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Beta and Momentum

ABSTRACT

Recent empirical findings seem to suggest that none of the momentum payoff is due to risk.

In particular, it is shown that the CAPM fails grossly in explaining the momentum. In

this paper, I study a theory on beta uncertainty and find that this extended version of the

CAPM can rationalize a number of puzzling results on momentum. The key assumption is

that events that drastically produce high/low ranking-period returns on the winners/losers

also induce high uncertainty about the systematic risk estimates for these stocks. In light of

the unusual returns and high beta uncertainty, investors revise their beta estimates for the

winners and the losers. The beta adjustment creates momentum.



1. Introduction

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) has long been

the backbone of academic finance. In addition to numerous important applications, the

model has shaped the way academics and practitioners think about risk and average return.

The famous risk measure of the CAPM, the beta of a stock, is being taught in business schools

for decades and widely applied in practice. Despite the preeminence of the model, however,

recent empirical tests have challenged the CAPM by identifying several powerful anomalies.

One of the strongest and most puzzling challenges is the momentum effect documented by

Jegadeesh and Titman (1993).

Jegadeesh and Titman find that past winners continue to outperform the past losers over

horizons of three to twelve months. Surprisingly, the beta estimate for the winner portfolio is

even lower than that for the loser portfolio, showing that the CAPM fails grossly to explain

momentum. In their tests on momentum, Fama and French (1996) find that the loadings of

the size and book-to-market factors are higher for the losers. Thus, the multifactor extension

does not do any better. Both the CAPM and the three factor model produce qualitatively

incorrect predictions (that losers are riskier), giving rise to the conclusion that none of the

momentum payoff is due to systematic risk. Furthermore, Fama and French find that among

several CAPM anomalies, momentum is the only one unexplained by the three factor model.

These results make momentum particularly intriguing.

Why does the CAPM fail to explain momentum? Behavioral explanations by Barberis,

Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and Hong and

Stein (1999) have gained wide attention and empirical support in recent years. The focus of

these theories is on investor irrationality in processing information. The main implication

is that risk does not play any significant role in capturing the momentum payoff, and thus

of course, the CAPM is bound to fail. Indeed, recent tests on momentum have uncovered

formidable challenges to risk-based theories and the results have generally been interpreted

as strong support to the behavioral models. In this paper, I provide a counter-example. The

goal is to show that many of the puzzling test results can be circumvented by an extended

version of the CAPM, a theory in which investors rationally process information.

This paper is based on a simple idea. Stocks become winners/losers due to some events

in the ranking period. These events are so forceful that they drastically push up/down
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the returns on the stocks, making them the highest/lowest among thousands of stocks.

The key assumption to my argument is that such drastic events also blow away much of

investors’ confidence about their beta estimates for these stocks. Intuitively, new information

revealed in the events may suggest a high probability that there has been a large jump in the

systematic risk. In the short-run, however, investors may not have relevant information to

gauge impacts of exogenous shocks on systematic risks of firms’ assets including the existing

cash-generating projects and potential growth options. In light of the unusual returns and

high beta uncertainty, investors realize that their earlier beta estimates for the winners/losers

might be too low/high. Although the event-induced uncertainty may be transitory, rational

investors should respond by revising their systematic risk estimates. The beta adjustment

for the winners and the losers creates momentum in stock returns.

This paper is aimed at a number of recent tests that challenge risk-based explanations.1

First, Jegadeesh and Titman (2002) show that risk adjustment fails even when using average

return to proxy for risk (see also Grundy and Martin (2001)). They show that the pre-

ranking period average return on the winner portfolio is about the same as (slightly lower

than) that on the loser portfolio. This suggests that for a convincing risk explanation, the

focus should be on explaining variation of risk over the ranking period. That is, a successful

story should explain why the winner stocks become riskier than the loser stocks over the

ranking period. Second, Griffin, Ji, and Martin (2003) find that profits in both good and

bad business cycle states are positive. This seems incompatible with momentum being a

reward to priced business cycle risk. Third, Cooper, Gutierrez, and Hameed (2004) find that

momentum profits depend on the previous overall stock market performance. They regard

it as supportive evidence to over-reaction hypotheses that increases in market prices will

result in greater aggregate overconfidence since investors in aggregate hold long positions in

the stock market. Furthermore, Zhang (2005) find that momentum is particularly strong for

stocks with high information uncertainty (also see Hong, Lim, and Stein (2000)). He uses

several proxies for information uncertainty including firm size, age and analyst coverage. He

concludes that the evidence supports behavioral hypotheses that psychological biases are

increased when there is more uncertainty.

The simple extension of the CAPM that I propose can rationalize these puzzling findings.

1The following list does not include the long-term return reversal (e.g., see Jegadeesh and Titman (2001)).
George and Hwang (2004, 2005) present evidence that momentum and reversal are unrelated phenomena,
and that the reversal is better explained by taxes in a rational model.
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At the qualitative level, the model is surprisingly successful. It explains why the risk measures

of the winners and the losers change over the ranking period, generating predictions that are

consistent with the test results mentioned above. My empirical results are also encouraging.

I find that variation in the beta uncertainty can generate an impressive range of momentum

payoffs. The observed level of the momentum payoff lies within the range. The required

level of beta uncertainty for matching the momentum payoff is rather high, but it does not

seem unreasonable. For instance, to match the payoff over the sample from 1934 to 2003,

the average standard deviation that characterizes the beta uncertainty is 0.52 for the loser

and 0.80 for the winner. After matching up with the level, I challenge the model with

time-variation in the payoff to the momentum strategy. The tests reject that the variation

in the winner’s return is completely captured by the conditional beta (but no rejection for

the loser). However, the extended CAPM is still effective in accounting for the market

dependence result of Cooper, Gutierrez, and Hameed (2004). For the payoff adjusted by

the model, the lagged market return no longer displays significant predictive power. These

results challenge the behavioral theories to generate comparable quantitative predictions for

the level and the time-variation of the momentum profits.

Several rationality-based explanations for momentum have been explored in recent years.

In particular, theories proposed by Conrad and Kaul (1998), Berk, Green, and Naik (1999)

and Johnson (2002) have attracted attention. Conrad and Kaul point out that cross-sectional

variation in expected returns can possibly explain momentum. Berk, Green, and Naik show

that momentum, along with several other anomalies, can be generated from the life-cycle

variation of firms’ endogenously chosen projects. Johnson shows that momentum can arise

from a positive relation between expected returns and growth rates. While these theories are

clearly insightful, they look pale in light of the recent empirical findings. Most notably, none

of the existing risk-based theories is in a position to compete with behavioral explanations

for the findings of Cooper, Gutierrez, and Hameed (2004) and Zhang (2005). The authors

do not take into consideration any of the aforementioned risk explanations, reflecting how

irrelevant the risk theories appear as for explaining the test results.

The results of my study also contribute to a growing literature on parameter uncertainty.

Brav and Heaton (2002) and Lewellen and Shanken (2002) stress that parameter uncertainty

can play an important role in explaining asset pricing anomalies. Brav and Heaton argue that

due to their mathematical and predictive similarities, it is difficult to distinguish behavioral
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models and rational models with structural uncertainty. Lewellen and Shanken show that

parameter uncertainty can drive a wedge between the distribution perceived by investors

and the distribution estimated in empirical tests. Several other authors have investigated

effects of parameter uncertainty on equilibrium pricing (e.g., Brown (1979), Barry and Brown

(1985), Detemple (1986), Coles and Loewenstein (1988), and Coles, Loewenstein and Suay

(1995)). With respect to these papers, the contribution of my paper comes from its focus

on momentum. In my setting, parameter uncertainty arises from unpredictable exogenous

shocks on the covariance structure of cashflows. The results suggest that this can be a useful

channel to link popular factor-based pricing models to momentum.

