is 23.9% per year in the bear market, while it is only 12.3% per year in

the bull market, an almost 50% drop. For many other assets, such as the size factor (SMB)

and the value factor (HML), standard deviations in the bear market are more than twice as

high as those in the bull markets.

Due to the statistically significant differences in asset returns across the bull and bear

markets, we find that a power utility maximization investor can achieve over 2% certainty-

equivalence gains per year in general when he switches from a belief in no regime-switching

1If investors believed that the return of the market index portfolio were characterized by the regime-
switching model and if they were able to observe the current state, it would be hard to understand why
they held the index portfolio in the bear market. Turner, Startz, and Nelson (1989) offer an explanation for
this, based on the idea that investors are unable to observe the current state. In fact, the posterior standard
deviation of the bear market premium is quite high and may be considered insignificant here. On the other
hand, Pesaran and Potter (1993) analyze unobservable stochastic discount factors and economic structures
that are compatible with predictions of negative market excess returns.
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returns to a belief in regime-switching ones. Hence, not only are bull and bear regimes pro-

nounced in the US stock market, but also there is substantial economic value to incorporate

regime-switching into portfolio decisions. Moreover, the economic value depends heavily on

the degree of the asset pricing model uncertainty. For example, when the non-benchmark

assets are the Fama-French’s 17 industry portfolios, the certainty-equivalence gain can be

either 4.2% or 10.5% per year, depending on whether the investor dogmatically believes in

the Fama-French three-factor model or thinks of it as entirely useless in the bull/bear mar-

ket. Furthermore, the results are qualitatively similar when the transition probabilities are

allowed to be time-varying with the changing conditions of the economy.

The remainder of the paper is organized as follows. Section 2 provides the model to

capture regime-switching property in the data and then discusses the framework for making

Bayesian portfolio choice decisions. Section 3 applies the proposed approach to the data

and reports the empirical results. Section 4 extends the investigation to the case when the

transition probabilities are time varying. Section 5 concludes.

I. The Regime-switching Model

To examine regime-switching in assets returns, we adopt a two-regime Markov regime-

switching model that is parsimoniously specified, yet flexible enough to capture the idea of

bull and bear markets.

A. Model Specification

Assume that the investment opportunity set consists of n risky assets and one riskless

asset. In the case without regime-switching, the excess returns of the risky assets over the
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riskless asset are assumed to follow a multivariate normal distribution:

rt v MV N(E, V ), (1)

where MVN represents a multivariate normal distribution, E is an n × 1 vector of means,

and V is an n× n variance-covariance matrix.

When a regime-switching model is assumed to be the data-generating process, the data

are drawn from two or more possible distributions (regimes). The transition from one regime

to another is driven by the realization of a discrete variable (the regime), which follows a

Markov chain process. Therefore, at each point of time, the process might stay in the same

regime next period for a certain probability. Alternatively, it might switch to one of the

other regimes in the next period. Now we decide how many regimes should be in our model.

Generally speaking, the more states are allowed in the model, the less restriction is imposed,

and the better the model fits the data. Nevertheless, like many other papers, such as Ang

and Bekaert (2002), we assume in the rest of the paper, only two states because, with a

limited data set, it is difficult to identify three or more states econometrically. In addition,

the two-state assumption also parallels the dichotomy between bull and bear markets in

investment practices.

Formally, in the case with regime-switching, the returns of the assets are assumed to

follow a two-regime Markov regime-switching model with a multivariate normal distribution

in each regime:

rt v MV N(Est , V st), (2)

where MVN represents a multivariate normal distribution, Est is an n × 1 vector, V st is

an n × n matrix, and both are associated with the state at time t, st ∈ S = (1, 2). The
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transition probabilities are determined by

Π =

 P 1− P

1−Q Q

 , (3)

where P = Pr(st = 1|st−1 = 1) and Q = Pr(st = 2|st−1 = 2). Therefore, at each period

of time, rt follows a distribution associated with one of the states in S. Over time, the

distribution of rt switches from the distribution MV N(Est , V st), indicated by the current

state st, to the distribution MV N(Est+1 , V st+1), indicated by st+1, the state of the next

period. Here, we assume that the transition probabilities are constant. Later, in Section 4,

we will study the case when the transition probabilities are allowed to be time-varying.

As shown in the literature, mispricing uncertainty associated with an asset pricing model

can fundamentally change the way investors make portfolio decisions. To incorporate asset

pricing uncertainty, it is useful to cast the problem into a regression setting. Let rt = (yt, xt),

where yt contains the returns of m non-benchmark positions, and xt contains the returns of

k (= n−m) benchmark positions. In our regime-switching framework, consider the familiar

multivariate regression

yt = αst + Bstxt + ut, (4)

where st ∈ S = (1, 2). Asset pricing models impose restrictions on αst . For example, a

factor-based pricing model, such as the Fama-French three-factor model, restricts αst to

be zero. To allow for mispricing uncertainty, following Pástor and Stambaugh (2000) and

Pástor (2000), we specify, in a Bayesian framework, the prior distribution of αst as a normal

distribution conditional on Σst ,

αst|Σst ∼ N

(
0, σ2

α

(
1

(sst)2
Σst

))
, (5)
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where (sst)2 is a suitable prior estimate for the average diagonal elements of Σst . The above

alpha-Sigma link is also explored by MacKinlay and Pástor (2000) in the frequentist set-up.

The numerical value of σα represents an investor’s level of uncertainty about a given model’s

pricing ability. When σα = 0, the investor believes dogmatically in the model, and there is

no mispricing uncertainty. On the other hand, when σα = ∞, the investor believes that the

pricing model is entirely useless.2

To relate αst and Bst to the earlier parameters Est and V st , consider the corresponding

partition

Est =

Est
1

Est
2

 , V st =

V st
11 V st

12

V st
21 V st

22

 . (6)

Under the usual multivariate normal distribution, it is clear that the distribution of yt con-

ditional on xt and st is also normal, and the conditional mean is a linear function of xt.

Hence

E(yt|xt, st) = Est
1 + V st

12 (V st
22 )−1(xt − Est

2 ), (7)

V ar(yt|xt, st) = V st
11 − V st

12 (V st
22 )−1V st

21 . (8)

Therefore, the parameters αst , Bst , and the earlier parameters Est , V st obey the following

relationship:

αst = Est
1 −BstEst

2 , Bst = V st
12 (V st

22 )−1. (9)

The covariance matrix of the regression residual at time t is,

Σst = V st
11 −BstV st

22 (Bst)′. (10)

2We assume that investors have the same prior belief in the pricing ability of an asset pricing model across
bull and bear markets.
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And the returns of the benchmark positions follow a normal distribution,

xt v N(Est
2 , V st

22 ).

The remaining priors are fairly standard and detailed in the appendix. Then, the complete

prior on all the parameters can be written as

p0c(θ) = p0(α
1|Σ1)p0(α

2|Σ2)p0(Σ
1)p0(Σ

2)p0(B
1)p0(B

2)p0(E
1
2)p0(E

2
2)p0(V

1
22)p0(V

2
22)p0(P, Q).

(11)

With the priors given above, the investor forms his posterior belief pc(θ|R) in light of the

data {R : rt, t = 1, . . . , T},

pc(θ|R) ∝ p0c(θ)× pc(R|θ), (12)

where pc(R|θ) is the likelihood of the data.

When the investor solves his expected utility maximization problem, he integrates over

the predictive distribution of the asset returns. Therefore, in a Bayesian decision context,

as also demonstrated by Zellner and Chetty (1965), the predictive densities are of primary

interest. In our case, the predictive distribution of rT+1, rT+2, · · · , rT+T̂ can be computed as

pc(rT+1, rT+2, · · · , rT+T̂ |R) =

∫
θ

pc(rT+1, rT+2, · · · , rT+T̂ |R, θ)pc(θ|R)dθ, (13)

where T̂ is the number of periods of the investor’s investment horizon. For the one-regime

model, we can obtain the predictive distribution by simplifying the above procedure through

dropping the regime-switching part.

