
Intermediation Capital and Asset Prices

Zhiguo He Arvind Krishnamurthy ∗

January 20, 2006

Abstract

We introduce intermediation frictions into a Lucas (1978) asset pricing model in order to study the

effects of low capital in the intermediary sector on asset prices. Our model shows that low intermediary

capital can increase risk premia, Sharpe ratios, volatility and comovement among intermediated assets.

Reductions in intermediary capital also lead to a flight-to-quality in which intermediaries’ investors with-

draw their funds and purchase bonds. We calibrate our model and find that the effects are sizable: risk

premia can double when moving from states of the world where intermediary capital is plentiful to states

where intermediary capital is scarce. We simulate our model to measure the average effects of interme-

diary capital on asset prices. In our simulations, the economy does not spend sufficient time in the low

intermediary capital states, so that average effects on asset prices are small. Our model suggests that

intermediation frictions are first order to understand financial crises and episodes of market illiquidity, but

are second order to understand the average equity risk premium.
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1 Introduction

We study how changes in the capital of financial intermediaries affect equilibrium asset prices. In standard

neoclassical models, financial intermediaries are a frictionless conduit through which households gain access to

a larger investment opportunity set. If the capital of an intermediary falls in a way that shrinks the investment

opportunity set of its end investors, these investors simply restore the capital of the intermediary. Asset market

equilibrium is unaffected so that intermediation capital is irrelevant for asset prices.

In practice, financial intermediaries are not a frictionless “veil.”1 Households cannot perfectly monitor and

control the investment decisions of intermediaries. Suspicions of mis-management and conflicts of interest

always cloud the relationship between households and intermediaries. A well capitalized intermediary allays

some of these concerns.

These points are well illustrated by the LTCM crisis of the fall of 1998. Losses among hedge funds reduced

their capital. Households did not restore the lost capital, and instead withdrew into safer investments such

as government bonds. As a consequence, funds began to liquidate assets. In many of the markets that hedge

funds specialized, prices were substantially affected by the liquidation of distressed hedge funds. Spreads and

risk premia rose as prices fell; volatility increased; and market liquidity fell.2

We present a model to study the importance of intermediation capital for asset prices. Our model has

an intermediation sector and a household sector. Households do not invest directly in a set of risky complex

assets, but choose to delegate such investment to intermediaries that are managed by skilled “specialists”.

The main friction we introduce is a capital constraint: because of an agency problem, specialists must use

their own wealth to coinvest with the households in forming an intermediary. The coinvestment places some

of the specialists wealth at stake in the intermediary, and thereby provides the specialist with appropriate

investment incentives.

Other than the intermediation friction, our model resembles the endowment economies commonly studied

in the equilibrium asset pricing literature. The risky assets are represented by a Lucas (1978) tree, which pays

a dividend governed by a geometric Brownian motion process. Subject to the intermediation friction, markets

are complete.

The households’ participation in the riskless asset is direct, while their participation in the risky assets is

indirect because of the intermediation friction. The capital constraint determines the equilibrium supply of

intermediation.

When there is a large enough amount of intermediary capital that capital constraints do not bind in
1Allen (2001) presents a compelling case for why financial intermediaries should be incorporated into asset pricing models.
2Other important asset markets, such as the equity or housing market, were relatively unaffected by the turmoil. The

dichotomous behavior of asset markets suggests that the problem was hedge fund capital specifically, and not capital more

generally. Investors did not bypass the distressed hedge funds in a way as to undo any asset price impact of the hedge fund

actions. They also did not restore the hedge funds’ capital.
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equilibrium, the supply of intermediation is large. Households are indirectly able to hold their desired portfolio

of risky assets, and the intermediation frictions play little role in determining asset prices. The economy

resembles one without any agency problems. Risk is shared between specialists and households, and risk

premia are small.

Starting from the level of intermediary capital where the supply of intermediation is large, if we imagine

reducing intermediary capital, there comes a threshold for intermediary capital where capital constraints

bind in equilibrium. As we reduce capital below this level, households withdraw funds from intermediaries,

recognizing that not doing so would trigger an agency problem; i.e. specialists would not have a sufficient stake

to provide investment incentives. Households reduce (indirect) participation in the risky asset. The specialists

increase leverage to absorb more of this risky asset and shocks to dividends are borne predominantly by

specialists.

In the latter case, shocks have a larger effect on asset prices, leading to higher conditional volatility.

This reinforces the effect of capital constraints, as the asset price shocks lead to greater fluctuations in the

capital levels of intermediaries, creating an amplification mechanism. Risk premia and Sharpe ratios rise. We

quantify these effects and show that the degree of capital constraints can have a sizable effect on asset price

measurements. For example, we find that while risk premia when capital constraints do not bind are 3% in

our baseline calibration, when constraints place intermediaries near bankruptcy the risk premium rises to 6%.

The patterns that our model generates when intermediary capital is low are consistent with episodes of

market illiquidity such as the events of the Fall of 1998. Indeed, our model suggest a link between market

liquidity and intermediary capital. When intermediary capital is low, there are effectively less buyers of risky

assets as households do not fully participate in the risky asset markets. We show that during the low capital

periods, correlation across intermediated assets rises, consistent with the Fall of 1998 events. We also show

that decreases in asset prices leads household to withdraw funds from intermediaries and invest in riskless

bonds, consistent with a flight to quality.

We simulate the model to quantify the time series properties of asset prices in our model. In our simulations,

we choose parameters such that the probability of the intermediary sector losing all of its capital and going

bankrupt is low (< 2%). With this restriction we find that, although the intermediary friction can have

substantial effects on conditional risk premia, the average equity premium in the model is only about 0.3%

higher than in a model without intermediation frictions. This result is because the risk premium in our model

resembles a quadratic function of the tightness of capital constraints. Thus, risk premia are substantially

higher when the intermediary sector is near bankruptcy. We also discuss how our results change if we allow

for larger probabilities of bankruptcy.

In our simulations we also measure the risk premium attached to states of the world with low intermediary

capital. A number of recent papers have documented that aggregate liquidity risk is a priced factor (see

Amihud, 2002, Acharya and Pedersen, 2003, Pastor and Stambaugh, 2003, and Sadka, 2003), suggesting that
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the marginal investor is averse to assets that pay little when aggregate liquidity is low. Interpreting our

low intermediary capital states as low aggregate liquidity states, we find a natural reason why the marginal

investor in our economy should be averse to low intermediary capital: the marginal investor in our model

is the specialist who has low consumption and bears substantial risk when intermediary capital is low, the

specialist will be averse to aggregate liquidity risk. Since the liquidity risk in our model is due to shocks to

intermediary capital, we can measure the liquidity risk premium in terms of how much intermediary capital

shocks raise the volatility of the specialist’s consumption. We find that shocks to intermediation capital cause

the risk premium on consumption growth of the specialist intermediary to rise by 45bps relative to a baseline

without intermediation capital shocks.

In our model, the specialists (intermediaries) are the marginal investor in the risky asset market. There is

a growing body of papers suggesting that intermediaries are the marginal investor in many specialized asset

markets. These studies include, research on the mortgage-backed securities market (Gabaix, Krishnamurthy,

and Vigneron, 2005), the corporate bond market (Collin-Dufresne, Goldstein, Martin, 2001), the credit default

swap market (Berndt, et. al., 2004), the catastrophe insurance market (Froot and O’Connell, 1999, 2001),

and the options market (Bates, 2003; Garleanu, Pedersen, and Poteshman, 2005). These empirical studies

reiterate the relevance of intermediation for asset prices. However they paint a richer picture of intermediation

than is captured in our model. The studies suggest that the capital of intermediaries specialized in particular

markets is relevant for those particular markets. In our model, the entire intermediary sector specializes in

the same set of assets. Our model takes a broad brush approach to the relationship between intermediation

capital and asset prices.

There is a large theoretical literature exploring different aspects of how frictions in intermediation may

effect asset prices (see Allen and Gorton, 1993, Brennan, 1993, Dow and Gorton, 1994, Grossman and Zhou,

1996, Shleifer and Vishny, 1997, Xiong, 2001, Kyle and Xiong, 2001, Cuoco and Kaniel, 2001, Gromb and

Vayanos, 2002, Liu and Longstaff, 2004, Brunnermeier and Pedersen, 2005, Dasgupta, Prat and Verardo, 2005,

and Vayanos, 2005). Our model is most closely related to Xiong (2001) and Vayanos (2005). These papers

also develop models to study asset price dynamics. Xiong does not explicitly model an intermediation sector,

treating such a sector with a short-hand log utility preference assumption. Vayanos introduces an open-ending

friction into a model of intermediaries and generates implications for the premium on liquidity and volatility

risk.