There are a number of other related papers that center on either momentum or beta. To

avoid distracting readers away from the main theme, I postpone the discussion of the papers

to section 2.4. In sections 2.1 through 2.3, I discuss the motivation, present the theory, and

report the empirical results. The concluding remarks are included in section 3.

2. Beta and Momentum

2.1 What if Momentum Is Rational?

There are several findings on momentum that jointly provide serious challenges to any risk-

based explanation. I discuss implications of the empirical evidence under the assumption

that momentum is rational. The goal is to highlight a set of constraints that one needs

to keep in mind when searching for a rational explanation. I proceed with a diagrammatic

approach, illustrating my discussion with Figures 1 and 2.

An obvious explanation for the failure of the factor-based pricing models is that the

models are misspecified and in particular, some important risk factor is missing. However,

the findings of Grundy and Martin (2001) and Jegadeesh and Titman (2002) suggest that

the missing factor argument is unlikely to be able to explain the failure of the unconditional

models. These authors find that the pre-ranking period average returns are about the same

for the winners and the losers, indicating that the winners do not have higher unconditional

risk measures than the losers. The finding is emphasized in Figure 1, where it is marked that

the winners and the losers have the similar risk or risk measure before the ranking period.

This is an important point, as it suggests that the key to a rational explanation should be
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the ranking period variation in the systematic risk measure.

Figure 1 about here

For momentum to be rational, risk would have to increase/decrease over the ranking

period for the winners/losers. This is somewhat counter-intuitive, since one may feel it

puzzling why risk would have to increase after good news (reflected by high positive returns

of the winners). Still, it is possible that this pattern can be explained by a time-varying

risk model. Such conditional models are typically motivated by co-variation between risk

and business cycles of the economy. In this regard, Griffin, Ji, and Martin (2003) find that

momentum profits in both good and bad business cycle states are positive. The paper is

indicated in Figure 1 for the ranking period. It adds another challenge as the finding suggests

that it would be hard to relate the required ranking period variation in risk to business cycles.

Moreover, it is even harder to explain Zhang’s (2005) results by a standard rational expec-

tations model, no matter whether risk is time-varying or not. Zhang finds that momentum

profits depend on information uncertainty of the firms. If momentum is due to risk, this

finding suggests that the difference between the risks of the winners and the losers depend

on information uncertainty of these stocks. (Again, the finding is emphasized visually by

Figure 1.) In a standard rational expectations model, however, information uncertainty does

not play any role, as investors are assumed to know the structure and the parameters of

the economy. Zhang’s results suggest that rational models with parameter/structural un-

certainty should be given more consideration if one looks for a rationality-based theory for

momentum.

Figure 2 about here

Perhaps the most puzzling is the finding of Cooper, Gutierrez, and Hameed (2004) that

momentum profits depend on the market states. This is illustrated in Figure 2. If momentum

is due to risk, this result suggests that risks of the winners and the losers measured at the

beginning of the holding period depend on the previous overall stock market performance.

To rationalize the evidence, one needs to explain why the winners have higher/lower risk than

losers when the previous market return is positive/negative. None of the existing risk-based

theories seems to provide any clear intuition to understanding the dependence of momentum

profits on the lagged market performance.
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2.2 A Simple Theory

I present a beta-based theory for momentum. In my setting, the betas remain constant

without parameter uncertainty for most of the time. For many stocks, the beta jumps occa-

sionally, from one constant level to another.2 Over time, the investors’ perceived conditional

probability of a jump in the current period is typically equal to zero or so small that the effect

of a jump can be ignored. Occasionally, however, due to new information (e.g., revealed in a

corporate event), investors perceive high probability that a large beta jump has occurred. At

such a time, market equilibrium is achieved when investors determine the expected return

or the discount rate by using the best available estimate of the beta, conditional on their

information set. At a subsequent point, investors receive relevant information about the

stock that resolves uncertainty about whether the beta has experienced a structural change

and if so, what the new value of the beta is. Then, for the pricing of the stock, it goes back

to the standard CAPM, the constant-beta version with no parameter uncertainty.

I proceed in two steps. First, I describe the storyline, which is visualized in Figure 3.

Consider a stock labeled W. This is a winner stock that one would chase in momentum

trading. The stock becomes a winner because of some event in the ranking period. The

event is so forceful that it pushes up the price drastically, making the stock a winner among

thousands of stocks. For the pre-ranking period, the stock is priced by the standard CAPM.

In particular, there is no uncertainty about the beta such that the investors’ beta estimate bW
is equal to the true value. In the ranking period, however, the winner-producing event induces

high uncertainty about the systematic risk estimate. The event suggests a high probability

that there may have been a large beta jump, but the investors do not yet have enough

information to be certain about whether such a jump has happened and if so to pinpoint

exactly the direction and magnitude of the jump. To the investors, the beta uncertainty is

characterized by a distribution of beta, with mean bW and variance σ2βW (that can be large).

Given the combination of the high return rW and the high beta uncertainty σ2βW , in the

absence of other information, the Bayesian rule suggests that there should be an adjustment

of the beta estimate. Intuitively, the revised beta estimate hW may be significantly higher

than the initial estimate bW , since bW may seem too low in view of the high return on the

winner. At the beginning of the holding period, investors use the revised beta estimate hW

2Jumps in the systematic risk are due to exogenous shocks that impact the firm’s existing projects and
potential growth options.
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to determine the expected return or the discount rate for the stock. The beta adjustment is

the key to my argument.

Figure 3 about here

Next, I present details of the beta adjustment with a few equations. I start with a widely

used CAPM equation for stock returns:

ri = βirm + εi, (1)

for i = 1, · · · , n. I focus on one time period, corresponding to the ranking period of a
momentum strategy. For simplicity, I do not use time subscripts. All the notations in (1)

are for the ranking period: ri is the excess return (i.e., return in excess of the riskless rate)

over the ranking period for the i-th of the n stocks, and rm is the excess return on the market

over the period. The coefficient βi is the CAPM beta. It should be noted that without any

further assumption, (1) is simply a generic expression. It always holds since one can define

εi ≡ ri − βirm for a given definition of the beta.

Before the ranking period, the standard CAPM holds. There is no beta jump and no

parameter uncertainty such that for i = 1, · · · , n, the beta estimate bi is equal to the true
beta of stock i for the pre-ranking period. Investors carry the beta estimates (bi’s) to the

ranking period. Following a standard practice for discrete time models, I assume that beta

adjustment and beta jumps may occur only at the beginning of each period. Investors do

not know ex ante when a jump will occur. For the ranking period in particular, it is possible

that the beta may jump for once at the beginning. Investors are aware of this, but at the

start of the ranking period, their perceived probability of a jump is equal to zero.

The key assumption is that new information revealed around an important corporate

event in the ranking period (an event that makes the stock a winner or a loser) induces

high beta uncertainty. Due to the event, investors begin to suspect that there has been a

large jump in the beta, but they do not yet have enough information to resolve the uncer-

tainty. As a consequence, their confidence about their previous beta estimate is blown away.

Specifically, investors summarize the beta uncertainty by a distribution

βi ∼ N (bi, σ2βi), (2)

where the variance σ2βi may be of a large value, capturing high uncertainty about the beta.

The beta uncertainty does not have to exist for all the stocks. For explaining momentum, the
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uncertainty in (2) needs to be relevant for only the winners and the losers, and the standard

CAPM may apply to the other stocks.