The two-regime model is quite parsimoniously specified. Nonetheless, in a high-dimensional

setting, the model can contain hundreds of parameters. For instance, with the Fama-French

25 assets and the three factors, the total number of parameters in the model is 870. In ad-
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dition, the state variable st is not observable. To deal with such complex high-dimensional

models, we propose, for the first time, a Bayesian estimation procedure based on a Gibbs

sampling procedure, a special case of the Markov chain Monte Carlo (MCMC) methods.3

The basic idea of this approach is as follows. First, the model parameters are divided into

a few blocks. Then, draw samples from the conditional densities of each block of the pa-

rameters conditioning on the values of other parameters. In particular, applying the data

augmentation technique, the unobservable state is treated as an unknown parameter and

is simulated conditioning on the other parameters of the model. The sampling procedure

is repeated for a large number of times. After a transient or burn-in period, the Markov

chain is assumed to have converged, and the sampled draws are collected as variates from

the posterior distribution. The detail of our MCMC algorithm is in the appendix. Once we

have the sampled draws from the posterior distribution, it is straightforward to estimate the

parameters, such as the means and variances, and to produce the predictive distribution of

the asset returns.

B. Investing under Regime-switching

Applying the proposed regime-switching model to the data, we find that regime-switching

is statistically present in the US stock market (as shown later in Section 3). So, the question

arises as to how important the regime-switching is from an investor’s portfolio decision point

of view. In this section, we analyze how to make portfolio decisions with the existence of

regime-switching in asset returns.

Following the framework of Pástor and Stambaugh (2000), we consider an investment

universe that contains cash plus n spread positions. The Pástor and Stambaugh set-up

3The MCMC methods are simulation-based methods designed to sample densities that are otherwise
intractable. The methods generate sample draws from the target distribution, the posterior distribution, by
a recursive Monte Carlo sampling process where the transition kernel of this Markov process is constructed
such that its limiting invariant distribution is the target distribution. In the article, we use a special case of
the MCMC method, the Gibbers sampling procedure.

10



defines spread position i, constructed at the end of period t− 1, as a purchase of one asset

coupled with a short sale of an equal amount of another. The two assets are denoted as Li

and Si, and their rates of return in period t are denoted as RLi,t and RSi,t. Then a spread

position of size Xi has a dollar payoff Xi(RLi,t − RSi,t). Since Regulation T requires the

use of margins for risky investments, a constant c > 0 is used to characterize the degree of

margin requirements. The spread position involves at least one risky asset which, without

loss of generality, is designated as asset Li. If the other asset of position i, Si, of size Xi is

risky as well, then (2/c)|Xi| dollars of capital are required. Otherwise, (1/c)|Xi| dollars of

capital are required. For example, if c = 5, the set-up implies a 20% margin. We assume

that there are I spreads that have risky assets on both sides and J spreads that have risky

assets on the long side and the risk-free asset on the short side.

The total capital required to establish the spread positions must be less than or equal to

the investor’s initial wealth at time T , WT . That is,

∑
i∈Λ

(2/c)|Xi|+
∑
i/∈Λ

(1/c)|Xi| 6 WT , (14)

where Λ denotes the set of positions in which Si is risky, or

∑
i∈Λ

2|wi|+
∑
i/∈Λ

|wi| 6 c, (15)

where wi = Xi/WT . Let rt denote an n-vector with i-th element ri,t (= RLi,t − RSi,t) rep-

resenting the return of the i-th risky position at time t. At time T , a buy-and-hold power

utility investor with T̂ investment period solves

max
w

∫ W
(1−γ)

T+T̂

1− γ
pc(rT+T̂ |R)drT+T̂ , (16)

subject to the constraint in equation (15), where pc(rT+T̂ |R) is the predictive density of the
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returns and WT+T̂ is the wealth at T + T̂ when time T wealth WT is assumed to be 1$. More

specifically,

WT+T̂ = (1 + Rf )
T̂ +

I∑
i=1

wiriT+T̂
+

J∑
j=1

wjrjT+T̂
, (17)

where

riT+T̂
= (1+RiLT+1

)(1+RiLT+2
) · · · (1+RiLT+T̂

)−(1+RiST+1
)(1+RiST+2

) · · · (1+RiST+T̂
), (18)

rjT+T̂
= (1 + RjT+1

)(1 + RjT+2
) · · · (1 + RjT+T̂

)− (1 + Rf )
T̂ , (19)

and Rf denotes the rate of return of a riskless asset.

When there is no margin requirement, c = ∞, the first order condition is

∫
[W−γ

T+T̂
rT+T̂ ]p(rT+T̂ |R)drT+T̂ = 0. (20)

Analytical solution does not seem feasible. To solve (16) subject to (15) or to solve (20) nu-

merically, we have to evaluate high dimensional integrals, and Monte Carlo simulation seems

the only tractable approach. Hence, given returns from their predictive density p(rT+T̂ |R),

(16) and (20) can be well approximated by

1

M

M∑
q=1

{
(W q

T+T̂
)1−γ

1− γ

}
, (21)

and
M∑

q=1

{
(W q

T+T̂
)−γrq

T+T̂

}
= 0, (22)

respectively, where W q

T+T̂
= (1 + Rf )

T̂ +
∑I

i=1 wir
q
iT+T̂

+
∑J

j=1 wjr
q
jT+T̂

,

rq
iT+T̂

= (1+Rq
iLT+1

)(1+Rq
iLT+2

) · · · (1+Rq
iLT+T̂

)−(1+Rq
iST+1

)(1+Rq
iST+2

) · · · (1+Rq
iST+T̂

), (23)

12



rq
jT+T̂

= (1 + Rq
jT+1

)(1 + Rq
jT+2

) · · · (1 + Rq
jT+T̂

)− (1 + Rf )
T̂ , (24)

and Rq
iLT+t

, Rq
iST+t

, Rq
jT+t

, t = 1, 2, · · · , T̂ , are the q-th draw and M is the total number of

draws.

The key issue, then, lies in how to draw returns from their predictive density. To obtain

predictive distribution of future returns RiLT+t
, RiST+t

, RjT+t
, we first obtain the excess return

RiLT+t
− RiST+t

and RjT+t
− Rf .

4 Then we obtain the return of the asset on the short side

of the i-th spread, RiST+t
. Finally, we add the excess return RiLT+t

− RiST+t
on RiST+t

and

the excess return RjT+t
− Rf on Rf to obtain the raw return RiLT+t

and RjT+t
. As for the

two-regime model, to obtain the excess return RiLT+t
−RiST+t

, RjT+t
−Rf , and the raw return

RiST+t
, we need to forecast the state in the future first. Now we show how to obtain the states

in the future. For each one of the sample draws of the parameters θ̂ from their posterior

pc(θ|R) and the associated state at the time T , we draw a series of states for the time periods

from T + 1 to T + T̂ according to the two-regime model. Once the state at a future time

period T +t is given, the excess returns RiLT+t
−RiST+t

, RjT+t
−Rf at T +t can be drawn from

the conditional distributions, which are multivariate normal distributions with parameters θ̂.

The raw return RiST+t
can be drawn from its conditional distribution, a normal distribution

with parameters drawn from the posterior p(θS|RS), where RS = (RiSt), i = 1, 2, · · · , I, and

t = 1, 2, · · · , T .

C. Performance Measures

Clearly different predictive distributions may be derived from the one-regime model than

from the two-regime model. Because the investment strategy optimal to one predictive

distribution is not guaranteed to be optimal to the other predictive distribution, two different

optimal investment strategies may be implied. One is optimal to the predictive distribution

4To simplify the notation, we drop the superscript q here.
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derived from the one-regime model. The other is optimal to the predictive distribution

derived from the two-regime model. Once these two different optimal portfolios are derived,

we can evaluate the importance of incorporating regime-switching by gauging the differences

between the two optimal portfolios. If the two optimal portfolios are very different, we

can conclude that the regime-switching has a significant effect on portfolio decisions and

that it is important to incorporate regime-switching. However, the differences cannot be

simply evaluated based on the portfolio weights alone. Because of the correlations among

the payoffs of risky positions, the performance of two portfolio choices can be similar even

when the portfolios are quite different in position-by-position allocations. In this section,

based on Pástor and Stambaugh (2000), we construct an economic measure to gauge the

differences between two portfolios.