There is also a literature on limited market participation and asset prices (Mankiw and Zeldes, 1991, Allen

and Gale, 1994, Basak and Cuoco, 1998, Vissing-Jorgensen, 2002, Brav, Constantinides, and Geczy, 2002,

Guvenen, 2005). While our model shares many features with those in the limited participation literature, it

is different because the extent of participation is endogenously determined by financial intermediation.

The remainder of this paper is devoted to developing a model to assess the importance of intermediary

capital for market liquidity and asset pricing.
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2 Model 1: Capital Constraints and Conditional Asset Prices

We begin by developing a model that highlights the differences between an economy where there is low

intermediary capital and an economy where there is high intermediary capital. We show how intermediary

capital affects the sharing of risk, and the determination of asset prices.

We then turn to numerical evaluation of the model. We quantify how a given level of intermediary capital

translates into asset price measurements such as risk premia, volatility, and correlations.

A drawback of the model we present below is that the region where intermediary capital is high is an

absorbing state. Thus, while the model is useful for conditional asset pricing – i.e. how asset prices evolve

given an initial condition of intermediary capital – it does not lend itself to simulating the average effects of

the intermediary capital.

We alter the model slightly and present a second model that allows for full transiting of paths. We then

simulate the model and compute the average affects in the model. These results are presented in Section 5.

2.1 Preferences and payoffs

We consider an infinite horizon, continuous time, economy populated by two classes of agents, households and

specialist intermediaries. There are two assets, a riskless bond in zero net supply, and a stock that pays a

risky dividend. We normalize the total supply of stocks to be one unit.

We assume that the households do not invest directly in the risky asset, but can allocate some funds to

the specialists who invest in the risky asset on their behalf. We think of the risky asset not as a single stock

but as corresponding to a portfolio of intermediated assets that are managed by the specialists.

The households have log preferences over date t consumption ch
t ,∫ ∞

0

e−ρtln ch
t dt ρ > 0.

They indirectly hold stocks and directly hold bonds. The specialists have concave preferences over date t

consumption, ct, ∫ ∞

0

e−ρtu(ct)dt ρ > 0;

we consider a CRRA instantaneous utility function with parameter γ for the specialists. They choose portfolio

shares of αs share of stocks and αb = 1 − αs bonds.

The stock pays a dividend of Dt per unit time, where {Dt : 0 ≤ t < ∞} follows a Geometric Brownian

Motion,
dDt

Dt
= gdt + σdZt given D0. (1)

g > 0 and σ > 0 are constants. Throughout this paper Z = {Zt : 0 ≤ t < ∞} is a standard Brownian motion

on a complete probability space (Ω,F ,P) with an augmented filtration {Ft : 0 ≤ t < ∞} generated by the

Brownian motion Z.
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We denote the progressively measurable processes {Pt : 0 ≤ t < ∞} and {rt : 0 ≤ t < ∞} as the stock price

and interest rate processes, respectively.

2.2 Intermediation

The key friction we introduce is a capital constraint on intermediation. This subsection details our modeling

of intermediation, which loosely follows Holmstrom and Tirole (1997). Unlike Holmstrom and Tirole we make

assumptions to restrict the contract space. These assumptions are necessary in order to maintain tractability

when placing the contracting problem within an asset pricing framework. But our resulting contracts still

resemble those that Holmstrom and Tirole derive.

Suppose that a specialist begins an intermediary by contributing T I and raising Th from households. On

the total funds of T = T I + Th he makes decisions that result in a stochastic portfolio return of d̃Rt.

Assumption 1 (Moral Hazard)

The specialist makes an unobserved portfolio choice decision, αs, and an unobserved due-diligence decision,

e ∈ {0, 1}. For any given αs, if the specialist shirks and sets e = 0, the return on the portfolio falls by x dt,

but the specialist gets a private benefit (in units of the consumption good) of bT dt. We assume that x > b so

that choosing e = 1 maximizes total surplus.

Specialists have to be given incentives to put in effort. These incentives are provided by writing a perfor-

mance contract contingent on d̃Rt. Denote Tf(d̃Rt) as the portion of the total portfolio returns that is paid

to the specialist and T (1 − f(d̃Rt)) as the portion that is paid to the household. We restrict attention to the

following contribution-based linear sharing contracts:

Assumption 2 (Linear Sharing)

We assume that incentive contracts are linear and proportional to contributions:

T I

Th
=

f(d̃Rt)

1 − f(d̃Rh
t)

=
β

1 − β
.

Where, the compensation of a specialist is:

C + β d̃Rt T.

We focus on compensation contracts that have a fixed component (e.g. a fee) and a variable component

that is linear in the realized portfolio return. In general, the optimal contract may be nonlinear. A realistic

example of a non-linear contract is an option contract that only compensates the specialist if the return is

sufficiently high. To retain tractability when embedding our intermediation model into an equilibrium asset

pricing framework, we restrict attention to linear sharing contracts. Note also that in the contracts we study,
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the sharing of portfolio returns links to the contributions (T I , Th).3

The moral hazard and linear sharing assumption pin down β from an incentive compatibility condition: β

must be sufficiently high to compensate the specialist for exerting effort.

Our final assumption pins down C based on the participation constraint of the household.

Assumption 3 (Household beliefs)

Households believe that intermediaries, through a judicious portfolio choice, will earn higher returns than they

themselves could obtain. The perceived excess return is fdt per unit wealth.4

A concrete story to justify this assumption is as follows. Imagine that households are ignorant regarding

time-varying expected returns on the risky asset and by default invest directly only a constant portfolio

share. They are aware that specialists can adjust portfolio shares and generate an excess return relative to

the constant share portfolio. On average, they perceive this excess return is f . In equilibrium, as we show,

specialists do generate an excess return on their portfolio. We could reconcile the story and set f to this excess

return.

We envision the following market structure for intermediation. At every t, each specialist is randomly

matched with a household. The specialist and household then potentially enter into an intermediation rela-

tionship. These interactions occur instantaneously and result in a continuum of (identical) one-to-one relation-

ships. A household may choose to invest some of his wealth with the specialist, subject to the moral hazard

friction. The specialist and household bargain over the terms of the contract. We assume that the specialist

has all of the bargaining power in this interaction and makes a take-it or leave-it offer. If the household does

not accept the offer, he must wait dt to match with another specialist. After intermediation decisions are

taken, specialists trade in a Walrasian stock and bond market, and the household trades in only the bond

market. At t + dt the match is broken, and the intermediation market repeats itself.

The instantaneous matching structure means that all contracts are short-term. In principle, a long term

contract could improve allocations. The bargaining power assumption is less important, and we could alter

it, at the cost of more complicated notation.

Proposition 1 The optimal contract between a household and specialist involves:

1. Both specialists and households receive the return d̃Rt on their contributions to the intermediary.

2. Household pays a fee (f) to the specialist on the funds that the household contributes to the intermediary:

fTh = C.

3In general, we may find that the specialist has to invest proportionately less funds into the intermediary, while receiving

proportionately more of the portfolio returns. We can easily accomodate such a change. However, it may also be that these

proportions varies as economic conditions change. If we allow for such variation we lose tractability when solving for asset prices.
4x is greater than f . If not, households may prefer to have specialists shirk and set e = 0, but still intermediate their

investments.
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3. Specialists are subject to a capital constraint. They can intermediate, at most, m × wI
t of the funds of

households, where wI
t is the capital of a specialist at date t and m = x

b − 1 is a strictly positive constant.

Proof. See appendix.

The contracts results in the specialist receiving payoffs from two sources: a fixed fraction of intermediated

funds plus a fraction of the returns generated by his fund. Such a payoff structure resembles fund management

contracts we observe in practice. More broadly the payoff structure captures the explicit and implicit incentives

across many modes of intermediation.

The model we have outlined has the characteristic that when the specialists’ wealth falls, their ability

to intermediate funds of the households also falls. This reduces the aggregate demand for stocks, requiring

an increase in the equilibrium return on the stock in order to clear the stock market. On the other hand,

the disintermediation results in households increasing their demand for the bond, leading to a fall in the

equilibrium interest rate.