Within the context of (1), investor irrationality may be reflected by various theories on

the structure of the residual εi. For example, if εi is positively serially correlated, which may

arise from investor under-reaction to shocks, it is straightforward to show that the positive

serial correlation can be a source of momentum profits. I aim at checking whether the

beta part of equation (1) can create momentum.3 For this purpose, I choose an extremely

simplified structure for εi, assuming that conditional on the information set at the beginning

of the ranking period, the error term is normally distributed

εi ∼ N (0, σ2εi), (3)

and that εi is independent from rm. Conditional on rm, εi and βi are uncorrelated. Both εi

and βi are cross-sectionally uncorrelated. I also assume that there is no parameter uncer-

tainty about the variances σ2εi and σ2βi.

At the end of the ranking period, given the market return and the distribution of beta

in (2), the conditional distribution of ri is normal:

ri| rm ∼ N (birm, σ2βir
2
m + σ2εi). (4)

Then, it is straightforward to obtain the expectation of beta conditional on ri and rm:

hi ≡ E[ βi| rm, ri] = bi +
σ2βirm

σ2βir
2
m + σ2εi

(ri − birm). (5)

In the absence of other information, the conditional mean hi is the best estimate of the beta

(with respect to a quadratic loss function) at the beginning of the holding period.

Equation (5) is a Bayesian learning equation. It shows that one should update the beta

estimate in response to the ranking period return (ri) on the winner or the loser. On the one

hand, the beta uncertainty plays an important role in determining the size of the adjustment

from the prior estimate bi to the new estimate hi. If there exists no beta uncertainty (i.e.,

σ2βi = 0), there is no adjustment at all. On the other hand, since the forecast of the return ri
is birm, the surprise in the realized return, ri − birm, is also important. In times of positive

market returns (i.e., rm is positive), if ri−birm is positive and large, it is intuitive to infer that
3My goal is not to rule out possible theories that are based on εi. Rather, it is to show that it is possible

to have an explanation that is not based on the residuals.
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ri and rm are more highly correlated than thought before and thus raise the beta estimate.

In contrast, given a positive observation of rm, if the return shock ri − birm is deep in the

negative zone, one would infer that ri and rm may be less highly correlated than thought

before, and hence the systematic risk estimate should be adjusted downward.

For pricing the winners and the losers for the holding period, investors use the new

beta estimates in (5). At the beginning of the holding period, the expected return or the

discount rate for stock i (either a winner or a loser) is determined by hiµm, where µm is the

expected excess market return. Apparently, due to the incomplete information structure,

the determination of the expected holding period returns on the stocks in the momentum

portfolios deviates from the standard CAPM. It may not be immediately evident to readers

that the use of the estimate hi is consistent with market equilibrium. In the Appendix, I

show that this is indeed consistent with market equilibrium. Specifically, the conditional

mean hi in (5) is just equal to the beta from the conditional CAPM that is built on the

investors’ perceived conditional moments of stock returns.

To show that beta adjustment creates momentum, I simply use two stocks, W and L.

Stock W has high return over the ranking period but stock L has low return. In other words,

an event in the ranking period has made W a winner, while stock L becomes a loser due

to some other event. To ease exposition and highlight the main points, I assume that both

stocks have identical parameter values:4

bW = bL, σβW = σβL , and σεW = σεL . (6)

Even with the same parameter inputs, the two stocks have different beta estimates at the

beginning of the holding period. By (5), the difference between the new beta estimates is

hW − hL =
σ2βrm(rW − rL)

σ2βr
2
m + σ2ε

, (7)

where rW and rL are the ranking period excess returns for W and L, respectively, and σ2ε and

σ2β are the common variance parameters for the two stocks. Let µm denote the conditional

expected value of the excess market return at the beginning of the holding period. Then

according to the revised betas, the conditional expected momentum payoff at the start of

the holding period is

πc ≡ (hW − hL)µm =
σ2βrm(rW − rL)µm

σ2βr
2
m + σ2ε

, (8)

4As shown later in Table 2, the pre-ranking period parameters for the winner and the loser portfolios are
rather similar. So the assumption (6) is not entirely unrealistic.
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and the unconditional expected momentum payoff is

πu ≡ E[πc] = E

"
σ2βrm(rW − rL)µm

σ2βr
2
m + σ2ε

#
. (9)

The beta uncertainty σ2β is a major determinant of the level of the momentum payoffs. On

the one hand, both πc and πu are equal to 0 if σ2β = 0, which corresponds to the case without

beta uncertainty. On the other hand, variation in σ2β can generate a range of values for the

momentum payoffs (both πc and πu).

The payoffs (8) and (9) are plotted in Figure 4. Following the construction of Jegadeesh

and Titman (1993), I use stock returns from 1927 to 2003 to construct a winner portfolio and

a loser portfolio. With identical parameters for the two portfolios (see Figure 4 for details),

I plot the conditional payoff πc as a function of the market return rm in Panel A and the

unconditional payoff πu as a function of the standard deviation σβ in Panel B. The plot of

the conditional payoff clearly shows that it is nonlinearly related to the market return. The

plot of the unconditional payoff is encouraging as well. It shows that variation in σβ can

span an impressive range of possible values for πu, with the maximum above 25 percent on

the basis of six-month returns (not in the plot). In other words, the observed levels of the

unconditional payoffs are within the range.5

Figure 4 about here

This extension of the CAPM proposed above can qualitatively rationalize a number of

puzzling aspects of momentum. First of all, with respect to the finding of Jegadeesh and

Titman (2002), it is shown by (6) through (9) that momentum payoffs can be generated

even if the winner and the loser have identical risk measures for the pre-ranking period. It

explains why the risk measure for the winner may rise after good news (and the opposite to

the loser), and hence why momentum profits can arise even if the pre-ranking period average

returns are about the same. Second, it is also shown by (6) through (9) that the return

momentum arises without resort in any way to business cycle risk.6 This provides a simple
5The theory does not impose restrictions on the value of σβ . In principle, if the investors completely lose

their confidence about the beta estimate, then σβ can go to infinity. However, the theory is still refutable.
For example, it would be rejected by the plot in Panel B of Figure 4 if the observed level πobs is above the
maximum (outside the spanned range). This is discussed in more details in the next subsection.

6The use of identical parameter inputs in (6) through (9) also shows that the model can generate mo-
mentum without any resort to cross-sectional differences in expected returns (see Conrad and Kaul (1998)
and Jegadeesh and Titman (2002)).
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way to circumvent the puzzling finding of Griffin, Ji, and Martin (2003) that momentum

profits are positive in bad business cycle states. Third, higher beta uncertainty leads to

more beta adjustment and hence stronger momentum profits. This is clearly consistent

with Zhang’s (2005) finding, if beta uncertainty and information uncertainty are positively

correlated. Finally, the conditional payoff πc is dependent on the market return. It predicts

that the average payoff following the positive lagged returns (rm > 0) should be positive

and the average payoff following the negative lagged returns (rm < 0) should be negative.

As equation (8) and Figure 4 show, the payoff’s dependence on the lagged market return

is nonlinear: πc increases as rm goes up within certain range but decreases with rm when

rm is beyond certain levels. This is consistent with the pattern that Cooper, Gutierrez, and

Hameed (2004) have identified empirically.

Finally, two remarks are in order. First, I have tried to keep things as simple as possible.

Apparently, there are numerous potential extensions or variations that one could consider.

Most notably, the assumption that no beta uncertainty is perceived at beginning of the

ranking period is good for transparency of the theory, but it may be relaxed. Nonetheless,

as shown in the empirical analysis below, it is the beta uncertainty at the end of the ranking

period that is critical to my results. In other words, it does not matter empirically whether

the initial beta uncertainty is substantial or trivial, as long as beta uncertainty is inflated to a

high level by the event in the ranking period. Second, uncertainty about the systematic risk

estimate is transitory in my setting. The extended model essentially deals with two periods:

the ranking and the holding periods. It is assumed that at some point after the holding

period, investors receive all the relevant information that resolves the beta uncertainty. Then

the CAPM holds with the true beta for the stock. The theory has no prediction about the

value of the beta after the holding period.