A portfolio allocation w2R, which is optimal under the predictive distribution from the

two-regime model (given a certain mispricing uncertainty), is easily computed and implies

an expected utility of u2R, computed by plugging w2R into (21). Another allocation, w1R,

which is optimal under the predictive distribution from the one-regime model (with the same

mispricing uncertainty), gives rise to an expected utility of u1R, computed by plugging w1R

into (21).5 Then the difference between the certainty-equivalent excess returns is

CE = [(1− γ)û2R]
1

1−γ − [(1− γ)û1R]
1

1−γ . (25)

This is the ‘perceived’ certainty-equivalent gain to a power utility investor with a relative risk

aversion coefficient equal to γ when he switches from a belief in the one-regime model to a

belief in the two-regime model.6 In other words, the certainty-equivalent gain is the amount

5Notice that both expected utilities are evaluated based on the same rq
iT+T̂

and rq
jT+T̂

, drawn from the
predictive distribution of the two-regime model, which is the assumed true data-generating process capturing
the fluctuations of the stock market.

6In the same spirit, Fleming, Kirby and Ostdiek (2001) provide a similar but different measure in the
classical framework.
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of loss to the investor when he is forced to hold the portfolio optimal to the one-regime model

yet not optimal to the regime-switching model.

Nevertheless, one potential problem is that the simple buy-and-hold strategy may not

be able to fully capture the economic value of incorporating regime-switching into portfolio

decisions. This is clearly a valid point since optimally exploiting regime-switching may

require re-balancing the portfolio compositions if the original compositions are no longer

optimal with respect to the new expectation of or belief in future regime-switching, based on

newly arrived information.7 But the goal here is to show that there is value in incorporating

regime-switching. If we find that a simple buy-and-hold strategy can already yield substantial

utility gain, that strategy is enough to achieve the goal since it provides a lower bound to the

full value. Of course, if the simply strategy cannot yield a significant value, further studies

on better and more complex strategies are necessary.

7Recent studies such as Aı̈t-Sahalia and Brandt (2001) and Ang and Bekaert (2002) suggest that the
inter-temporal hedging demands are typically very small components of the optimal portfolio allocations.
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II. Empirical Results

In this section, we report the empirical results of applying the proposed methodology in

Section 2 to the data. First, we examine whether there exist bull and bear regimes in the

data. In particular, we provide estimates of the means, variances, covariances, correlations,

betas and alphas for the bull market and the bear market, and show that many of them

can be drastically different across regimes. Second, we illustrate how the bull market and

the bear market switch from one to the other in the history. Finally, we investigate the

economic importance of incorporating regime-switching into portfolio selections in terms of

certainty-equivalent gains.

A. Regimes in Means and Variances

First, the data are the monthly returns of the Fama-French three factors and the Fama-

French 25 portfolios formed on size and book-to-market from July 1963 through December

2002, available from French’s website.8 To visually illustrate how different the means and

variances can be across the bull market and the bear market, we plot the posterior distribu-

tion curves of the means and standard deviations of the Fama-French three factors in Figure

1. It is obvious that there exist two regimes with very different means and volatilities for

the Fama-French three factors. In particular, as shown in graph (c) and (f), one regime has

higher market mean return and lower market volatility than the other regime.

Insert Figure 1 about here.

From now on, we label the regime associated with the lower market return as the bear

market, and the regime associated with the higher market return as the bull market. Table

I reports the means of the Fama-French 25 portfolios and three factors in the bull market

8We are grateful to Ken French for making this data and many others used below available at his website:
www.mba.tuck.dartmouth.edu/pages/faculty/ken.french.
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and the bear market for a variety of mispricing errors σα = 0, 3%, and ∞, respectively.

Generally speaking, whatever the mispricing errors, all assets in the bear market have lower

returns and even negative returns in some cases.9 In particular, the market return is 9.0%

per year in the bull market, but it is -10.4% per year in the bear market. The difference

is -19.4%. The posterior standard deviation (pstd) is 9.9%. Therefore, the market index

performs much better in the bull regime than in the bear regime. In addition, in the bear

market, the size premium almost disappears, becoming a small negative number, -0.1% per

year, but it is 3.4% per year in the bull market. The difference is -3.5% with a pstd of 7.8%.

The difference seems not very significant statistically. The reason is that the pstd for the

mean return in the bear market is very high, 7.3%, although the pstd is only 1.7% in the

bull market. As for the value premium, it is 13.8% per year in the bear regime, but it is

much smaller in the bull market, 2.9% per year. Again, the pstd for the mean return in the

bear market is very high, 7.1%, compared to 1.6% in the bull market.

Insert Table I about here.

As for the Fama-French 25 non-factor assets, they generally have a significantly positive

mean in the bull, with a low pstd, but a negative or a small positive mean in the bear, with

a high pstd. For instance, under a dogmatic belief in the Fama-French three-factor model,

the first asset S1B1 has a negative return of -17.0% per year with a high pstd of 17.2% per

year in the bear, while a significantly positive return of 13.0% per year with a small pstd of

4.1% per year in the bull. As shown by Table I, the results are very similar across different

beliefs in the Fama-French three-factor model.

As for the volatilities, Table II shows that the bear market generally has much higher

volatilities than the bull market across different beliefs in the Fama-French 3-factor model.

For instance, the market volatility is 23.9% per year in the bear while 12.3% per year in the

9The only exception is the value factor, HML, which has a higher return in the bear market.

17



bull, an almost 50% drop. For many other assets, such as the size factor, SMB, the value

factor, HML, and the first Fama-French 25 assets, S1B1, the standard deviations in the bear

market are even more than two times bigger than those in the bull markets. In addition,

the pstd’s of the volatilities (and the pstd’s of the difference in volatilities) are much smaller

than those of the mean returns reported in Table I. This is consistent with the common

belief that variances (and differences in variances) are easier to estimate than means (and

differences in means). As a result, the differences in volatilities are more significant than the

differences in means across bull and bear markets.

Insert Table II about here.

B. Regimes in Covariances, Correlations, Betas and Alphas

Recently, there have been a number of studies on asymmetric co-movements between

asset returns and market indices that suggest stocks move more often with the market

when the market goes down than when it goes up. In this paper, we examine whether the

co-movements of the returns of non-factor assets with the Fama-French three factors are

different across bull and bear markets. We first consider the differences in covariances across

the bull market and the bear market since covariances are usually direct inputs of parameters

for optimal portfolio choice.10 Then, we examine the differences in correlations across regimes

because of the importance of correlations from the risk management perspective of hedging

exposures. Finally, we analyze betas (and also alphas) since they are closely related to asset

pricing theories.

First, we consider the differences in the covariances between the Fama-French 25 assets

and the Fama-French three factors across the bull and bear markets. Table III reports

the covariances with the Fama-French three factors under a diffuse prior belief in the Fama-

10Chamberlain (1983) and Owen (1983) investigate the distributions that imply mean-variance analysis.
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French 3-factor model.11 From the third and fourth columns, we can see that the covariances

with the market portfolio are generally three to four times larger in the bear market than

in the bull market. In addition, the differences in covariances across bull and bear markets

are significant since the pstd’s are relatively small compared to the mean differences. For

instance, the covariance between the market index and S1B1, the first Fama-French 25 asset,

is on average 56.1% higher in the bull market than in the bear market. This mean difference

in covariance is almost four times the pstd of 15.6%, the biggest pstd of the differences in

covariances across bull and bear markets. As for the covariances with the size factor SMB,

as shown by the seventh and eighth columns, the covariances are in general three to five

times larger in the bear market than in the bull market except for the last two assets, S5B4

and S5B5. In addition, the difference becomes less significant when the size increases. For

instance, the difference is 5.7% while the pstd is 4.7% for S5B1.