Note that the model is asymmetric, as a sufficient rise in the wealth of specialists may lead to a situation

where all of the funds of the households are being intermediated, so that further changes in intermediary

capital does not affect intermediation.

Finally, it is theoretically possible in the model for the capital of intermediaries to fall to zero, in which case

all intermediation breaks down. In order for our model to be well specified, we must define this “bankruptcy”

state.

Assumption 4 (Bankrupt intermediaries)

In bankruptcy, the specialists assets are liquidated and debt is retired, with any debts to other specialists repaid

first.5 The specialists are given a fixed share of the risky asset, φ, to fund consumption for the rest of time

and are restricted from trading these shares thereafter. The households receive the remainder of 1 − φ shares.

Households manage these investments poorly relative to the specialists, and in case of liquidation, the dividends

on the risky asset fall by a fraction 1−δ. We set δ = 1−φ which ensures that the consumption of the specialist

does not jump in bankruptcy.

2.3 Decisions

At every t specialists and households interact and strike up intermediation relationships. After the inter-

mediation decision, agents trade in the asset and goods market to achieve their desired portfolio shares and

consumption rates. Given our assumption on household beliefs, the investment decision of the household is

trivially to invest any remaining wealth (after giving money to the intermediary and consuming) directly in

5In equilibrium, there is no borrowing or lending between specialists. Requiring that debts to specialists be repaid first ensures

that the debt we price is riskless.
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bonds. The specialist chooses a portfolio of stock and bond and the consumption rate to maximize his lifetime

utility.

The decision problem of a household is to choose his consumption rate and funds for delegation, given his

wealth, wh
t > 0. We denote Xt ∈ [0, 1] as the fraction of wealth that is invested with the intermediaries. Then,

wh
t Xt = min

{
mwI

t , wh
t

}
,

i.e. the household delegates the maximum possible funds to the intermediary given household beliefs. Then

the return on the household’s wealth is,

ˆdRt = (1 − Xt)rtdt + Xt

(
d̃Rt − fdt

)
,

where d̃Rt is the cumulative return process delivered by intermediaries. The optimization problem for a

household is:

max
{ch

t }
E

[∫ τ

0

e−ρtln ch
t dt

]
(2)

where τ is the first time the economy reaches the bankruptcy boundary. The optimization is subject to,

dwh
t = −ch

t dt + wh
t

ˆdRt

given some wh
0 .

The specialist chooses his consumption rate, his portfolio, as well as a quantity of intermediation services

to offer to households.

max
{ct,αs

t ,αb
t,Qt}

E

[∫ τ

0

e−ρtu(ct) dt

]
(3)

subject to the budget constraint,

dwI
t = −ctdt + wI

t d̃Rt + Qtfdt

and the capital constraints:

Qt ≤ mwI
t = m

(
αb

t + αs
tPt

)
;

d̃Rt =
1

wI
t

[
αb

trtdt + αs
t (Dtdt + dPt)

]
.

In the market for intermediation, the specialists intermediate a portion of the wealth of the households:

Qt = wh
t Xt.

Market clearing in the stock market is:

(
wI

t + wh
t Xt

) αs
t

wI
t

= 1.
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This condition requires that the proportion of stocks in the specialists portfolio ( αs
t

wI
t
), applied to the total

funds under intermediation (specialist wealth plus intermediated funds), must add up to the total supply of

stocks. For the bond market, (
wI

t + wh
t Xt

) αb
t

wI
t

+ wh
t (1 − Xt) = 0. (4)

The condition for the bond market is similar to that of stocks, but reflects that households may hold bonds

directly, and that total bond holdings must sum to zero.

Market clearing in the goods market is,

ct + ch
t = Dt

which is satisfied by Walras’ law.

3 Solution

We look for a stationary Markov equilibrium where the state variables are (wh
t , Dt), where wh

t is the wealth of

the passive household. There are two steps in deriving the solution. First, since the specialist is unconstrained

in his asset choice, we can use his Euler equation to derive an equation governing the equilibrium asset prices.

Second, market clearing in the goods market allows us to infer the consumption of the specialist to arrive at

the Euler equation.

Define the total return on the stock as,

dRt =
Dtdt + dPt

Pt
.

Using the Euler equation for the specialist, we arrive at the standard consumption-based asset pricing relations:

−ρdt − γEt

[
dct

ct

]
+

1
2
γ(γ + 1)V art

[
dct

ct

]
+ Et [dRt] = γCovt

[
dct

ct
, dRt

]
(5)

where ct is the consumption rate of the specialist. The Euler equation is valid for all t ≤ τ (the time

the economy hits the bankruptcy boundary) since the specialist is always marginal in trading assets in the

economy. Assumption 4 ensures that the Euler equation is also valid at t = τ . We use Et [·] as the conditional

expectation operator, and Covt [·, ·] (V art [·]) as the conditional covariance (variance) operator.

For the short-term bond, since the bond price is always one,6

rtdt = ρdt + γEt

[
dct

ct

]
− γ(γ + 1)

2
V art

[
dct

ct

]
To use these equations we need to derive expressions for P (wh

t , Dt) and c(wh
t , Dt). The derivation follows.

6The debt that household hold is riskless for t < τ . But at t = τ , intermediaries may default on their debt which makes

household debt risky. In this case, the interest rate we describe will deviate from that of the riskless debt. We may imagine that

the short-term interest rate we derive is on a repo loan between intermediaries, which is always repaid before any debts due to

households. Such a repo loan will always be riskless.
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3.1 Stock Price

We exploit the scale invariance property of our economy and redefine the state variable as yt ≡ wh
t

Dt
, i.e. the

dividend-scaled wealth of the households. We conjecture that the equilibrium evolution of yt may be written

as an Ito process which solves the following Stochastic Differential Equation,

dyt = µydt + σydZt, (6)

where the drift µy and the diffusion σy are well-behaved functions of y (to ensure the existence and the

uniqueness of solution {yt : 0 ≤ t ≤ τ}).7 We solve for µy and σy below.

We also conjecture that we can write the equilibrium stock price as,

Pt = DtF (yt) (7)

where F : R → R is twice continuously differentiable on its relevant domain. F (y) is simply the price/dividend

ratio of the stock.

Applying Ito’s Lemma to (7) yields the total return process for the stock:

dRt =
(

g +
F ′

F
µy +

1
2

F ′′

F
σ2

y +
1
F

+
F ′

F
σyσ

)
dt +

(
σ +

F ′

F
σy

)
dZt, (8)

where (and in the analysis that follow) we omit the argument in F (y), F ′ (y) and F ′′ (y) for brevity.

3.2 Consumption

Consider again the household’s problem, (2). It is easily verified that for a log investor, the optimal consump-

tion rate is,

ch
t = ρwh

t ,

regardless of the stochastic process for dR̂t.8

Utilizing this relation and the goods market clearing condition ct + ch
t = Dt, we infer the consumption rate

of the specialist to be

ct = Dt − ρwh
t = Dt(1 − ρyt).

Then,

dct

ct
=

dDt

Dt
− ρdyt

1 − ρyt
− ρ

1 − ρy
Covt

[
dyt,

dDt

Dt

]
=

(
g − ρ

1 − ρyt
(µy + σyσ)

)
dt +

(
σ − ρ

1 − ρyt
σy

)
dZt (9)

7After bankruptcy, or t > τ , the economy stays at the point y = δ
ρ
.

8The Euler equation for the log investor is:

−ρdt − Et

[
dch

t

ch
t

]
+ V art

[
dch

t

ch
t

]
+ Et

[
ˆdRt

]
= Covt

[
dch

t

ch
t

, ˆdRt

]
The solution ch

t = ρwh
t satisfies the Euler equation since dch

t /ch
t = dwh

t /wh
t = −ρdt + ˆdRt.
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3.3 Differential Equation and Regions

We substitute the expressions for consumption (9) and asset return (8) into the specialist’s pricing equation

(5) to obtain the following proposition:

Proposition 2 The equilibrium Price/Dividend ratio F (y) satisfies the ordinary differential equation,

g +
F ′

F
µy +

1
2

F ′′

F
σ2

y +
1
F

+
F ′

F
σyσ = ρ + γg − γρ

1 − ρy
(µy + σyσ) (10)

+γ

(
σ − ρ

1 − ρy
σy

)(
σ +

F ′

F
σy

)
− 1

2
γ(γ + 1)

(
σ − ρ

1 − ρy
σy

)2

Before we use this ODE to find F (y), we need to derive expressions for µy and σy as y evolves along

its equilibrium path. The functional forms depend on whether there is sufficient intermediary capital to

intermediate all of the households wealth or not.