2.3 An Empirical Analysis

2.3.1 Momentum Payoffs

The data is obtained from CRSP. I use monthly return data from NYSE and AMEX to

construct momentum portfolios. Following many studies, I focus on the case in which both

the ranking and holding periods have the length of six months. Only NYSE and AMEX

stocks contained on the CRSP monthly tape throughout the ranking periods are eligible
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for selection as winners or losers. Recall that the momentum strategy of Jegadeesh and

Titman (1993) includes portfolios with overlapping holding periods. In any given month t,

the strategy holds five portfolios that are constructed as follows. For each of the months

t − 5 through t − 1, stocks are ranked on the basis of the past six-month returns up to
the given month.7 The stocks in the highest return decile are equally-weighted to form a

portfolio. The five portfolios are then equally-weighted, each with the weight 1/5, to form

the winner portfolio of Jegadeesh and Titman. The loser portfolio is constructed in the same

way, except that stocks in the lowest return decile are used in each step. The momentum

strategy is the one that buys the winner portfolio and short-sells the loser portfolio.

Table 1 reports the average monthly return for the winner portfolio, the loser portfolio,

and the momentum strategy. The sample period is from 1927 to 2003. Four subsamples

are considered. First, the sample is divided in the middle, creating the 1927-1964 and the

1965-2003 subsamples. Then the latter subsample is divided again. The 1965-1989 interval

is the sample period of Jegadeesh and Titman (1993), and thus the 1990-2003 interval is the

out-of-sample period with respect to the seminal study.

Table 1 about here

Consistent with Jegadeesh and Titman (1993), the winner-loser return difference for the

1965-1989 period is impressive, at about one percent per month on average. However, the

payoffs are weaker for the pre- and post-samples, which are 0.37 percent for the 1927-1964 pe-

riod and 0.19 percent for the 1990-2003 period. The average payoff for the overall 1927-2003

sample is 0.51 percent per month, or about 3 percent in terms of semi-annual performance.

This magnitude of the payoff for the long sample is consistent with those reported in previous

studies (e.g., see Grundy and Martin (2001) and Chordia and Shivakumar (2002)). I have

also considered the non-overlapping approach that all the stocks in the momentum portfolios

are selected by ranking the past six-month returns from the current month. The average

six-month holding period payoff of the momentum strategy is 2.90 percent.8 In view of these

numbers, I focus my following discussion on the case that the unconditional payoff level is

three percent (i.e., πu = 0.03) in terms of the six-month holding period return.

7The holding period starts one month after the ranking period. Skipping one month is a common practice
to mitigate bid-ask bounce effects.

8I have replicated the CAPM and the Fama-French three factor regressions for momentum. The results
are similar to those reported in the literature. The robustness-checking results are omitted.
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2.3.2 Pre-ranking Statistics

It is useful to have a look at the pre-ranking period betas and other parameters of stocks in

the winner and the loser portfolios. The pre-ranking period estimates also provide necessary

inputs for the beta adjustment in (5). I use a five-year rolling window for estimation. At the

beginning of the ranking period, monthly returns from last five years are obtained for each

stock in the winner and the loser portfolios. (Stocks with fewer than 18 monthly observations

are removed.) First, the mean (µ) and standard deviation (σ) of the excess return over the

window are computed for each stock. Then, for each of the stocks, the excess return is

regressed on the market excess return over the window. The regression estimates include the

beta coefficient (b), the standard error of the beta coefficient (sb), and the standard deviation

of the regression residual (σε). The means of these estimates over the 1927-2003 sample are

reported in Panel A of Table 2. I also compute descriptive statistics for the cross-sectional

distributions of b, σ, and ρ, where ρ is the correlation between the excess returns on the

stock and the market. Panel B of Table 2 reports the time series averages of mean, standard

deviation, maximum and minimum for the cross-sectional distributions.

Table 2 about here

The winner and the loser are rather similar in terms of the pre-ranking period statistics.

This is perhaps the most impressive feature of Table 2. Panel A shows that both the

winner and the loser have similar average monthly excess return (µ) and standard deviation

(σ), both of which are rather high relative to the mean and standard deviation (0.0064 and

0.055, respectively) of the market excess return. The regression results are also rather similar

between the winner and the loser. It should be emphasized that both the average return

and the beta estimate are slightly lower for the winner, which is consistent with the result of

Jegadeesh and Titman (2002). This suggests that there is no hope for unconditional models

in which risk measures remain constant over time. Panel B shows that the winner and the

loser are also very similar in terms of the cross-sectional distributions.9

Most of the stocks in the winner and the loser portfolios do not resemble the market.

First, the stocks typically do not closely co-vary with the market. Panel B shows that the

9The similarity in the pre-ranking period statistics is quite a contrast to the difference in the ranking
period returns. The winner’s and the loser’s average returns over the six-month ranking period are 72.85%
and −33.80%, respectively.
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correlations between their excess returns and the market excess return are below 0.5 on

average. Second, most of the stocks are much more volatile than the market. The average

standard deviation of their excess returns is more than twice as large as that of the market.

Both the correlation and the standard deviation are disperse across stocks in the winner and

loser portfolios. Consequently, the pre-ranking period betas are quite disperse across these

stocks. The cross-sectional standard deviation of the beta is about 0.6, with the maximum

beta around 3.5 and the minimum around −0.3.

2.3.3 Up against Momentum

To put the model up for an empirical analysis, one needs to estimate the beta uncertainty σβi.

For this purpose, one may simply assume that σβi is constant. However, beta uncertainty is

unlikely to be constant across stocks and over time. I use the following specification

σβi = λ

¯̄̄̄
ri − birm

σεi

¯̄̄̄
, (10)

where λ is a constant (across stocks and over time), bi is the pre-ranking period beta estimate,

σεi is the standard deviation of the regression residual, ri and rm are the ranking period excess

returns on the stock and the market, respectively.

Using (10), I aim to proxy for uncertainty induced by the events that generate the winner

stocks and the loser stocks in the ranking period. Note that (ri−birm)/σεi is a “standardized
abnormal return” (SAR), which is widely used in the event-study literature. Here it serves

as an ex post general proxy for all kinds of surprises for the stocks. By (10), an event that

gives investors a bigger surprise will induce higher beta uncertainty. Apparently, (10) allows

for cross-sectional differences and time-variation in σβi.

Several alternatives to (10) have been checked, including σβi = λ|SRSi|, σβi = λ|SRSi|sbi,
and σβi = λ|SRSi|+sbi, where SRSi = (ri−µi)/σi, µi and σi are the pre-ranking period mean
and standard deviation of the excess return, and sbi is the standard error of the pre-ranking

period beta estimate. The variable SRSi is a“standardized return surprise” (SRS), which is

similar in spirit to SAR. I have also considered replacing sbi by σi and/or replacing SRS by

SAR in the above cases. (Results for one of the above alternatives are reported in Panel B

of Table 3.) The point for including sbi or σi is that after controlling for effects of the events,

firms may still have different degrees of transparency in terms of information available for
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measuring the systematic risks. I find that in terms of the required beta uncertainty for

matching the observed level of the momentum payoff, the averages of the standard deviation

σβi for the winners and the losers are similar across the specifications.

With inputs from the pre-ranking period regressions and the uncertainty estimate (10),

I now challenge the extended CAPM with the momentum portfolios. I proceed in two steps.

First, I check whether the model can match the observed level of the momentum payoff.

The results are presented in Table 3 and Figure 5. Second, I check whether the model can

explain time-variation in the momentum profits. The results are reported in Table 4.