Insert Table III about here.

The second and third columns from the right report the covariances with the value factor

HML for the bear market and the bull market, respectively. In each of these two columns,

from the top to the bottom, the covariances in general increase from a bigger negative number

to a smaller negative number or a small positive number for each group of five assets within

the same size category and with the book-to-market from low to high. However, the spread

of the covariances in the bear market is much wider than that in the bull market for each of

the five groups. For example, for the largest size group, the covariances increase from -20%

to 7% in the bear market but only increase from -4.8% to 0.5% in the bull. In addition, the

difference across regimes becomes less significant within the same size category and with the

book-to-market from low to high.

11We omit the very similar results under informative priors on the Fama-French three-factor model, results
that may be due to the fact that the priors on pricing ability are primarily about the expected returns and
not much about the volatilities and covariances.
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Secondly, Table IV and Table V report the correlations and betas with the three fac-

tors under a diffuse prior belief in the Fama-French three-factor model.12 Unlike the large

differences across regimes in the covariances, the correlations and the betas between the

Fama-French 25 assets and the three factors are quite similar across the bull market and the

bear market. For instance, the correlation between S1B1, the asset with the smallest size

and book-to-market, and the market portfolio is 0.783 in the bull and 0.784 in the bear.

Insert Table IV about here.

Insert Table V about here.

Finally, we consider the mispricing α’s. If the investor has a dogmatic belief in the Fama-

French three-factor model in the bull/bear market, then the data will not be able to change

his prior belief. Therefore we have zero posterior mispricing α’s in both the bull market and

the bear market. This is illustrated by the third and fourth columns in Table VI. However,

when the investor has a undogmatic or even a diffuse prior on the pricing ability of the

Fama-French three-factor model, then he will update his prior in light of the data to form

his posterior distribution of the mispricing α’s.

Insert Table VI about here.

In general, the mispricing α’s are significant in many cases in the bull with low pstd’s,

while they are less significant in the bear because of high pstd’s. In addition, the differences

in the mispricing α’s are not very significant because of high pstd’s as well. Over all, the bull

and bear markets are very different in variances and covariances, though less significantly

different in means, correlations, betas and mispricing α’s.

C. How do the Bull and Bear Markets Switch from One to the Other?

12Again, we omit the very similar results under informative priors on the Fama-French three-factor model.
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Knowing the bull and bear markets are very different from each other in volatilities and

means, we now turn our attention to examining how they switch from one to the other.

Because the regime-switching is not observable, we assume that the investor has a diffuse

prior on the probability of switching between the bull market and the bear market before

looking at the data. Then he updates his prior based on the observed data to obtain the

posterior using the Bayesian rule. Under a diffuse prior on the probability of switching

between the two regimes, the probabilities of switching from the bull to the bear and from

the bear to the bull are both 50%. Because there are only two states, the prior probabilities

of staying in the bull and bear market are both 50% as well.13 In light of the data, the Fama-

French three factors from July 1963 through December 2002, the probability of staying in

the bull increases from 50% to 92.6%, while the probability of staying in the bear increases

from 50% to 74.4%, as shown in Panel A of Table VII. Correspondingly, the probability of

switching from the bull to the bear drops from 50% to only 7.4%, while the probability of

switching from the bear to the bull drops from 50% to 25.74 %. Therefore, the two regimes

are persistent, in particular for the bull market.14 In contrast, the iid one-regime model does

not capture this serial dependence in the time series. As a result, besides the significant

difference in variances, covariances, and mean returns across the states, this persistence of

regimes may also add to the superiority of the regime-switching model to the one-regime

model.

Insert Table VII about here.

13There are some related articles about regime changes. For example, Pesaran and Timmermann (1995),
Pastor and Stambaugh (2001), and Bekaert, Harvey and Lumsdaine (2002), find that the asset return
dynamics are unstable and subject to possible structural breaks. But their studies examine irreversible
regime-switching or structural shifts where the data cannot switch back to a regime once they have left. In
this article, the data can switch back to a regime, such as a bear market, after switching to another regime,
such as a bull market, and staying in the bull market for certain periods.

14Das and Uppal (2001) model jumps in correlation using a continuous time jump model when international
equity returns are affected by correlated jumps across countries. However, their approach with transitory
jumps cannot capture the persistence of the bull and bear markets.
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In Figure 2, we plot the empirical probability of being in the bear market from July

1963 through December 2002. We compute this probability by dividing the number of draws

associated with the bear market by the number of total sample draws. This figure shows

that almost all the recession periods, between a NBER peak and the following NBER trough,

have high bear market probabilities. This coincidence of recessions and bear markets implies

that we usually have a bear market during the bad times of the US economy.15 However,

there are quite a few short periods associated with high bear market probabilities but not

classified as NBER recessions. One possible reason may be that stock markets also react to

sectoral or shorter-lived contractions in the economy not designated recessions by the NBER

dating, and so the frequency of stock market fluctuations between bull and bear markets

can be higher than that of economy fluctuations between expansions and contractions. In

addition, from Figure 2, it seems that bear markets are also likely to occur during some

extreme events, such as the oil price shocks in the 1970s, the October 1987 stock market

crash, and the 1997 Asian flu.16

Insert Figure 2 about here.

D. Performance Measures

In this section, we examine the economic costs of ignoring regime-switching in asset

returns. We assume that the power utility maximizing investor has a relative risk aversion

equal to 5. Table VIII reports the percentage points of u2R − u1R, referred to as certainty-

equivalent gains in the table. The certainty-equivalent gain is the “perceived” gain of utilizing

15Hamilton and Lin (1996) find that economic recessions are the single largest factor driving the variances
of stock returns. Bry and Boschan (1971) and the applications of their approach in King and Plosser (1994),
Watson (1994), and Harding and Pagan (2002) detect turning points in business cycles.

16Santa-Clara and Valkanov (2003) find that the excess return in the stock market is higher under De-
mocratic than Republican presidencies, and there is no difference in the riskiness of the stock market across
presidencies that could justify a risk premium. Therefore, they conclude that the difference in returns
through the political cycle is a puzzle.
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regime-switching or the loss to the investor when he is forced to hold the portfolio optimal

in the one-regime model that may be no longer optimal in the regime-switching model.

With varying degrees of pricing errors on the Fama-French three-factor model, columns

2, 3, and 4 of Panel A of Table VIII report the gains for a variety of investment horizons

from one month to 12, 36, and 60 months, respectively, in the case of constant transition

probabilities (C-RS). It is seen that, without margin requirements (c = ∞), the gains can be

fairly large. With a 36-month horizon and a diffuse belief on the Fama-French three-factor

model, the gain is 65.6%. When the investment horizon is shortened from 60 months to 12

months, the gain becomes 12.0%, smaller but still significant. With a dogmatic belief in

the Fama-French three-factor model, the gain shrinks further to 1.4%. In additon, the gain

is 18.9% with a modest 3% mispricing uncertainty on the Fama-French three-factor model

when the Fama-French 3-factor model is not assumed either useless or 100% correct.

Insert Table VIII about here.

Now we consider the results when margin requirements are imposed. With a 20% margin

requirement (c = 5), the gains become much smaller in general, as shown by the columns

2, 3 and 4 of Panel D of Table VIII. However, the gains are still significant in most cases.