Let us denote θs (y) and θb (y) as the stock and bond holdings (direct plus indirect) of the household, where

wh = θb + θsP . The three cases are as follows:

1. If mwI ≥ wh then there is sufficient intermediary capital to intermediate all of the households’ wealth. In

this case, the households delegate all of their wealth to the intermediation sector, and hence θb (y) = 0.

From the clearing condition in the bond market, (4), we see that αb must be equal to zero. Both

specialists and households own only stocks in their portfolio. Then the households stock holdings are,

θs (y) =
wh

P
=

y

F (y)
.

The intermediation sector is capital constrained when mwI = wh. Since wI + wh = P , we can solve for

this cutoff as

wh

(
1 +

1
m

)
= P

or, in terms of y,

yc =
m

m + 1
F (yc). (11)

This equation implicitly defines the point when capital constraints arise, and we are sitting in the

unconstrained region if 0 < y ≤ yc.

2. If mwI < wh (or y > yc) then the intermediation sector is capital constrained. Since all stocks are held

through the intermediaries,

θs (y) = mαs

where αs is the stock holdings of the specialists. But since, mαs +αs = 1 (i.e., all stocks have to be held

through intermediaries), we find

θs (y) =
m

1 + m
.
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Note that the stock holdings for both agents are constant in this region. For bonds, note that, θb =

wh − θsP . Defining the scaled bond holding of households as θ̂b (y) ≡ θb

D , we have,

θ̂b (y) = y − θsF (y) .

3. If specialists’ wealth falls to zero, the insolvent intermediaries go bankrupt and all intermediation col-

lapses. The economy reaches this point when wI = P − wh = 0. Then, the bankruptcy threshold is

implicitly defined by the equation

yb = F (yb).

Given our assumptions on bankruptcy, the households own the risky asset after this event but receive a

lower dividend stream. Since the households have log preferences with discount rate of ρ, we have

F (yb) =
δ

ρ
.

As we will see, the households’ stock holding θs (y) and their scaled bond position θ̂b (y) play a key role in

our following analysis. We may omit the argument y later on to simplify our notation.

3.4 Unconstrained Intermediation: 0 < y ≤ yc

We now derive the diffusion coefficients µy and σy in the unconstrained region.

Lemma 1 When y < yc so that intermediation is not capital constrained, we have

σy = 0,

and

µy =
1

1 − θsF ′ (θs − (ρ + f)y) .

Proof. For households, the change in y reflects any capital gains in the stock and any changes in the asset

positions, i.e.,

dy = θsdF + Fdθs

The second term here reflects changes in the asset position. We know that,

DFdθs = Dθsdt− (ρ + f)wdt.

That is, the asset position changes due to dividends received minus their consumption and the delegation fees.

Thus,

dy = θsdF + θsdt − (ρ + f)ydt.

Substituting for dF we find,

dy(1 − θsF
′) =

1
2
θsF

′′σ2
ydt + θsdt− (ρ + f)ydt.

13



Notice that y is not stochastic (no dZt term involved), so that σy = 0. We can then solve for µy to obtain the

expression given in the Lemma.

Proposition 3 When y < yc, the equilibrium risk premium on the stock is constant:

Et[dRt]− rtdt = γσ2dt.

Proof. The risk premium on the stock is given by γCovt

[
dc
c

, dR
]
. When σy = 0, the diffusion terms in both

(8) and (9) are σ.

The risk premium in the unconstrained case corresponds exactly to what we would derive in an economy

with the specialist intermediary as the representative agent, but without intermediation frictions. This result

provides a counterpoint to the results we derive next for the constrained region.

3.5 Capital Constrained Intermediation: yc < y < yb

Recall θ̂b (y) = θb

D = y − θsF (y) > 0, where θs = m
m+1 in the constrained region. Then,

y = θsF + θ̂b.

The change in y is,

dy = θsdF − θb

D2
dD +

θb

D3
V art [dD] + Fdθs + dθ̂b

= θsdF − θ̂b
dD

D
+ θ̂bσ

2dt + (θs + rθ̂b − ρy − fm(F − y))dt.

We have used the accounting identity, Fdθs + dθ̂b =(θs + rθ̂b − ρy − fm(F − y))dt, that governs changes in

the households’ assets position. Substituting for for dF , we find:

Lemma 2 When y > yc so that the intermediary sector is capital constrained,we have

σy = − θ̂b

1 − θsF ′σ

and,

µy =
1

1− θsF ′

(
θs + (r + σ2 − g)θ̂b − ρy − fm(F − y) +

1
2
θsF

′′σ2
y

)
where,

r = ρ + γ

(
g − ρ (µy + σσy)

1 − ρy

)
− γ (γ + 1)

2

(
σ − ρσy

1 − ρy

)2

.

Note that σy is less than zero in the constrained region,9 and increasingly so as the passive households’

scaled bond holding θ̂b > 0 rises. In other words, a negative innovation to D, or a negative shock to the stock

market, increases the households scaled wealth y, and tightens the capital constraint.
9We can show that 1−θsF ′ is always positive. To see this, note that G (y) ≡ 1

1−θsF ′ in (20) is positive when y = yc. Suppose

that G goes to positive infinity. The RHS is dominated by the fourth term which is negative, while on the LHS G′ has a positive

coefficient. Hence G′ < 0, contradiction.

14



In the constrained region, households withdraw funds from intermediaries recognizing that not doing so

will lead intermediaries to shirk on the due-diligence decision. They withdraw funds until the point that the

intermediaries capital constraint is met.

But in withdrawing funds from intermediaries, households are also reducing their indirect participation

in the stock market, while increasing bond holdings. Specialists absorb these changes by increasing their

borrowing to buy the stock.

wh =
m

m + 1
P + θb and wI =

1
m + 1

P − θb.

Intermediaries have a leveraged position in the risky asset in the constrained region. Since θb > 0, a shock

to dividends produces a muted reaction in the households’ wealth, wh, and a more amplified reaction in the

specialists’ wealth. As a result, σy < 0 and increasingly so as θb rises.

The increased in specialist leverage increase the volatility of the consumption rate of specialists ct. This

point are also evident from inspecting equation (9), where we derive that the instantaneous volatility of the

specialist’s consumption is: (
σ − ρ

1 − ρyt
σy

)
= σ

(
1 +

ρ

1 − ρyt

θ̂b

1 − θsF ′

)

In the unconstrained region, θ̂b is equal to zero, so the consumption volatility is just σ. But, in the constrained

case, consumption volatility is increasing in θ̂b. Moreover as yt rises, so that intermediaries are more capital

constrained, this effect is stronger.

The increased volatility in the specialists pricing kernel leads to a larger effective risk aversion, and can

induce higher risk premium. In this sense, the risk aversion of the specialist endogenously increases as capital

constraints are tightened:

Proposition 4 In the constrained region the risk premium on the stock is:

Et[dRt]− rtdt = γσ2

(
1 +

ρ

1 − ρy

1
1 − θsF ′ θ̂b

)(
1 − F ′

F (1 − θsF ′)
θ̂b

)
dt

If F ′ < 0 then the risk premium is unambiguously higher in the constrained region than the unconstrained

region.

The first term in parentheses in the expression for the risk premium captures the volatility of the pricing

kernel and the second term in parentheses is the loading of the stock’s return on the pricing kernel. When

F ′ < 0, both effects contribute to a higher risk premium.10

10In our numerical solutions, we often find that F ′ is positive when just entering the constrained region before turning negative

over a broader range of y. Despite this non-monotonicity in F , we find that the risk premium is higher in the constrained region

than the unconstrained region with virtually all of our parameter choices. This finding suggests that the increased volatility of

the pricing kernel dominates the determination of the risk premium.
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4 Conditional Asset Prices

We solve the ODE, (10), to numerically illustrate the workings of our model. In Lemma 1 we noted that

σy = 0 in the unconstrained region. For most parameterizations of the model we also find that µy < 0. As a

result, given an initial condition of y < yc it is not possible for the economy to enter the constrained region.