The model could be easily rejected, if the observed level of the momentum payoff is above

the range of the payoffs implied from the model. However, this is not the case. In principle,

investors can be extremely uncertain about the beta estimates such that σβi → ∞. For
the unconditional payoff πu in terms of the six-month holding period returns, I find that

by varying λ in (10), the maximum level of the payoff generated by the model is above

0.25 (or 25%). Recall from Table 1 that the observed level of πu is about 0.03 (or 3%) for

the sample from 1927 to 2003. Table 3 reports the required beta uncertainty for matching

up with different payoff levels. As seen from Table 1, the momentum payoffs for different

sample periods range between one percent and six percent on the basis of the semi-annual

performance. To match each level of the unconditional payoff πu from 1% to 6%, I identify

the corresponding value of λ by grid-search. The time series average of the beta uncertainty

σβ is reported for both the winner and the loser for five different periods.

Table 3 shows that the required level of beta uncertainty is high. Panel A of the table

corresponds to the SAR specification (10). For the six percent payoff level (πu = 0.06), the

average σβW ranges from 1.14 to 2.55, which does seem extreme. However, for πu = 0.03, the

magnitude of beta uncertainty does not seem unreasonable. Recall again (see Table 1) that

the payoff level is at about three percent, i.e., πu = 0.03, for the whole 1927-2003 sample.

The six percent payoff from the 1965-1989 period of Jegadeesh and Titman (1993) is the

exception rather than the rule. For πu = 0.03, we have σβW = 0.96 and σβL = 0.61 for the

whole sample. The first few years at the beginning of the sample (from late 1920’s to early

1930’s) are a period of extremely volatile markets. I will focus on the 1934-2003 period in

the following discussion. Omitting the first eight years, the numbers are smaller such that

σβW = 0.80 and σβL = 0.52 on average for the 1934-2003 period.
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Table 3 about here

Results in Panel B are based on an alternative to (10) that specifies σβi = λ|SRSi|sbi. As
noted above, this specification aims to proxy for the event-induced uncertainty by SRSi and

the firm’s information transparency of its risk measure by sbi. As the table clearly shows, the

results are similar between the two panels. For example, we have σβW = 0.79 and σβL = 0.55

on average for the 1934-2003 period.

To get a sense of the magnitude of the beta uncertainty, consider a numerical example.

Suppose that the initial beta estimate of a stock is 1.3. After event, investors summarize the

uncertainty by a distribution such that the beta may take any of the five values, 0.1, 0.7,

1.3, 1.9, and 2.5, with equal probability. In this case, the standard deviation is equal to 0.85.

Instead, if the values are 0.3, 0.8, 1.3, 1.8, and 2.3, then σβ = 0.71. This example suggests

that the required beta uncertainty is rather high, but they do not seem too extreme. Of

course, it is a difficult issue to judge what the range of values for σβ is reasonable since the

model imposes no restriction on the level of the beta uncertainty.

Figure 5 highlights that the extended CAPM generates momentum from beta adjustment.

The figure plots the revised betas hW and hL that correspond to the columns under the 1934-

2003 period in Table 3. If there is no beta uncertainty (i.e., λ = 0), the betas are equal to

the pre-ranking period estimates . As shown in the plot, the pre-ranking period betas are

similar, with the winner’s being a bit lower. As the uncertainty increases (or λ increases),

the beta of the winner diverges from that of the loser. The figure clearly shows that most

of the payoff comes from the rise in the winner’s beta. The loser’s beta does not change

as much with respect to the pre-ranking period estimate. For example, to match the three

percent payoff level (i.e., πu = 0.03), the winner’s beta hW jumps up from 1.26 to 1.71, but

the loser’s beta drops only a bit, from 1.33 to 1.18. Similarly, for the case of πu = 0.06, most

of the momentum payoff comes from the winner’s beta adjustment.

Figure 5 about here

A tough test of the model is to put it up against time-variation in the momentum profits.

Like in Figure 5, I plug the pre-ranking period estimates (b and σε) into (10) and then (5)

to obtain the time series of the betas hW and hL for the winner and the loser. There is one

free parameter, λ, in (10). I remove this degree of freedom by letting λ take the value so
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that πu = 0.03. In other words, I first select λ to match the observed payoff level, and then

challenge the model against time-variation in the payoff.

I perform a simple test that consists of two regressions. I regress first r̃W on hW r̃m and

then r̃L on hLr̃m, where r̃W , r̃L, and r̃m are the holding period excess returns on the winner,

the loser, and the market, respectively.10 I report the two regression results in Panels A1

and A2 of Table 3. The idea is that if the intercept and the slope equal to 0 and 1 in the

two regressions of Panels A1 and A2, then it provides evidence that the following conditional

CAPM equations are well specified

r̃W = hW r̃m + ε̃W , (11)

r̃L = hLr̃m + ε̃L. (12)

The results in Panel A1 are not in favor of (11), but those in A2 are supportive to (12).

For the winner, the estimates cW,0 and cW,1 are significantly different from 0 and 1. In

particular, the slope cW,1 is around 0.68. The hypothesis that cW,1 = 1 is clearly rejected,

given that the standard error for the slope is about 0.03. Thus, it is statistically rejected

that time-variation in the winner’s holding period return is completely captured by (11). For

the loser, however, the regression estimates cL,0 and cL,1 are close to 0 and 1, respectively.

Since the standard error for the slope is 0.08, the estimate cL,1 is within two standard errors

from 1. Thus, (12) is not rejected by the test.

In spite of the rejection, the extended CAPM may still capture important features of the

time-variation in the payoff. I proceed to check if the model can account for the predictive

power of the lagged market return documented by Cooper, Gutierrez, and Hameed (2004)

(hereafter CGH). The results of CGH may be summarized by the following two predictive

regressions:

π̃ = η0 + η1I(LAGMKT > 0) + ε (13)

π̃ = η0 + η1LAGMKT+ η2LAGMKT
2 + ε (14)

where π̃ is either the raw payoff (i.e., r̃W − r̃L) or an adjusted payoff (adjusted by some

10For the regression tests in Table 4, the conditional betas for the winner and the loser are obtained as
follows. Recall that for a given month t, the winner (or the loser) portfolio is a mix of five portfolios for the
months t− 5 through t− 1. For each of the five portfolios, its beta is computed by (10) and (5). Then the
beta of the winner (or the loser) is set to be the equally-weighted average of these five betas.

17



asset pricing model), and LAGMKT is the three-year lagged market return.11 The first is a

dummy variable regression on I(LAGMKT > 0) that is equal to 1 if LAGMKT > 0 but 0

otherwise. The second is a quadratic regression on LAGMKT and LAGMKT2.

Table 4 about here

I consider four cases and present them in Panels B1 through B4 of Table 4. The dependent

variable for the regressions (13) and (14) in Panel B1 is the raw payoff, or the difference

between the holding period returns on the winner and the loser.. In Panel B2, the dependent

variable π̃ is the payoff adjusted by the unconditional CAPM, where the model’s predicted

payoff, π̃CAPM = br̃m, is obtained from the regression π̃raw = a+ br̃m + ε. In Panel B3, the

dependent variable π̃ is the payoff adjusted by the conditional CAPM. By (11) and (12), the

model implied variation in the payoff is hW r̃m− hLr̃m. The adjusted payoff is the difference

between the raw payoff and the implied payoff (which is equal to the difference between the

abnormal returns on the winner and the loser). That is, the adjusted payoff is the part of

the variation that is not implied by the model. In Panel B4, I modify the adjustment in B3

by using the regression estimates cW,1 and cL,1 from Panel A. This is to remove only the part

of the return variation captured by the two regressions in A1 and A2.