For instance, with a 12-month horizon and 3% mispricing uncertainty on the Fama-French

three-factor model, the gain is 5.3%, certainly a significant number, though not so impressive

as 18.9% in the case of no constraint. Overall, these results show that it is too costly to

ignore the regime-switching in the Fama-French three factors when the investment universe

consists of the Fama-French three factors and the Fama-French 25 assets.17

17A noteworthy fact is that the regimes in the non-factor Fama-French 25 portfolios are assumed to be
the same as the regimes of the three factors. Although it is possible that the regimes of the Fama-French
25 portfolios are different from the regimes of the three factors, the difference between the regimes of the
Fama-French 25 assets and those of the three factors may be primarily driven by idiosyncratic forces. In
this article, we focus on the regime-switching in the Fama-French three factors, which can be consider as a
proxy for the ‘systematic’ regime-switching in the US stock market.
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Now we examine the sensitivity of the above results on the economic value of incorpo-

rating regime-switching to alternative investment universes. For this purpose, we apply the

above analysis to two alternative investment universes. The first consists of the Fama-French

three factors and the 10 Center for Research in Security Prices (CRSP) size portfolios. The

second consists of the Fama-French three factors and the Fama-French’s 17 industry port-

folios. The columns 2, 3, and 4 of Panel B and C of Table VIII report the gains without

margin requirements for the two alternative investment universes, respectively. In general,

the gains for the two alternative investment universes are smaller than those for the Fama-

French 25 assets. For instance, the largest gains are 17.7% and 68.5% for the 10 CRSP

size portfolios and the Fama-French’s 17 industry portfolios, respectively, while the largest

gain is 307.5% for the Fama-French 25 assets. Nevertheless, the gains are in general still

economically important. For instance, at a 12-month horizon and with a 3% mispricing

error on the Fama-French 3-factor model, the gain for the 10 CRSP size portfolios is 3.7%,

and the gain for the Fama-French’s 17 industry portfolios is 12.2%. In addition, columns

2, 3 and 4 of Panel E and F of Table VIII report the gains with a 20% margin for the two

alternative investment universes, respectively. It is easy to see that, with a 20% margin

requirement, the gains are smaller but, in general, still significant. Hence, we can conclude

that it is too costly to ignore the regime-switching in the Fama-French three factors when

the investment universe consists of the Fama-French three factors and any of the three sets

of assets, the Fama-French 25 assets, the 10 CRSP size portfolios, or the Fama-French’s 17

industry portfolios.

III. Time-varying Transition Probabilities

The constant transition probabilities assumption in the above analysis can be relaxed

to allow the transition probabilities to be time-varying to capture investors’ information

on state transition probabilities. For parsimony, following Perez-Quiros and Timmermann
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(2000), we use a simple summary statistic to predict the future transition probabilities as

follows:

Π =

 Pt 1− Pt

1−Qt Qt

 , (26)

where Pt = Pr(st = 1|st−1 = 1) = 1
1+exp(a1+b1LEIt−2)

, Qt = Pr(st = 2|st−1 = 2) =

exp(a2+b2LEIt−2)
1+exp(a2+b2LEIt−2)

, and LEIt−2 is the two-month lagged value of the Leading Indicator re-

ported by Conference Board.

We cast the problem into a regression setting and assume the priors on model parameters

to be the same as their counterparts assumed in the case of constant transition probabilities.

In addition, we assume a diffuse prior, p0(a1, b1, a2, b2), to be the prior on regime-switching

transition probabilities parameters. Hence, the complete prior on all the parameters can be

written as:

p0v(θ) = p0(α
1|Σ1)p0(α

2|Σ2)p0(Σ
1)p0(Σ

2)p0(B
1)p0(B

2) (27)

× p0(E
1
2)p0(E

2
2)p0(V

1
22)p0(V

2
22)p0(a1, b1, a2, b2). (28)

With the priors given above, the investor forms his posterior belief pv(θ|R) in light of the

data {R : rt, t = 1, . . . , T},

pv(θ|R) ∝ p0v(θ)× pv(R|θ), (29)

where pv(R|θ) is the likelihood of the data. Then, the predictive distribution of rT+1, rT+2, · · · , rT+T̂

can be computed as

pv(rT+1, rT+2, · · · , rT+T̂ |R) =

∫
θ

pv(rT+1, rT+2, · · · , rT+T̂ |R, θ)pv(θ|R)dθ. (30)

As in the constant transition probabilities case, the key issue lies in how to draw re-

turns from the predictive density when solve (17) subject to (15) or to solve (21) numeri-

25



cally in the portfolio optimizations. To obtain a predictive distribution of future returns,

RiLT+t
, RiST+t

, RjT+t
, again, we first need to obtain the excess returns, RiLT+t

− RiST+t
and

RjT+t
− Rf . Then we obtain the return of the asset on the short side of the i-th spread,

RiST+t
. Finally, we add the excess return RiLT+t

− RiST+t
to RiST+t

and the excess return

RjT+t
− Rf to Rf to obtain the raw returns RiLT+t

and RjT+t
. To obtain the excess return

RiLT+t
− RiST+t

, RjT+t
− Rf and the raw return RiST+t

, we need to forecast the state in the

future first. Once the state at a future time period T + t is given, we can draw the excess

returns RiLT+t
−RiST+t

, RjT+t
−Rf at T + t from their conditional distributions, which are

multivariate normal distributions with parameters drawn from the posterior pv(θ|R). Then

we can draw the raw return RiST+t
from its conditional distribution, a normal distribution

with parameters drawn from the posterior p(θS|RS), where RS = (RiSt), i = 1, 2, · · · , I, and

t = 1, 2, · · · , T .

Now we show how to obtain the states in the future in the case of time-varying transition

probabilities. We must first forecast the values of the Leading Indicator in the future to

determine the transition probabilities and the states in the future. We assume that the

Leading Indicator follows an autocorrelation process:

Lt = a + bLt−1 + εt, (31)

where εt ∼ N(0, σ2). Then, we can simulate M sample draws from the posterior distribution
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of the parameters (a, b, σ2). In addition, we have,

LT+1 = a + bLT + εT+1,

LT+2 = a + ba + b2LT + εT+2 + bεT+1,

...

LT+T̂ = (1 + b + b2 + · · ·+ bT̂−1)a + bT̂ LT + εT+T̂ + bεT+T̂−1 + · · ·+ bT̂−2εT+2 + bT̂−1εT+1.

(32)

Therefore, LT+t is normally distributed with the mean and variance given by

µLT+t
= (1 + b + b2 + · · ·+ bt−1)a + btLT , (33)

ΣLT+t
= (1 + b2 + b4 + · · ·+ b2(t−1))σ2, (34)

where t = 1, 2, · · · , T̂ . Given each set of values of the M draws of the parameters (a, b, σ2),

we can simulate a series of LT+1, LT+2, · · · , LT+T̂−2 for the fixed historical value of LT . Then,

we can obtain the transition probabilities at time period t = T + 1, T + 2, · · · , T + T̂ from

the formulas Pt = Pr(st = 1|st−1 = 1) = 1
1+exp(a1+b1LEIt−2)

and Qt = Pr(st = 2|st−1 =

2) = exp(a2+b2LEIt−2)
1+exp(a2+b2LEIt−2)

. Then, based on the state at time T and the series of time-varying

transition probabilities obtained as above, we draw a series of states for the time periods

from T + 1 to T + T̂ .

In Panel B of Table VII, we report the estimates to the parameters in (26). Both b1 and

b2 are positive. This finding implies that a higher level of LEI indicates a higher probability

to stay in the bull market (State 2) and a lower probability to stay in the bear market

(State 1). Because there are only two regimes, it also implies that a higher level of LEI

indicates a lower probability of switching from the bull market to the bear market and a

higher probability of switching from the bear market to the bull market. In addition, in
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Panel C of Table VII, we report the estimates to the parameters in (31), the autocorrelation

process of the Leading Indicator. The positive value of b indicates that the Leading Indicator

is positively correlated with its one period lag.

Recall that in the case of constant transition probabilities, the two regimes are persistent.