In this section we present a number of asset price measurements conditional on a value of y. The exercise

gives some insight into how the degree of capital constraints translates into asset prices. In the next section,

we alter the model so that |σy| > 0 for all y, and then simulate the model.

The solution method is detailed in Appendix B. We solve the ODE subject to boundary conditions at

y = 0 (fully unconstrained intermediation) and y = yb (bankrupt intermediaries).

4.1 Parameters

In choosing parameters for the calibration, we envision that the intermediary is managing an investment in a

risky asset that encompasses most financial claims. Our intermediary represents an amalgam of banks, mutual

funds, hedge funds and insurance companies.

Table 1: Baseline Parameters

Parameter Value

g Dividend growth 2%

σ Dividend volatility 10%

ρ Time discount rate 1%

γ RRA of specialist 3

f Fee 1.2%

m Intermediation multiplier 1

F (yb)/F (0) Bankruptcy boundary 60%

The household has log preferences with a time discount rate of ρ = 1%.

We set g = 2%. This number is in the range of estimates for economic growth, consumption growth, and

stock-market dividend growth. We choose σ = 10%. The number matches the dividend volatility of the stock

market. Volatility of consumption growth is an order of magnitude smaller. Since our model concerns the

financial position of intermediaries, matching σ to financial volatility seems appropriate.11

We choose ρ = 1%. This choice produces a riskless interest rate around 1% in the unconstrained region.

We set the risk-aversion parameter for the specialists to be γ = 3. Both the ρ and γ numbers are in the range
11For example, we could imagine that there is a class of households who receive a fixed labor income each period that must

be added to aggregate dividends when computing aggregate consumption. This will tend to reduce consumption volatility below

10%.
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that is typical in the literature. We provide sensitivity analysis based on alternative values of γ.

The intermediation parameters in the model are f , m, and δ. Intermediation fees for mutual funds fall in

the range of 0.1% to 2%. In Appendix B, we show that to ensure uniqueness of our solution, parameters must

satisfy

f > g(γ − 1) +
γσ2

2
(1 − γ). (12)

This condition says that f must be sufficiently high that specialists do not die out in the limit. Choosing

a higher value of f transfers wealth from households to specialists and makes the condition easier to satisfy.

Given our choices of g, γ and σ, the right hand side of the condition is equal to 1%. We set f slightly higher

to give the numerical solution some room. We choose f = 1.2% in the baseline. We also provide sensitivity

analysis with alternative values of f .

We choose m = 1 in our baseline case. We also provide sensitivity analysis to alternative values of m.

Note that m determines the effective size of the intermediation sector as well as the range of the constrained

region. As m rises, intermediaries can raise more household funds, which effectively increases their size. The

rise in m also makes it harder for capital constraints to bind and thereby reduces the constrained region of

the state space.

We justify our choice of m based on intermediation data. Allen (2001) reports that in the 1990’s, 50% of

total wealth was intermediated while 50% was directly invested in financial assets. In our model, specialists

play two roles. First, they directly invest their wealth in the risky asset. Second, every specialist intermediates

some of the funds of the passive household, and all households are only exposed to the risky asset through

intermediaries.

We will interpret the specialists as the direct investors of Allen, and the households as the intermediated

investors. Thus, if specialists control half of the wealth of the economy, we want to ensure that they can

intermediate the wealth of the other half of the economy, suggesting a choice of m ≥ 1.

If we choose m much larger than one the constrained region becomes very small. In the simulations in

the next section, we show that a choice of m around one leads the economy to enter the constrained region

about 20% of the time. We can interpret this as corresponding to a recession once every five years, which is

consistent with U.S. data.

We choose δ so that the price/dividend ratio at y = yb is 60% of the price/dividend ratio at y = 0. In

some sense, the choice of δ also defines the range of the price/dividend ratio. In the data, the price/dividend

ratio on the stock market varies substantially from maximium to minumum: the minimum is roughly 30% of

the maximum. We are being relatively conservative with this choice of F (yb). Since δ is exogenously specified,

we always focus on parameters where, in the simulations, bankruptcy is an extremely unlikely event.12 We

12For ease of interpretation, we transform the parameter δ to α, where α is defined as
F
(

yb
)

F (0)
. Since F (0) = 1

ρ+g(γ−1)+
γ(1−γ)

2 σ2

(see Appendix B) and F
(
yb
)

= δ
ρ
, we have α = δ

(
1 +

g(γ−1)
ρ

+
γ(1−γ)

2ρ
σ2

)
. Under baseline parameters, δ = 30%.
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provide sensitivity analysis based on alternative values of F (yb)/F (0), which we denote as α later on.

4.2 The Equilibrium Price/Dividend Ratio F (y)

Figure 1: F (y) for baseline case.
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The equilibrium price/dividend ratio F (y) is graphed for baseline case. Param-

eters are ρ = 0.01, γ = 3, g = 2%, σ = 10%, f = 1.2%, m = 1, and α = 0.6.

There are three effects that determine the shape of F (y) in Figure 1: the bankruptcy boundary condition,

an interest rate effect, and a risk premium effect. When y = yb, F (y) is pinned down by the bankruptcy

boundary condition. For lower values of y, F (y) is determined by the discounted value of the dividend stream,

accounting for the possibility that at bankruptcy, the dividend stream ends and is replaced by F (yb). Thus

for values of y close to yb, the bankruptcy boundary weighs heavily in the determination of y. However, for

smaller values of y, the chances of hitting bankruptcy are sufficiently small, that the discount rates applied to

the dividend stream play the larger role.

In the unconstrained region for y ∈ (0, yc], future bankruptcy is impossible under our parameter assump-

tions, and only the discount rate effect determines F (y). Since the risk premium is constant (see Proposition

3), variation in F (y) is predominantly driven by variation in the interest rate. It is relatively easy to derive
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(see Appendix B), that the sign of F ′ (0) depends on

f − g(γ − 1) − γσ2

2
(1 − γ) < 0,

under our parameter assumptions. Intuitively, when f is large, households (as a share of the economy) are

slowly shrinking and transferring their wealth to specialists. Thus, specialists forecast their wealth to grow

over time, and this determines the discount rate that specialists apply to financial assets. The discount rate

depends on the speed at which wealth is being transferred to specialists. For y near 0, since households have

little wealth, the speed is low, leading to a lower discount rate; for larger y’s, the speed increases, and the

discount rate rises. This discount rate effect creates a downward sloping F (y) in the unconstrained region.

In the constrained region, y ∈ (
yc, yb

]
, both the interest rate and the risk premium change. As we have

remarked (see Proposition 4), the risk premium is higher in the constrained region, which causes F (y) to fall.

However, for y just larger than yc, F (y) displays a non-monotonic behavior. The latter behavior is because a

precautionary savings effect leads the interest rate to fall through the constrained region. For y close to yc,

the fall in the interest rate outweighs the rise in the risk premium, causing a reduction in the discount rate,

and a rise in F (y). However, for larger values of y, the risk premium rises, and the economy approaches the

bankruptcy boundary, so that F (y) falls.

Figure 2 illustrate the behavior of the interest rate and the risk premium as a function of y. Notice that

going from yc to yb the risk premium increases by 240bps, while the interest rate decreases by 90bps, leading

to a net increase in discount rates.

At F (yb) intermediaries become bankrupt. While the bankruptcy threshold is exogenous, the speed and

probability at which the economy arrives to the bankruptcy point is endogenous, and is determined by the

discount rate and risk premium effects.

4.3 Risk Premium and Interest Rate

Figure 2 (left panel) graphs the risk premium on the risky asset. As noted earlier, in the constrained region,

specialists hold a leveraged position in the risky asset and their consumption rate becomes more volatile.

From the figure we see that in the unconstrained region the risk premium is 3%, while through the constrained

region, the risk premium rises another 2.4%.

The higher risk premium in the constrained region is due both to increased effective risk aversion of the

specialist as well as increased stock volatility. The left panel of Figure 3 graphs the volatility of the risky asset.

Price volatility changes in the constrained region for two reasons. First, as we have remarked the pricing kernel

is more volatile in the constrained region. Second, F (y) becomes more sensitive to y in the constrained region,

so that shocks to the distribution of wealth have a magnified effect on price changes. In the region around

y = yc, since F ′(·) > 0, the latter effect dominates the former effect, which leads to a small dip in volatility.