The results show that the extended CAPM is effective in explaining the dependence of

the payoff on the lagged market performance. On the one hand, the results in Panels B1 and

B2 are consistent with those of CGH. For the raw payoff, the dummy regression shows that

momentum depends on the market states. The average monthly payoff following negative

lagged market performance is −0.98%. In contrast, the average monthly payoff following
positive lagged market performance is 0.81%. The quadratic regression further shows that

momentum profits depend in a nonlinear manner on the lagged market return. The coef-

ficients for LAGMKT and LAGMKT2 are significantly positive and negative, respectively.

This implies that the payoff increases with LAGMKT within certain range of the lagged

market return, but it decreases with LAGMKT outside the range. Panel B2 shows that the

unconditional CAPM cannot explain the predictive ability of LAGMKT. The results for

11CGH use overlapping holding period returns. That is, the dependent variable is the six-month holding
period payoff that is measured monthly. This introduces high autocorrelation into the dependent variable.
Follow the common practice, I use the strategy of Jegadeesh and Titman (1993) that avoids the overlapping
in the payoff. I find that the regression R2’s are lower, but otherwise my results are consistent with those of
CGH.

18



both of the regressions remain essentially unchanged when using the adjusted payoff from

the unconditional CAPM. On the other hand, it makes quite a difference to adjust the payoff

by the conditional CAPM. The results in Panels B3 and B4 are in sharp contrast to those in

Panels B1 and B2. The loadings on I(LAGMKT > 0), LAGMKT and LAGMKT2 are much

smaller and statistically insignificant according to the t-statistics. The results in Panels B3

and B4 lead to the same conclusion that for the payoff adjusted with the conditional betas,

the lagged market return no longer display significant predictive power for time-variation in

the momentum profits.12

These results raise an interesting challenge to behavioral models. For time-variation

in the momentum payoff, predictions from the existing behavioral models are rather loose

even at the qualitative level. In particular, by the overconfidence and other behavioral

theories, it is not very clear why the momentum profits should be nonlinearly related to

the lagged overall stock market performance. CGH have discussed potential explanations.

They note that overconfidence theory does not necessarily predict a fully monotonic relation

between the lagged market returns and the level of overconfidence. Yet predictions from the

overconfidence theory are difficult to quantify; they are still ambiguous such that we cannot

put them in tests like those in Table 4. It remains to be seen whether further development

on behavioral theories can give rise to quantitative predictions so that we can conduct tests

to effectively compare competing models.

2.4 Related Work

A number of empirical studies have explored non-behavioral explanations for the momentum.

Harvey and Siddique (2000) study skewness and asset returns. They find positive results.

Although skewness may be important for asset pricing in general, it remains to be articulated

why momentum arises from skewness. Pastor and Stambaugh (2003) and Sadka (2004) find

that liquidity risk factors may help explain momentum. The authors are rather cautious in

drawing conclusions, since it is intuitively unclear why winners should have higher liquidity

risk. Chordia and Shivakumar (2002), Wu (2002) and Wang (2003) find encouraging results

12When the payoff is adjusted by the Fama-French three factor model, the results are similar to those in
B1 and B2. For robustness-checking, I repeat all the tests in Table 4 with the specification used for Panel B
of Table 3. The results based on the alternative specification are similar. In addition, I have tried different
choices of LAGMKT, including six-month lagged market return and three-year lagged excess market return.
The results based on these choices are even more in favor of the conditional beta model.
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when they incorporate conditioning variables to allow for time-varying risk. But again, the

intuition is weak, and there is concern about whether the conditioning variables have genuine

predictive power. Finally, Korajczyk and Sadka (2004) and Lesmond, Schill, and Zhou (2004)

study whether transaction costs can prevent arbitrage in momentum trading, but they reach

different conclusions. In particular, Korajczyk and Sadka conclude that momentum remains

a puzzle after taking transaction costs into account.

Recently, beta also continues to gain attention. Campbell and Vuolteenaho (2004) use a

beta decomposition to shed light on the size and the value anomalies. Jostova and Philipov

(2004) propose a stochastic beta process and find that it helps explain the size and book-

to-market effects. Lewellen and Nagel (2005) focus on cyclical variation between beta and

the market risk premium. They test the conditional CAPM by estimating beta from short-

window regressions. Adrian and Franzoni (2005) focus on low frequency variation in beta

over a long time horizon. They emphasize the role of learning and implement a Kalman

filter to extract the factor loading. While they all provide intriguing insights, these papers

differ from mine in two important ways. First, I focus on momentum and my target is on

an intuitive beta-based explanation for a number of puzzles on the anomaly. Second, the

key to my approach is the ranking period event-induced beta uncertainty. The other papers

are aimed at the entire process (over the sample period) of time variation in beta. At any

given point in time, however, most stocks do not experience drastic events that make them

either winners or losers. It is the ranking period variation in the betas of the winners and

the losers that is critical to my results.

Broadly speaking, the role of beta uncertainty may be motivated by the observation that

betas are time-varying but difficult to estimate. Although there exists a large literature on

time-varying beta, little is known about how to precisely capture time-variation in the risk

measure (e.g., Ghysels (1998)). On the other hand, uncertainty about time-varying beta

is important in equity valuation. For example, using industry portfolios, Fama and French

(1997) find that there is strong variation in the CAPM betas and their three factor loadings

such that the cost of equity estimates from their full sample (1963-1994) regressions are no

more accurate than the estimates from regressions that use only the latest three years of data.

In a Bayesian framework, Pastor and Stambaugh (1999) also emphasize the importance of

uncertainty about betas in estimating the cost of equity for individual firms.

20



3. Conclusion

Anomalies against the CAPM attract great attention. Numerous researchers have defended

the premier asset pricing model. For example, Jagannathan and Wang (1996) show that

a conditional version of the CAPM performs much better than the unconditional CAPM.

Gomes, Kogan, and Zhang (2003) recently show, in a general equilibrium setting, that a con-

ditional version of the CAPM can explain the size and the book-to-market effects. However,

momentum seems deadly. The momentum strategy is profitable and easy to implement.

But tests find that the winner and the loser portfolios are rather similar in terms of various

pre-ranking period statistics. In particular, the pre-ranking period beta estimate and the

pre-ranking period average return of the winner are even slightly lower than those of the loser.

Other tests add more challenges. It is particularly puzzling that momentum profits depend

on firms’ information uncertainty and the lagged overall market performance. Jointly, these

test results seem to leave little room for a rationality-based explanation.

In this paper, I provide a counter example, showing that many of the test results are

consistent with a beta story that does not require irrationality. I show that the puzzling

features of momentum point to a “rational model with structural uncertainty,” if one insists

on searching for a rationality-based explanation. I propose an extension of the CAPM that

incorporates an incomplete information structure. In this model, the beta jumps occasionally,

but investors do not know when there is a jump and they do not have the information to

immediately resolve the uncertainty after they suspect that there has been a large beta jump.

At the qualitative level, the extension is fruitful, providing a theory that can rationalize

various puzzling findings. In the empirical analysis, I find that the size of beta uncertainty

is critical. With enough beta uncertainty, the extended CAPM can match the observed level

of the momentum payoff. The results show that the required level of beta uncertainty is

rather high, but it does not seem unreasonable. However, this is a gray zone, since we do not

have any theoretical prediction on the level of beta uncertainty. This is a common weakness

of rational structural uncertainty models that do not impose restriction on the degree of

uncertainty. However, we should not be harsh on these models, as the competing behavioral

models also have such ambiguity in forming testable hypotheses.
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Appendix. Consistency with Equilibrium

In the setting outlined in section 2.2, investors face an incomplete information structure.