In particular, the bull market is highly persistent, since the probability of staying in the bull

is 92.6%, as shown in Panel A of Table VII. When the transition probabilities are allowed

to be time-varying and determined by LEI through (26), at each time period t, we obtain

one sample for the probability of staying either in the bear market or in the bull market

by plugging a draw from the posterior of a1, b1, a2, b2 and the historical data LEIt−2 into

(26). Then, we obtain the posterior mean of the probability of staying in either the bear

market or in the bull market at the time period t by taking the average of the samples. The

two graphs in Figure 3 present the time series of the posterior means of the probabilities of

staying in the bear market (Graph (a) ) and the bull market (Graph (b) ) from July 1963

through December 2002. As shown by Graph (b) of Figure 3, the probability of staying in

the bull market is quite stable. It slightly fluctuates between the lower 90% and the middle

90%. The only huge drop is around 1980, probably due to the recession in the early 1980s.

In addition, as shown by Graph (a) of Figure 3, while the probability of staying in the bear

market is less stable and fluctuates over a wider range between the vicinities of 60% and

75%, it is always above 50%. Therefore, the two regimes are still persistent when transition

probabilities are not assumed constant but allowed to be time-varying, in particular for the

bull market.

Insert Figure 3 about here.

Now, we examine the economic costs of ignoring regime-switching in asset returns in the

case of time varying transition probabilities. We assume, as before, that the power utility

maximizing investor has a relative risk aversion equal to 5. Columns 5, 6, and 7 of Table
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VIII report the percentage points of u2R − u1R, referred to as certainty-equivalent gains in

the table, in the case of time-varying transition probabilities (T-RS). Again, the certainty-

equivalent gain is the “perceived” gain of utilizing the regime-switching, or the amount of

loss to the investor when he is forced to hold the portfolio that is optimal in the one-regime

model.

With varying degrees of pricing errors on the Fama-French three-factor model, the first

panel reports the gains for different investment horizons in the case of T-RS, respectively.

Similar to the case of C-RS, the gains in the case of T-RS, without margin requirements

(c = ∞), can be fairly large. With a 60-month horizon and a diffuse belief on the Fama-

French three-factor model, the gain can be as high as 75.1% in the case of T-RS. When

the investment horizon is shortened from 60 months to 12 months, the gain becomes 9.4%,

smaller but still significant. With a dogmatic belief in the Fama-French three-factor model,

the gains shrink further, to 0.9%. In addition, when there is a modest 3% pricing error

on the Fama-French three-factor model, the gain is 6.9%. With a 20% margin requirement

(c = 5), the gains become much smaller in general, as shown by columns 5, 6 and 7 of

Panel D of Table VIII. However, the gains are still significant in many cases, in particular

when the investment horizon is 36 or 60 months. For instance, with a 60-month horizon

and 3% mispricing uncertainty on the Fama-French 3-factor model, the gain can be as high

as 26.5%. In addition, we examine the sensitivity of the above results on the economic

value of incorporating regime-switching to the use of alternative investment universes in

the case of T-RS. For this purpose, again, we apply the above analysis to two alternative

investment universes. The first consists of the Fama-French three factors and the 10 CRSP

size portfolios. The second consists of the Fama-French three factors and the Fama-French’s

17 industry portfolios. Columns 5, 6 and 7 of Panel B and C of Table VIII report the gains

without margin requirements for these two alternative sets of assets, respectively, in T-RS. In

general, similar to C-RS, the gains for 10 CRSP size portfolios and Fama-French’s 17 industry
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portfolios are smaller than those for the Fama-French 25 assets. However, the gains, such as

10.7% and 43.4%, are still economically important in general. For instance, the largest gains

are 10.7% and 43.4% for the 10 CRSP size portfolios and the Fama-French’s 17 industry

portfolios, respectively, while the largest gain is 134.4% for the Fama-French 25 assets. In

addition, columns 5, 6 and 7 of the Panel E and F report gains with a 20% margin for the

two investment universes, respectively, in T-RS. With a 20% margin requirement, the gains

are still significant in T-RS in many cases, in particular for the 36-month and the 60-month

investment horizons. For instance, at the 60-month horizon and with a 3% mispricing error

on the Fama-French three-factor model, the gain for Fama-French’s 17 industry portfolios is

19.2% in T-RS.

Therefore, we can conclude that, in general, it is too costly to ignore regime-switching

in the Fama-French three factors when the investment universe consists of the Fama-French

three factors and any one of the three sets of assets, the Fama-French 25 assets, the 10

CRSP size portfolios or Fama-French’s 17 industry portfolios, whether we assume constant

transition probabilities or time varying transition probabilities.18

IV. Conclusions

Many important empirical questions in finance are studied under a one-regime assumption

for the underlying data generating process, though investors have long recognized that the

market’s movements are more like bull and bear markets. The question is how investors can

incorporate the shifts in returns into their portfolio decision making. We propose a Bayesian

framework for the decision problem under a regime-switching model. Our framework cap-

tures not only the regime-switching feature of the data but also the asset pricing model

18Overall, we have found that the other results of time-varying transition probabilities compared to those
of constant transition probabilities are in general very similar. For instance, the bull and bear markets are
very different in variances and covariances in the case of time varying transition probabilities. To save the
space, however, we do not report those similar results, which are available from the authors upon request.
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uncertainty and the parameter estimation uncertainty associated with investors’ portfolio

decisions. In addition, our method provides an exact inference on parameter and on esti-

mating functions of interest that might otherwise be impossible in the classical framework.

Therefore, it applies to a large number of assets that better represent invertors’ investment

opportunities.

Applying the proposed approach to the data, we find that risks and returns vary greatly

across bull and bear markets. For instance, the bull regime has a much higher market return

than the bear regime with an average annual difference of 19.4%! Besides this strong evidence

of the existence of regimes, we also find that, in terms of the certainty-equivalent (CE)

measure, the CE loss to an investor who is forced to hold the portfolio that is optimal under

a one-regime model is substantial, suggesting that the incorporation of regime-switching is

very important from an investment perspective.
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Appendix A: Predictive Distribution

We first show the procedure to simulate samples from the predictive distribution in the

two-regime model with constant transition probabilities in Appendix A. In Appendix B, we

show the necessary adjustments for simulating samples from the predictive distribution when

transition probabilities are time-varying. Because the historical states are not observable,

we first show how to simulate these states based on our proposed model. Based on Chib

(1996), we simulate states from the joint posterior conditional density of states conditioning

on θ = [(αi, Bi, Σi, Ei
2, V

i
22, i = 1, 2), P,Q]:

p(ST |XT , θ) = p(sT |XT , θ)× · · · × p(st|XT , St+1, θ)

× · · · × p(s1|XT , S2, θ),

(A1)

where St+1 = (st+1, . . . , sT ), and XT = (X1, X2, · · · , XT ), the historical returns of the Fama

and French’s (1993) three factors. By Bayes theorem,

p(st|XT , St+1) ∝ p(st|Xt, θ)× f(X t+1, St+1|Xt, st, θ)

∝ p(st|Xt, θ)× p(st+1|st, θ)× f(X t+1, St+2|Xt, st, st+1, θ)

∝ p(st|Xt, θ)× p(st+1|st, θ),

(A2)

since f(X t+1, St+2|Xt, st, st+1, θ) is independent of st, where X t+1 = (xt+1, . . . , xT ) and Xt =

(x1, . . . , xt). To obtain p(st|Xt, θ), we first have a prediction step. By the law of total

probability,

p(st|Xt−1, θ) =
2∑

k=1

p(st|st−1 = k, θ)× p(st−1 = 1|Xt−1, θ), (A3)

since p(st|Xt−1, st−1, θ) = p(st|st−1, θ). Then, we have a update step. By Bayes theorem,

p(st|Xt, θ) ∝ p(st|Xt−1, θ)× f(yt|Xt−1, θst). (A4)

Initialize the prediction and update steps by setting p(s1|X0, θ) to be the stationary distribu-

tion of the chain and then recursively compute the mass function p(st|Xt, θ), t = 1, 2, . . . , T.