However, over the broader range, the two effects reinforce each other causing volatility to rise.
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Figure 2: Risk Premium and Interest Rate for Baseline Case.
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The left panel of the figure graphs the equilibrium risk premium for the baseline parameters.

Despite the non-monotonicity in F (·), the risk premium is higher in the constrained region

than in the unconstrained region. The right panel graphs the equilibrium interest rate.

In the right panel of Figure 3 we plot the Sharpe ratio on the risky asset and show that it rises as the

economy enters the constrained region. Interestingly we find that the pattern of a rising Sharpe ratio and risk

premium remain true for a wide range of parameters, even if these parameters produce a more pronounced

non-monotonicity in F (·).
In the right panel of Figure 2 we graph the equilibrium interest rate. In the constrained region, the

capital of intermediaries falls, leading households to reduce the amount of funds they are willing to invest with

intermediaries. These withdrawn funds are used to purchase bonds. As specialists accommodate the demand

for bonds, the equilibrium interest rate falls.

4.4 Market Liquidity

In the capital constrained region, an individual specialist who may want to sell some risky asset faces buyers

with reduced capital. Additionally, since households reduce their (indirect) participation in the risky asset

market, the set of buyers of the risky asset effectively shrinks in the constrained region. In this sense, the

market for the risky asset “dries up”.˙On the other hand, if a specialist wished to sell some bonds, then the

potential buyers include both specialists as well as households. Thus the bond is more liquid than the stock.

There are further connections we can draw between low intermediary capital and aggregate illiquidity

periods.13 As we have already seen, a negative shock in the constrained region leads to a rise in risk premia,
13Eisfeldt (2004) presents a model in which aggregate liquidity varies across the business cycle. In Eisfeldt’s model, during bad
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Figure 3: Volatility and Sharpe Ratio for Baseline Case.
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The left panel of the figure graphs the equilibrium stock price volatility for the baseline

parameters. The non-monotonicity around y = yc occurs because F is positively sloped in

this region. The right panel graphs the equilibrium Sharpe ratio for the baseline parame-

ters.

volatility, and fall in interest rate.

Figure 4 graphs the elasticity of the size of intermediaries with respect to the price of the risky asset.

In the unconstrained region, this elasticity is one. A one percent fall in the price mechanically reduces the

total assets under intermediation by one percent. In the constrained region, the elasticity rises as shocks to

intermediaries have an indirect multiplier effect.14 Negative shocks reduce the specialists wealth/capital and

thereby reduce the total funds that households are willing to delegate to the intermediaries. The withdrawn

funds are invested in the riskless bond, in behavior consistent with the “flight to quality”.

4.5 Comovement

Our model also explains the increase in comovement of assets that many papers have documented as an

empirical regularity during periods of low aggregate liquidity. To show this in our model, we extend the model

slightly.

We consider the pricing of a new risky asset, j, in the economy. Investment in this asset is also subject to

times, adverse selection is high leading to higher illiquidity of assets.

14In the constrained region, the fund size is D (F − y) (1 + m), and the elasticity is
σ(F−y)+(F ′−1)σy

F−y
· F

σF+F ′σy
, since the

diffusion terms dominate.
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Figure 4: Fund size elasticity for baseline case.
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The elasticity of intermediary size with respect to the price of the risky asset

is graphed for the baseline parameters. The elasticity increases sharply in the

constrained region.

the delegation friction. We consider introducing an infinitesimal amount of intermediated asset-j in the sense

that equilibrium is not affected by the introduction of this asset.15

We assume intermediated asset j has dividends,

dDj

Dj
= gj (y) dt + σjdZt + σ̂jdẐj

t where Covt(dZt, dẐt) = 0

where dZ is the common factor modeled earlier, and Ẑj is a second Brownian Motion, orthogonal to Z, which

captures asset-j’s idiosyncratic variation. We allow the drift of its dividend growth gj (y) to be state-dependent.

As before, we guess that P j
t = Dj

t F
j(yt), and define

dRj
t =

Dj
t dt + dP j

t

P j
t

.

Note that since the asset is subject to the delegation friction, the pool of buyers for the asset also shrinks

when capital constraints bind. In this sense, asset-j becomes less liquid when the market dries up. The price

of asset-j must satisfy the Euler equation for the specialist:

Et[d(e−ρtc−γ
t Rj

t)] = 0.

15If the asset was traded by both households and specialists then its introduction will have an effect on equilibrium, since the

market is incomplete. However, introducing an intermediated asset will not alter equilibrium.
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Repeating the steps as before we derive the following 2nd-order ODE for asset j’s price/dividend ratio F j (y):16

Et

[
dRj

t

]
dt

− rt = gj (y) +
F j′

F j

(
µy + σyσj

)
+

1
2

F j′′

F j
σ2

y +
1

F j
− rt

= γ

(
σ − ρ

1 − ρy
σy

)(
σj +

F j′

F j
σy

)
The above equation is just the risk premium on asset j. In the unconstrained region, σy = 0 (since θ̂b = 0),

so that the risk premium is γσσj , which is positive if σj > 0. But in the constrained region σy = −θ̂bσ
1−θsF ′ < 0,

the risk premium rises, and unambiguously so for the case of F j′ < 0. When the capital constraint binds

and the aggregate market becomes less liquid, all intermediated assets become less liquid and yield a higher

expected return. Note also that there is a spillover to asset-j from the risky asset in the constrained region.

A negative innovation to D increases y and θ̂b.

Figure 5: Correlation for baseline case.
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The correlation between asset j and the market is graphed for the baseline pa-

rameters. When the economy enters the constrained region, the correlation falls

slightly at first because of the non-monotonicity in F , but then rises as the capital

constraint drives all prices.

Since the diffusion term on dRj is
(
σj + F j′

F j σy

)
dZt + σ̂jdẐj

t , we can calculate the correlation between

16The boundary conditions for the ODE are, F j (0) = 1

ρ+γg−gj (0)− γ(1+γ)σ2
2 +γσσj

, and F j
(
yb
)

= δj

ρ+g−σ2−gj(yb)+σσj , where

δj is the potentical loss in bankruptcy for asset-j.
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asset j and the market return as17

Corrt

[
dRj, dR

]
=

⎛⎜⎝1 +
σ̂j2(

σj + F j′
F j σy

)2

⎞⎟⎠
−1/2

× sign

(
σj +

F j′

F j
σy

)
.

In the capital constrained region, the correlation between intermediated assets tends to rise. Consider the

asset where gj = g, σj = σ, σ̂j > 0, and δj = δ; this is an asset which is a noisy version of the market

asset. For this case, F j(y) = F (y). In the unconstrained region, the correlation is constant, while in the

constrained region the correlation rises. Figure 5 illustrates this effect for the case where σ̂j = 0.1 and our

baseline parameters.

In the Fall of 1998 hedge fund crisis, the correlation of prices among intermediated asset rose. In many

cases, the correlations rose so dramatically that the risk-management models of hedge funds failed. When

intermediation capital falls, the investors in intermediated assets are simultaneously affected across all of their

markets. In general equilibrium, the prices of these intermediated assets exhibit the comovement we observe

in practice. Indeed, such comovement is symptomatic of an aggregate liquidity shortage.

4.6 Hedging asset

Figure 5 pertains to an asset that is similar to the market asset and loads positively on dividend shocks. We

next consider a hedging asset; an asset whose payoff is negatively correlated with the market. For this asset,

the negative correlation with the market increases when the economy enters the capital constrained region. In

the constrained region, the specialist values the hedging asset more as liquidity falls. This leads the hedging

asset to be increasingly sensitive to changes in market liquidity.

Figure 6 illustrates the case of the hedging asset. We choose σj = −2%, i.e. the dividend growth of this

asset has a negative loading on the common factor dZ. We also assume that gj(y) is an increasing function,

so that the asset provides a hedge against reductions in market liquidity. For simplicity we choose gj(y) such

that the solution of the ODE for asset-j is linear when y ∈ [
yc, yb

]
. We also choose δj = 1 (no bankruptcy

loss).