After they suspect that there has been a large beta jump, they may need to wait for relevant

information that resolves the uncertainty. In particular, for the winners and the losers at

the beginning of the holding period, such information is not available. In the one-period

setting (for the holding period), investors assume that the CAPM equation holds (i.e., r̃i =

βir̃m+ ε̃i)13 for these stocks. The beta is the only parameter that investors do not know the

true value. For the pricing of the stocks at the start of the holding period, they use the best

estimate of the beta, conditional on their information set at the time.

Is it consistent with market equilibrium to use hi in (5) to determine the expected return?

For a simple argument, I assume that investors have quadratic utility functions. Under this

assumption, it is transparent that with and without complete information, the CAPM holds

under the return distribution perceived by investors. In Bayesian terms, the subjective

distribution is called the predictive distribution. Given a distribution that summarizes the

beta uncertainty, investors use r̃i = βir̃m+ε̃i to form their perceived first and second moments

of asset returns, conditional on the information set. In other words, investors hold mean-

variance efficient portfolios with respect to the subjective moments, which gives rise to an

asset market equilibrium that is characterized by the conditional CAPM. The goal is to show

that the systematic risk measure from this conditional CAPM is equal to the conditional

mean of the factor loading (i.e., hi in section 2.2).

For the derivation below, there is no need to require that the distribution of any variable

be normal. It is sufficient to assume, conditional on the information set, that βi and r̃m

are independent, and that ε̃i and r̃m are uncorrelated. Then, it follows easily that the beta

measure from the conditional CAPM is

cov(r̃i, r̃m)

var(r̃m)
=

cov(βir̃m + ε̃i, r̃m)

var(r̃m)
=

E(βir̃
2
m)−E(βir̃m)E(r̃m)

var(r̃m)

=
E(βi)[E[r̃

2
m]− [E(r̃m)]2]
var(r̃m)

= E(βi) = hi. (15)

Results like (15) have been shown in different settings in the literature. For example, in

a production economy with incomplete information, Detemple (1986) shows that standard
13As for notations, x̃ is used to denote a ranking period variable (e.g., r̃i or ε̃i). In contrast, x denotes a

variable known by or before the beginning of the holding period (e.g., ri or hi). All of the moments in this
appendix are conditional upon the information set at the beginning of the holding period.
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equilibrium results in asset pricing can be obtained by using a substitute state vector that is

the conditional mean of the underlying unobservable state variables. See also Brown (1979)

for a similar result in the unconditional setting.

Finally, it should be noted that the assumption of quadratic preferences is sufficient but

not necessary for the conditional CAPM. For example, an alternative assumption is that βi,

r̃m, and ε̃i are independently normally distributed for the winners and the losers. For stocks

that are neither winners nor losers, βi is a known constant, r̃m and ε̃i are independently

normally distributed. (Of course, the conditional mean of ε̃i is assumed to equal to zero.)

Assume that a representative investor’s utility function u is twice differentiable. Then, it

follows from the first-order condition

E[u0(r̃m)r̃i] = 0 (16)

that the conditional expected return E(r̃i) satisfies

E(r̃i) = −
1

E[u0(r̃m)]
cov[u0(r̃m), r̃i] = −

E[u00(r̃m)]

E[u0(r̃m)]
cov(r̃m, r̃i). (17)

Thus, the conditional expected return E(r̃i) is proportional to the conditional covariance

cov(r̃i, r̃m), giving rise to the conditional CAPM. The last equality in (17) can be easily de-

rived from an extension of the Stein’s lemma, which states that cov[g(x), xy] = E[g0(x)](x, xy)

for any two independent normal variables x and y.
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Figure 1. Empirical Challenges to a Risk Explanation

This diagram is for illustrating implications of the findings of Jegadeesh and Titman (2002),

Griffin, Ji, and Martin (2003), and Zhang (2005), under the assumption that momentum

is rational. RiskW and RiskL are the systematic risk measures of the winner and the loser

portfolios, respectively. The winners or the losers are the stocks that have the highest or the

lowest returns over the ranking period, respectively.
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Figure 2. Market States and Momentum

This diagram is for illustrating implications of the empirical evidence documented by Cooper,

Gutierrez, and Hameed (2004), under the assumption that momentum is rational. RiskW and

RiskL are the systematic risk measures of the winner and the loser portfolios, respectively,

and rm is the market return over the ranking period.
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Figure 3. Beta Uncertainty for a Winner

This diagram is for illustrating the storyline. The key point is that an event that is drastically

making the stock a winner may also inflate uncertainty about the systematic risk measure

of the stock. PW and RW are the price and the return for stock W , respectively. The beta

estimate of this stock at the beginning of the ranking period is bW . At the beginning of the

ranking period, the perceived probability of a beta jump is equal to zero, so that there is

no uncertainty about beta (σβW = 0). The event induces high beta uncertainty. Investors

summarize the uncertainty by a distribution of beta, which has high standard deviation σβ.

The adjusted beta estimate at the beginning of the holding period is hW .
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Figure 4. Momentum Payoffs from the Extended CAPM

Panels A and B provide plots for illustrating equations (8) and (9), respectively. Both the

conditional and the unconditional payoffs, πc and πu, are computed from the momentum

strategy with both the ranking and the holding periods being of six months in length. The

NYSE and AMEX monthly return data from 1927 to 2003 are used. The standard deviation

σε is set to equal to 0.2. The market excess return forecast µm is replaced by the time

series mean over the sample. For Panel A, rW − rL is set to be its time series mean. The

observed unconditional payoff level πobs is set to be 0.03 (or 3 percent) in terms of the six

month holding period performance. The required beta uncertainty σ∗β is around 0.9 in this

example.
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Figure 5. Beta Adjustment

This figure provides a plot for the revised betas hW and hL that correspond to the columns

under the 1934-2003 period in Table 3. The betas of the winner and the loser vary as

functions of the constant λ in (10). If λ = 0, there is no beta adjustment such that hW and

hL are equal to their pre-ranking period estimates. When λ = 0.39, the average momentum

payoff πu = 0.03 (or 3 percent) over the six month holding period. When λ = 0.79, πu = 0.06.

The betas in these cases are marked in the plot.
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TABLE 1

Momentum Payoffs

1927-2003 1927-1964 1965-2003 1965-1989 1990-2003

W−L 0.0051 0.0037 0.0070 0.0099 0.0019
(2.10) (1.02) (2.12) (3.50) (0.24)

Winner 0.0147 0.0159 0.0132 0.0108 0.0181
(5.70) (4.06) (3.94) (2.68) (2.93)

Loser 0.0096 0.0123 0.0062 0.0009 0.0162
(2.52) (2.05) (1.30) (0.19) (1.55)

Momentum portfolios are constructed with monthly return data on NYSE and AMEX stocks.

Both the ranking and the holding periods for the momentum strategy consist of six months.