Now we can simulate the last state sT from the mass function p(sT |XT , θ). Then simulate
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sT−1, sT−2, . . . , s1 backward from

p(st|XT , St+1) ∝ p(st|Xt, θ)× p(st+1|st, θ), t = T − 1, T − 2, . . . , 1. (A5)

Assume that we have Q different draws of states Sq = (sq
1, s

q
2, · · · , sq

T ), where q =

1, 2, · · · , Q. For each draw of states, we group the data into two sets, R1 and R2, ac-

cording to the states associated, where Ri = {Y i, X i}, i = 1, 2, Y i = {yt|sq
t = i}′, a T i ×m

matrix, T i is the number of observations in data set Ri, X i = {xt|sq
t = i}′, a T i × k matrix.

In addition, define Zi = (ιiT X i), a T i× (k +1) matrix, where ιiT denotes a T i-vector of ones.

Also define Ai = (αi, Bi)′, a (k+1)×m matrix and ai = vec(Ai). Then the regression model

(4) can be written as

Y i = ZiAi + U i, (A6)

where U i = {ut|sq
t = i}′, a T i×m matrix. Conditioning on each draw of states, the likelihood

function of Ri can be factored as

p(Y i, X i | Ei, V i) = p(Y i | Ai, Σi, X i)p(X i | Ei
2, V i

22), (A7)

where

p(Y i | Ai, Σi, X i) ∝ |Σi|−
T
2 exp

{
−1

2
tr
[
(Y i − ZiAi)′(Y i − ZiAi)(Σi)−1

]}
∝ |Σi|−

T
2 exp

{
−T

2
trΣ̂i(Σi)−1 − 1

2
tr

((
Ai − Âi

)′
(Zi)′Zi

(
Ai − Âi

)
(Σi)−1

)}
∝ |Σi|−

T
2 exp

{
−T

2
trΣ̂i(Σi)−1 − 1

2
tr
[(

ai − âi
)′ (

(Σi)−1 ⊗ (Zi)′Zi
) (

ai − âi
)]}

,

(A8)

and

p(X i | Ei
2, V i

22) ∝ |V i
22|−

T
2 exp

{
−1

2
tr
(
(X i − ιT i(Ei

2)
′)′(X i − ιT i(Ei

2)
′)
)
(V i

22)
−1

}
∝ |V i

22|−
Ti

2 exp

{
−T

2
trV̂22

i
V −1

22 − T i

2
tr

((
Ei

2 − Ê2

i
)(

Ei
2 − Ê2

i
)′

(V i
22)

−1

)}
,

(A9)
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The joint prior distribution of all parameters is

p0(θ) = p0(α
1|Σ1)p0(α

2|Σ2)p0(Σ
1)p0(Σ

2)p0(B
1)p0(B

2)p0(E
1
2)p0(E

2
2)p0(V

1
22)p0(V

2
22)p0(P, Q),

(A10)

where

p0(α
i|Σi) ∝ |Σi|−

1
2 exp

{
−1

2
(αi)′

(
σ2

α

(si)2
Σi

)−1

(αi)

}
, (A11)

p0(Σ
i) ∝ |Σi|−

νΣ+m+1

2 exp

{
−1

2
trH i(Σi)−1

}
, (A12)

p0(B
i) ∝ 1, (A13)

p0(E
i
2) ∝ 1, (A14)

p0(V
i
22) ∝ |V i

22|−
k+1
2 , (A15)

H i = (si)2(νΣ − m − 1)Im, νΣ = 30, (si)2 = tr((Y i − ZiÂi)′(Y i − ZiÂi)/T i)/m, Âi =

((Zi)′Zi)(Zi)′Y i, and we assume that the prior distribution of (P, 1 − P ), independent of

(1−Q,Q), is a Dirichlet on the two-dimensional simplex, i.e.,

(P, 1− P ) v D(1, 1), (A16)

and

(1−Q, Q) v D(1, 1).

In addition, consider the transformation

(αi)′
(

σ2
α

(si)2
Σi

)−1

αi = (ai)′
(
(Σi)−1 ⊗Di

)
ai, (A17)

where ai = vec(Ai) and Di is a (k + 1)× (k + 1) matrix whose (1, 1) element is (si)2/σ2
α and

whose other elements are all zero. Then, it follows that the likelihood in (A7)− (A9) can be

combined with the prior in (A11)− (A16) to obtain the posterior distribution

p(E, V, P, Q|R) ∝ p(R|E, V, P, Q)p0(E, V, P, Q).

Because both the likelihood function conditioning on the states and the prior can be

38



factored into two independent parts on (ai, Σi) and (Ei
2, V

i
22), respectively. Therefore, the

posteriors on (ai, Σi) and (Ei
2, V

i
22) are independent as well. Hence, the joint posterior of the

regression parameters is

p(ai, Σi |Ri) ∝ |Σi|−
k+1
2 exp

{
−1

2
(ai)′

(
(Σi)−1 ⊗Di

)
ai − 1

2
tr
((

ai − âi
)′ (

(Σi)−1 ⊗ (Zi)′Zi
) (

ai − âi
))}

× |Σi|−
Ti+νΣ+m−k+1

2 exp

{
−1

2
tr
(
H i + T iΣ̂i

)
(Σi)−1

}
.

(A18)

Let F i = Di + (Zi)′Zi, and Qi = (Zi)′Zi − (Zi)′Zi(F i)−1(Zi)′Zi. By completing the square

on ai, we have

p(ai, Σi |Ri) ∝|Σi|−
k+1
2 exp

{
−1

2

[(
ai − ãi

)′ (
(Σi)−1 ⊗ F i

) (
ai − ãi

)]}
× |Σi|−

Ti+νΣ+m−k+1

2 exp

{
−1

2
tr
(
H i + T iΣ̂i + (Âi)′QiÂi

)
(Σi)−1

}
,

(A19)

where ãi = (Im ⊗ (F i)−1(Zi)′Zi) âi. Hence,

(Σi)−1 |R ∼ W

(
T i + νΣ − k,

(
H i + T iΣ̂i + (Âi)′QiÂi

)−1
)

, (A20)

and

ai | (Σi)−1, Ri ∼ N
(
ãi, Σi ⊗ (F i)−1

)
. (A21)

In addition, the joint posterior distribution of Ei
2 and V i

22 is

p
(
Ei

2, V i
22|Ri

)
∝ |V i

22|−
Ti+k+1

2 exp

{
−T i

2
trV̂22

i
(V i

22)
−1 − T i

2
tr

((
Ei

2 − Ê2

i
)(

Ei
2 − Ê2

i
)′

(V i
22)

−1

)}
.

(A22)

As a result, we have

(V i
22)

−1 |Ri ∼ W

(
T i − 1,

(
T iV̂22

i
)−1
)

(A23)

and

Ei
2 | V i

22, Ri, ∼ N

(
Ê2

i
,

1

T i
V i

22

)
. (A24)

Finally, the posterior distributions of P, Q are,

(P, 1− P ) v D(S11 + 1, S12 + 1), (A25)
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and

(1−Q, Q) v D(S21 + 1, S22 + 1),

where Sij, i, j = 1, 2, is the total number of one-step transitions from state i to state j in

each draw of states. To carry out the posterior evaluation, we draw samples from the joint

posterior distribution as follows:

1) draw a series of states S according to (A1) to (A5),

2) (Σi)−1 |R ∼ W

(
T i + νΣ − k,

(
H i + T iΣ̂i + (Âi)′QiÂi

)−1
)

,

3) ai | (Σi)−1, Ri ∼ N (ãi, Σi ⊗ (F i)−1),

4) (V i
22)

−1 |Ri ∼ W

(
T i − 1,

(
T iV̂22

i
)−1
)

,

5) (V i
22)

−1 |R ∝ W

(
T − 1,

(
T V̂22

i
)−1
)

,

6) Ei
2 | V i

22, Ri, ∼ N
(
Ê2

i
, 1

T i V
i
22

)
,

7) (P, 1− P ) v D(S11 + 1, S12 + 1), and, (1−Q, Q) v D(S21 + 1, S22 + 1),

8) Repeat steps 1)− 7).