The left-hand panel of 6 shows that the asset is indeed a hedge against declines in market liquidity in the

constrained region. The price/dividend ratio rises for y ∈ [
yc, yb

]
. The right-hand panel shows the correlation

between the return on the hedging asset and the market. In the unconstrained region, y is deterministic and

there are no shocks to market liquidity. Thus the correlation is constant in this region. In the constrained

region, asset-j becomes increasingly sensitive to reductions in market liquidity, as does the market asset,

leading to a higher (more negative) correlation.

17We compute the correlation between intermediated asset-j and the market asset. The empirical literature documents co-

movement among intermediated assets. It is straightforward to introduce two infinitesimal intermediated assets and compute

their pairwise correlation. The correlation will follow a similar pattern to the one we have graphed.
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Figure 6: Correlation for hedging asset.
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The correlation between the hedging asset-j and the market is graphed for the

baseline parameters. The left panel graphs the price/dividend ratio for asset-j.

In the constrained region the price/dividend ratio rises because the asset is an

increasingly valuable hedge against declines in market liquidity. The right panel

graphs the correlation of asset-j with the market asset. The correlation becomes

more negative in the constrained region.

We may think of the hedging asset-j as corresponding to the VIX. The VIX typically rises as market

liquidity decreases. Our model explains this rise in terms of the increasing value of a hedging asset for the

specialist. Our model also suggests that the VIX will become increasingly sensitive to changes in market

liquidity in the constrained region, and thereby provides a rationale for why the VIX has been a meaningful

indicator of market liquidity over the last 2 decades.

4.7 Liquidity factor

A number of recent papers have provided evidence of a liquidity factor governing asset returns (see Amihud,

2002, Acharya and Pedersen, 2003, Pastor and Stambaugh, 2003, and Sadka, 2003), suggesting that the

marginal investor is particularly averse to times of low aggregate liquidity conditions. In our model, low

liquidity corresponds to times when intermediation capital is low. The marginal investor is the specialist, and

times of low intermediary capital are particularly bad times for specialists. Thus there is a natural reason to
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expect that the marginal investor will be averse to assets that pay little in low aggregate liquidity states.

However, since our model is driven by a single source of uncertainty (the one-dimensional Brownian motion

governing dividends), changes in both the risky asset price and intermediary capital are perfectly correlated.

This makes it difficult to clarify the role of a liquidity factor for asset returns separate from the market factor.

The mechanics of our model does suggest such a factor. But the effect is multiplicative, rather than

additive. In our model, shocks to dividends have an amplified effect on the economy because they affect both

the cash-flows expected on the risky asset as well as the aggregate liquidity of intermediaries. In a standard

model, shocks to dividends also affect the economy, but the amplification due to the change in liquidity will

be absent.18

To clarify that our model does indeed have a separate liquidity effect, we develop a “additive” model. We

consider the following thought experiment. We perturb our model by adding a second shock process that

is orthogonal to dividends but which directly affects intermediary capital. We then trace the effects of this

second factor on asset returns. The exercise gives us some understanding of the separate, additive, role of

intermediary capital risk, without working out a full-blown two-factor model.

We suppose that nature randomly redistributes a small amount of wealth between intermediaries and

households. The redistribution of wh amounts to σ1w
hdZ1,t, where Z1,t is orthogonal to Zt and σ1/σ → 0.

Thus this second shock process is small compared to the primary dividend process. Without loss of generality

we assume σ1 > 0.

For the households with log preferences, since this distribution only affects the actual return on their

wealth (and σ1 is small), their consumption policy remains ch = ρwh. Also, as σ1 is small, the equilibrium

price/dividend ratio, F (·), remains unchanged.

Then, we can directly rewrite dy as,

dy = µydt + σydZt − σ1ydZ1,t σ1 > 0.

Recall that our derivations suggest that σy < 0 in the constrained region; i.e., a negative shock to dividends

transfers capital away from intermediaries and towards the households. Similarly, a negative innovation in dZ1,t

redistributes wealth away from specialists and towards households. Thus, dZ1,t < 0 has the interpretation of

an exogenous negative shock to intermediary capital, with no direct effect on the aggregate dividend process.

Also, note that the size of the intermediary shock is proportional to y. We make this assumption for two

reasons. First, recall that σy is increasing in y. For ease of comparison, we choose the new shock to also

increase in y. Second, the proportionality to y keeps the new shock in terms of a percentage so that it remains

relatively “small” for all values of y.
18The amplification effect present in our model is also highlighted in the model of Xiong (2001). There is also a literature in

macroeconomics that emphasizes the importance of collateral amplification effects in explaining business cycles (see Kiyotaki and

Moore, 1997, or Krishnamurthy, 2003).
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Our expressions for dR and dc/c remain as before, with the redefined dy. Thus we find that the risk

premium on the risky asset is now,

Et [dRt] − rtdt = γ

(
σ − ρ

1 − ρy
σy

)(
σ − F ′

F
σy

)
dt − γ

F ′

F

ρ

1 − ρy
(σ1y)2 dt. (13)

The latter term on the right-hand side is new relative to our previous expressions. This term reflects the effect

of shocks to intermediary capital on the aggregate market return. dZ1,t has no direct effect on dividends and

hence on stock prices. It affects prices through a liquidity channel. Endogenously the risk aversion of the

specialist is affected by y, and hence stock prices and consumption are affected by dZ1,t.

Notice also that the new term resembles the quadratic component of the first risk premium term on the

right hand side (i.e. if σ1y was equal to σy, then the new term is exactly the quadratic component of the first

term). This relation clarifies that the quadratic component is the “multiplier” that our model generates due

to the liquidity channel. We will return to this point when quantifying the liquidity premium generated by

our model.

As before, for F ′ < 0, the variation in intermediary capital induces an extra risk premium on the stock.

Thus the extra term decreases the risk premium in the non-monotonic region around y = yc, but then increases

the premium as F slopes downwards.

We next consider pricing an intermediated asset, whose dividend process loads on dZ1,t. We introduce an

infinitesimal amount of asset-j with dividend process,

dDj
t

Dj
t

= gjdt + σjdZt + σj
1dZ1,t.

We consider the limiting case where σj
1

σj → 0. We also assume that gj = g and σj = σ. As before, these

assumptions imply,

P j
t = Dj

t F (yt).

Defining dRj as the instantaneous return on asset-j, we find that the risk premium satisfies:

Et

[
dRj

t

]
− rtdt = γ

(
σ − ρ

1 − ρy
σy

)(
σ − F ′

F
σy

)
dt + γ

ρ

1 − ρy

(
σj

1 −
F ′

F
σ1y

)
σ1ydt. (14)

Combining equation (13) with (14) we find:

Et

[
dRj

]− rtdt =

Market︷ ︸︸ ︷
Et [dRt]− rtdt +

Liquidity︷ ︸︸ ︷
γ

ρ

1 − ρy
σ1y σj

1dt . (15)

The first term on the right hand side of (15) is the return on asset-j for bearing market risk. Since gj = g

and σj = σ, asset-j’s return has a β of one with the market return. As result, one component of asset-j’s

risk premium is equal to the market risk premium. The second term on the right hand side of (15) is the

risk premium for exposure to the new liquidity factor. The risk premium is positive and increasing in σj
1, the
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loading on the liquidity factor. The risk premium also reflects the dependence on y that we have highlighted

earlier. As y rises, the leverage of the specialist endogenously rises, and as a result his effective risk aversion

increases. Thus, the risk premium also rises.

The thought experiment we have conducted makes clear that our model rationalizes a liquidity factor but

through a multiplier mechanism rather than an additive mechanism. In an additive model, the risk premium

is proportional to σ1y, the shocks to specialist consumption induced by the orthogonal shock to intermediation

capital. In our multiplicative model, the volatility of specialist consumption is,

σ − ρ

1 − ρy
σy.

In the constrained region, σy < 0. The entire increase in consumption volatility is due to the effect of shocks

to intermediation capital.

We quantify this liquidity effect in two ways. First, in our model the entire market is illiquid in the

constrained region. Thus, the equity premium in our model in excess of that which would prevail if there were

no intermediation friction (i.e. γσ2) can be thought of as the liquidity premium on the market asset.

Second, if we consider any asset-j, we can always write the excess return on this asset using a single-β

representation:

Et

[
dRj

]− rtdt =
Covt

[
dRj, dct

ct

]
V art

[
dct

ct

] × γV art

[
dct

ct

]
= βj,dc × λdc.