Following Jegadeesh and Titman (1993), either the winner or the loser portfolio includes

five portfolios with overlapping holding periods. In any given month t, the winner portfolio

contains five portfolios that are constructed in the month t− 5 through t− 1. To mitigate
bid-ask bounce effects, the holding period is assumed to start one month after the ranking

period. For a given month t−k, stocks are ranked on the basis of the past six-month returns
up to the month. Then, the stocks in the highest return decile are equally-weighted to form a

portfolio. The winner portfolio is the equally-weighted mix of the five portfolios, each given

the weight 1/5 for k = 1, · · · , 5. The loser portfolio is constructed in the same way, except
that stocks in the lowest return decile are used in each step. The momentum strategy is the

one that buys the winner portfolio and short-sells the loser portfolio, denoted by W−L. The
average monthly excess returns of the portfolios are reported, and t-statistics are provided

in the parentheses. The full sample is from 1927 to 2003.
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TABLE 2

Pre-ranking Period Statistics

Panel A. Rolling Window Regressions

b sb σε µ σ

Winner 1.264 0.357 0.115 0.011 0.136
Loser 1.327 0.386 0.121 0.012 0.143

Panel B. Cross-Sectional Distributions

mean stddev max min

Winner b 1.264 0.593 3.447 −0.263
Loser b 1.327 0.625 3.652 −0.302

Winner σ 0.136 0.053 0.377 0.054
Loser σ 0.143 0.056 0.402 0.055

Winner ρ 0.480 0.153 0.787 0.011
Loser ρ 0.478 0.154 0.788 −0.008

At the beginning of the ranking period, monthly returns of the last five years are obtained

for stocks in the winner and the loser portfolios. The winner and the loser portfolios include

stocks in the highest and the lowest return deciles on the basis of six-month returns over

the ranking period. This table reports statistics based on the five-year rolling estimation

window before the ranking period. Panel A includes the mean (µ) and standard deviation

(σ) of the monthly excess returns. It also reports results from the regressions of the excess

returns on the market excess returns, including the regression slope or the beta estimate (b),

the standard error of the beta estimate (sb), and the standard deviation of the regression

residual (σε). For each of the estimates, Panel A reports the time series average over the

sample from 1927 to 2003. Statistics for the cross-sectional distributions of b, σ, and ρ are

included in Panel B, where ρ is the correlation between the excess returns on the stock and

the market. For each of estimates b, σ, and ρ, Panel B reports the time series averages of

mean, standard deviation, maximum and minimum for the cross-sectional distribution.
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TABLE 3

Beta Uncertainty and Payoff Levels

1927− 2003 1934− 2003 1934− 1964 1965− 1989 1990− 2003

πu σβW σβL σβW σβL σβW σβL σβW σβL σβW σβL

Panel A. Results from the specification (10)

0.01 0.44 0.28 0.35 0.23 0.27 0.19 0.49 0.28 0.40 0.26
0.02 0.69 0.44 0.57 0.37 0.42 0.29 0.80 0.47 0.64 0.42
0.03 0.96 0.61 0.80 0.52 0.57 0.40 1.15 0.67 0.88 0.58
0.04 1.25 0.80 1.05 0.68 0.75 0.52 1.58 0.92 1.15 0.76
0.05 1.59 1.02 1.31 0.85 0.93 0.65 2.02 1.18 1.41 0.93
0.06 1.99 1.27 1.62 1.05 1.14 0.79 2.55 1.49 1.72 1.14

Panel B. Results from an alternative specification

0.01 0.43 0.29 0.34 0.24 0.25 0.19 0.42 0.28 0.37 0.25
0.02 0.68 0.46 0.56 0.39 0.41 0.31 0.73 0.48 0.59 0.41
0.03 0.95 0.64 0.79 0.55 0.57 0.44 1.08 0.72 0.80 0.55
0.04 1.25 0.85 1.04 0.73 0.75 0.57 1.47 0.98 1.02 0.70
0.05 1.58 1.07 1.32 0.92 0.95 0.72 1.92 1.27 1.26 0.87
0.06 1.96 1.33 1.64 1.14 1.18 0.94 2.43 1.61 1.52 1.04

Parameter estimates for the pre-ranking period are used to compute the standard deviation

σβ in (10) for each stock in the winner and the loser portfolios. These inputs are then used

to compute the revised betas hW and hL by (5). The unconditional momentum payoff is

given by πu = E[(hW − hL)µm], where µm is estimated by the (semi-annualized) average

excess return on the market portfolio over the past five years. Then πu is estimated by

the time series average of the product (hW − hL)µm. Each level of the momentum payoff,

πu = 1%, · · · , or 6%, is achieved by selecting a value of the constant λ in (10). The time
series average of the mean standard deviation σβW for the winner portfolio and the time

series average of the mean standard deviation σβL for the loser portfolio are reported. Panel

A is based on (10). Panel B is based on an alternative that specifies σβi = λ|SRSi|sbi , where
λ is a constant over time and across stocks, SRSi = (ri − µi)/σi, ri is the ranking period

excess return on the stock, µi and σi are the pre-ranking period mean and standard deviation

of the excess return, and sbi is the standard error of the pre-ranking period beta estimate.

34



TABLE 4

Time-Variation in the Momentum Profits

Panel A. Return Variation and Conditional CAPM

A1. r̃W = cW,0 + cW,1(hW r̃m) + ε̃W A2. r̃L = cL,0 + cL,1(hLr̃m) + ε̃L

cW,0 cW,1 R2 cL,0 cL,1 R2

ĉ 0.0074 0.6763 63.59 −0.0003 1.1054 50.89
t 4.22 21.93 −0.14 13.97

Panel B. Predictive Regressions with LAGMKT
π̃ = η0 + η1I(LAGMKT > 0) + ε
π̃ = η0 + η1LAGMKT+ η2LAGMKT

2 + ε

B1. π̃ = π̃raw ≡ r̃W − r̃L B2. π̃ = π̃raw − π̃CAPM

η0 η1 η2 R2 η0 η1 η2 R2

η̂ −0.0098 0.0179 0.80 −0.0114 0.0178 0.72
t −1.49 2.60 −1.57 2.33

η̂ −0.0013 0.0402 −0.0325 1.12 −0.0033 0.0408 −0.0327 1.05
t −0.39 3.36 −3.54 −0.89 3.11 −3.20

B3. π̃ = π̃raw − (hW r̃m − hLr̃m) B4. π̃ = π̃raw − (cW,1hW r̃m − cL,1hLr̃m)

η0 η1 η2 R2 η0 η1 η2 R2

η̂ −0.0003 0.0044 0.04 0.0020 0.0065 0.12
t −0.04 0.60 0.29 0.91

η̂ 0.0025 0.0122 −0.0133 0.15 0.0063 0.0144 −0.0151 0.23
t 0.60 0.85 −1.12 1.49 1.09 −1.57

Panel A includes results from two regressions. Panel A1 reports the regression of r̃W on

hW r̃m and Panel A2 reports the regression of r̃L on hLr̃m, where r̃W , r̃L, and r̃m are the

holding period excess returns on the winner, the loser, and the market, respectively. The
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construction of the winner and the loser portfolios is described in Table 1. The conditional

betas are computed by (5), where the value of λ in (10) is selected to match the three percent

unconditional payoff level (i.e., πu = 0.03). For any given month, the betas hW and hL of the

winner and the loser are the equally-weighted averages of the betas of the five portfolios used

in construction of the winner and the loser portfolios, respectively. For all cases through-

out the table, the t-statistics are adjusted for serial correlation and heteroskedasticity, the

regression R2’s are expressed in percentage, and the sample period is from 1934 to 2003.

Panel B reports results from predictive regressions using LAGMKT, where LAGMKT is the

three-year lagged market return. In each case, the dependent variable π̃ is either the raw

payoff or the payoff adjusted by some model. Two regressions are reported in each panel.

The first is on a dummy variable I(LAGMKT > 0) that is equal to 1 if LAGMKT > 0 but 0

otherwise. The second is a quadratic regression on LAGMKT and LAGMKT2. In Panel B1,

the dependent variable π̃ is the holding period raw payoff (i.e., r̃W− r̃L). In Panel B2, the de-
pendent variable π̃ is the payoff adjusted by the unconditional CAPM, where π̃CAPM = br̃m,

which is obtained from the regression π̃raw = a+ br̃m+ ε. In Panel B3, the payoff is adjusted

by the conditional CAPM, i.e., π̃ = π̃raw− (hW r̃m−hLr̃m) = (r̃W −hW r̃m)− (r̃L−hLr̃m). In

Panel B4, the payoff is adjusted by the return variation captured by the conditional CAPM

in the regressions of Panel A. That is, cW,1 and cL,1 are the slope estimates from Panel A.
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