We can, following Geweke and Zhou (1996), start the above Gibbs sampling procedure

from any arbitrary initial value in the support of the posterior density. Let g = M + Q

denote the total number of iterations of the above loop. To eliminate the impact of the

initial value, we disregard the first M draws of the burning period, and use the other Q

draws as the draws from the predictive distribution.
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Appendix B: Predictive Distribution with Time-varying Transition Probabilities

The likelihood function and the prior on (αi, Bi, Σi, Ei
2, V

i
22)

2
i=1 are the same as those in

the above section for the two-regime model with constant transition probabilities. The only

difference here is that we allow the transition probabilities to be time-varying and determined

by the LEI through Pt = Pr(st = 1|st−1 = 1) = 1
1+exp(a1+b1LEIt−2)

and Qt = Pr(st = 2|st−1 =

2) = exp(a2+b2LEIt−2)
1+exp(a2+b2LEIt−2)

. We assume a multivariate normal distribution N(0, 50I) to be the

prior on a1, a2, b1, b2, where I is a 4 × 4 identity matrix and 0 is a 4 × 1 zero vector. The

number 50 is big enough to make the prior on the location of a1, a2, b1, b2 to be not restrictive.

Then, an important sampling method is used to obtain the draws of a1, a2, b1, b2 as follows.

First, obtain the maximum likelihood estimate of a1, a2, b1, b2 by maximizing the likelihood

function, L =
∑T

t=1 pt, where pt = Pr(st = Sq
t |st−1 = Sq

t−1). Then, we draw a sample from

a multivariate normal distribution N(b̂, V̂b), where b̂ = argmaxL and V̂b is the information

matrix of L. Compare this draw with b̂, and keep the one which has the higher value when

plugged into the posterior distribution of a1, a2, b1, b2 which is obtained by combining the

likelihood function, L, and the prior on a1, a2, b1, b2. The rest of the parameters are drawn

through the corresponding procedures listed in the above section.
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Table VII: Estimates of Some Parameters

Panel A of this table presents the posterior means and the posterior standard deviations (in the parentheses)
of the constant transition probabilities, P and Q. In the two-regime model with constant transition proba-
bilities (C-RS), at any given time t, the underlying state st can be either 1 or 2. The transition probabilities
are determined as follows:

Π =

(
P 1− P

1−Q Q

)
,

where P = Pr(st = 1|st−1 = 1) and Q = Pr(st = 2|st−1 = 2). Panel B presents the posterior means and the
posterior standard deviations (in the parentheses) of the parameters, a1, b1, a2, and b2, in the two-regime
model with time-varying transition probabilities (T-RS). When the transition probabilities are time-varying,
they are defined as follows:

Π =

[
Pt 1− Pt

1−Qt Qt

]
,

where Pt = Pr(st = 1|st−1 = 1) = 1
1+exp(a1+b1LEIt−2)

, Qt = Pr(st = 2|st−1 = 2) = exp(a2+b2LEIt−2)
1+exp(a2+b2LEIt−2)

,
and LEIt−2 is the two-month lagged value of the Leading Economic Indicator (LEI) reported by Conference
Board. Panel C presents the posterior means and the posterior standard deviations (in the parentheses) of the
parameters, a, b, and σ2, in the process of LEI. We assume that the process of LEI follows an autocorrelation
process:

Lt = a + bLt−1 + εt,

where εt ∼ N(0, σ2).

Panel A: Transition Probabilities in C-RS

P (std) Q (std)
0.926 (0.028) 0.744 (0.075)

Panel B: Parameters of the Transition Probabilities in T-RS

a1 (std) b1 (std) a2 (std) b2 (std)
-0.899 (0.476) 0.265 (0.740) 2.963 (0.397) 0.379 (0.569)

Panel C: Parameters in the LEI Process

a (std) b (std) σ2 (std)
0.068 (0.022) 0.313 (0.044) 0.222 (0.015)



Table VIII: Utility Gains of Incorporating Regime-switching

This table presents the utility gains (in percentage points) of incorporating regime-switching when the
transition probabilities are constant (C-RS) or time-varying (T-RS), with mispricing uncertainty σα = 0,
3%, or ∞, on the Fama-French 3-factor model. The investment horizons are 1-month, 12-month, 36-month,
and 60-month, respectively. The are three alternative investment opportunity sets. The first investment
opportunity set consists of the Fama-French three factors and the Fama-French 25 book-to-market and size
portfolios. The second one consists of the Fama-French three factors and the 10 CRSP size portfolios. The
third one consists of the Fama-French three factors and and the Fama-French’s 17 industry portfolios. Panel
A, B, and C presents the utility gains for the three alternative investment opportunity sets, respectively,
in the case without constraint while Panel D, E, and F presents the utility gains for the three alternative
investment opportunity sets, respectively, in the case with constraint, a 20% margin requirement (c=5). The
investor has a power utility function with a risk averse coefficient equal to 5.

Month C-RS T-RS
σα 0 3% ∞ 0 3% ∞

Without Constraint

Panel A: Fama-French 25 book-to-market and size portfolios

1 0.8 2.6 3.3 0.1 0.2 0.1
12 1.4 18.9 12.0 0.9 6.9 9.4
36 1.3 59.5 65.6 2.8 84.8 95.8
60 2.9 118.6 307.5 16.2 134.4 75.1

Panel B: 10 CRSP size portfolios

1 1.2 1.2 1.7 0.1 0.1 0.1
12 2.3 3.7 3.3 0.6 1.2 1.5
36 5.7 8.8 8.3 3.0 3.9 2.9
60 10.0 11.8 17.7 8.6 10.7 7.6

Panel C: Fama-French’s 17 industry portfolios

1 0.9 1.8 2.7 0.1 0.1 0.1
12 4.2 12.2 10.5 0.7 1.7 8.1
36 7.4 26.1 34.3 5.8 7.2 43.4
60 7.0 26.4 68.5 18.3 43.0 42.4

With Constraint (c = 5)

Panel D: Fama-French 25 book-to-market and size portfolios

1 0.8 1.3 1.2 0.0 0.3 0.1
12 1.4 5.3 4.7 0.7 0.3 3.6
36 1.2 6.4 14.4 2.5 7.9 12.7
60 2.9 28.5 16.9 10.7 26.5 8.0

Panel E: 10 CRSP size portfolios

1 1.1 0.8 1.1 0.0 0.0 0.0
12 2.3 1.5 1.5 0.6 0.2 0.2
36 3.2 4.6 2.7 2.8 3.6 0.8
60 9.4 5.0 7.7 8.3 6.4 3.2

Panel F: Fama-French’s 17 industry portfolios

1 0.8 0.8 1.2 0.1 0.0 0.1
12 3.3 1.8 2.9 0.8 0.1 0.3
36 4.8 2.7 6.3 6.2 6.5 1.5
60 7.1 14.1 20.9 15.2 19.2 25.6



Figure 1: Posterior Distribution of Means and Standard Deviations

Based on the the monthly returns of the Fama-French three factors from July 1963 through
December 2002, we obtain the posterior distributions of mean returns and standard devia-
tions of the Fama-French three factors, the size factor (SMB), the value factor (HML) and
the market index (MKT). The solid curves are posterior distributions for the bull market,
while the dashed curves are posterior distributions for the bear market. The transition prob-
abilities in the two-regime model are assumed constant. We show the posterior distributions
of the mean returns for (a) the size factor, (b) the value factor, and (c) the market index,
and the posterior distributions of the standard deviations for (d) the size factor, (e) the value
factor, and (f) the market index.
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Figure 2: Probability in the Bear Market

This figure plots the time series of the posterior mean of the probability of being in the bear
regime from July 1963 through December 2002. The vertical dashed and solid lines indicate
the National Bureau of Economic Research (NBER) peaks and troughs, respectively. The
transition probabilities in the two-regime model are assumed constant.
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Figure 3: Probabilities of Staying in Bear and Bull markets

This figure plots the time series of the posterior mean of the probability of staying in: (a)
the bear market, and (b) the bull market, from July 1963 through December 2002. The
transition probabilities in the two-regime model are assumed time-varying.

52