That is, projecting the asset return on the specialists’ consumption growth, we can write the risk premium on

consumption growth as,

λdc = γV art

[
dct

ct

]
Thus another measure of the liquidity risk premium in our model is the difference between the risk premium

on specialist consumption growth in our model, and one without intermediation frictions:

Liquidity risk premium = γ

(
σ − ρ

1 − ρy
σy

)2

− γσ2dt, (16)

The quadratic terms in this expression, or the terms in excess of excess of γσ2 , captures the contribution of

liquidity risk to the instantaneous risk premium in our economy.

Figure 7 graphs the instantaneous liquidity risk premium for the baseline case. In the unconstrained region,

σy = 0, so that the liquidity risk premium is zero. In the constrained region, this premium rises. We will

return to equation (16) in the next section of the paper when we simulate the model and measure the liquidity

risk premium.

We use the above two measures to quantify the importance of liquidity in our model. These measures will

not correspond to the risk premium on the liquidity factor identified in the empirical literature. In principle it

is possible to match the empirically measured risk premium, but doing so necessitates taking a stand on the

cross-section of assets traded in the marketplace; i.e how the asset payoffs covary with intermediation capital,

and are distributed in the cross-section.
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Figure 7: Instantaneous liquidity premium.
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4.8 Sensitivity analysis

We present sensitivity analysis for γ, f , and α in Appendix D. The sensitivity analysis confirms that our results

do not change substantively for different parameter values. In this subsection we focus on the sensitivity analyis

with respect to m.

Figure 8 presents a number of asset price measurements for our baseline model as well as the case of m = 0

and the case of a larger m than the baseline (m = 1.2). The case of m = 0 is noteworthy because it corresponds

to a pure limited participation model; one where the specialist participate in the risky asset market, and the

households only participate in the riskless asset.

We see that setting m = 0 induces a rising risk premium through the entire y-region. This is because as

y rises, the specialist’s leverage increases leading to higher consumption volatility. The intermediation model

which we highlight implies full participation for a substantial portion of the y-region. The risk premium only

rises in a small fraction of the state space. But it is noteworthy that the risk premium rises sharply once the

constraint binds, despite the fact that at the point where the constraint binds, the specialist has no leverage

(compare the behavior of the risk premium from 0 to 5 for the m = 0 case, to the behavior of the risk premium

from 25 to 30 of the baseline case). This effect is because a value of m > 0 implies that shocks to specialist

wealth have an amplified effect on risk sharing. The households reduce participation more than one-for-one

in the constrained region as specialist wealth falls and households withdraw funds from intermediaries. As a

result, the risk premium rises sharply in the constrained region of the intermediation model.

5 Model 2: Simulation

So far our model describes instantaneous asset price measurements that are conditional on the state of the

economy. The average equity premium, for example, will depend on the likelihood of low intermediation

capital. We turn to a simulation of our model to measure on average how asset prices are affected by the

intermediation frictions.

5.1 Household heterogeneity

We assume that each household is made up of a pair of agents, a “stock investor” and a “debt investor” . At

the beginning of date t, the households divide their wealth of wh between the two members of the household

in fractions λ (debt investor) and 1 − λ (stock investor). The debt investor uses his wealth to only puchase

riskless debt. The stock investor behaves like the households we have described so far. He is matched with an

intermediary and delegates a portion of his wealth subject to the intermediation constraints. We envision that

at the end of each infinitesimal time interval the household aggregates the wealth from each member before

making its consumption decision.
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Figure 8: Effect of varying m.
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Our modeling of the household borrows from Lucas (1990)’s worker/shopper model. The modeling device

of using a two-member household is a simple way to introduce heterogeneity among households without

adding a new state variable. Since the members of the household aggregate their wealth before making their

consumption decisions, wh remains as a state variable and the problem is not substantially more complicated

than the one we have described in prior sections.

Notice that with this modification, a portion of household wealth does not participate in the stock market

even in the unconstrained region. Specialists, as in the constrained region, increase their leverage to absorb

more of the risky asset. With this change, shocks in the unconstrained region affect specialists and households

differently (as in the constrained region). Negative shocks can move the economy from the unconstrained

region to the constrained region, thereby avoiding the problem with our previous model that the constrained

region is an absorbing state. Our change is obviously necessary in order for our simulation to yield non-trivial

results.

The second reason we make the change is because, in practice, even in the unconstrained region most

intermediaries maintain some amount of debt borrowing. Although mutual funds and private equity funds

typically have low leverage, banks and hedge funds always maintain some leverage. Thus, our modification

also allows for a more realistic calibration of the model.

The details of the model solution are outlined in Appendix C. The introduction of λ requires us to modify

θ̂b and θs. Subject to this change, the differential equation remains the same one as in the previous section.

5.2 Calibration

As noted earlier, Allen (2001) reports that in the 1990’s, 50% of total wealth was intermediated while 50%

was directly invested in financial assets. We use this datapoint to anchor our simulation. Interpreting our

specialists as the direct investors of Allen, and the households as the intermediated investors suggests centering

our simulation around the point wI = wh.

The flow of funds data from the Federal reserve reports that total financial sector debt divided by total

financial sector assets was 29% in 2000 (the number is 31% in 2005).

We choose λ = 25%. With this value, households in the unconstrained region hold 25% of their wealth as

debt which is supplied by the financial sector. At wI = wh, the intermediaries debt is 12.5% of the economy.

Since all assets are eventually held by the intermediaries this leads to debt-to-assets ratio of 12.5%. Note that

the debt-to-assets ratio rises in the constrained region (as debt rises, and the value of assets falls), so we want

to be smaller than 30% of the data. As we see in our simulations, we can probably increase λ further. We are

being conservative in choosing a smaller value of λ.

With λ = 25%, households direct 37.5% of total wealth to intermediaries. We set m so that (1) the

economy is not capital constrained at the initial condition, dictating a choce of m ≥ 0.75; (2) the probability
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of the economy entering the constrained region over 100 years of simulation is 20% (one in five years). As we

show below, these considerations lead us to pick values of m around 0.9.

We increase the discount rate of the agents to 2% to maintain that the interest rate is around 1%. We

decrease f to 0.6%. The fee is still realistic. As we noted in the previous section, the choice of f does not play

an important role in determining the risk premium. It does help to ensure stability of our numerical solution.

We also set the bankruptcy price/dividend ratio α = 70% for the same stability reason.

Table 2: Baseline Parameters for Simulation

Parameter Value

g Dividend growth 2%

σ Dividend volatility 10%

ρ Time discount rate 2%

γ RRA of specialist 3

f Fee 0.6%

m Intermediation multiplier Near 0.9

λ Intermediary debt 25%

F (yb)/F (0) Bankruptcy boundary 70%

The household has log preferences with a time discount rate of ρ = 2%.

5.3 Distribution of state variable

Our economy, as with many two-agent economies, has the property that in the limit one or the other of the

agents ends up with all of the wealth (at either y = 0 and y = yb). We choose to simulate our model for

100 years, beginning with values of y in the neighborhood of yc. As we show below, even after 100 years, the

probabilities of reaching y = 0 or y = yb are small. The bankruptcy probability is always below 2% in the

simulations.

We simulate the model 5000 times at a weekly frequency for 100 years and calculate the population

values for a variety of statistics. For the return data we annualize the weekly returns and then construct

anuual observations by time-averaging the annualized weekly data (geometric average produces almost identical

results). Hence each simulation yields 100 time-series data points, and based on these we compute a number

of relevant economic variables. We also track y and classify our economy as capital constrained (y > yc),

unconstrained (y < yc), or bankrupt (if y hits yb).

Figure 9 plots the distribution of y after 100 years for the baseline parameters and a value of m = 0.85.

The initial condition is denoted as y0 ≡ y (t = 0). We present an initial condition at the point where wh = wI

(denoted y0 = 18.32). We divide
[
0, yb

]
evenly into 20 bins, simulate our model 5000 times, and then compute
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Figure 9: Distribution of state variable.
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baseline parameters with m = 0.85. The model is simulated 5000 times using two

different initial conditions. The initial condition is denoted as y0 ≡ y (t = 0). We

present initial conditions at the point where wh = wI (denoted y0).

the sample frequency pij = Pr
(
y100 falls into the jth bin

)
. The simulation accumulates almost 35 percent of

the mass in the 16th and 17th bins.19 Note that the boundary of bin 16 and 17 is 18.67, which is close to our

choices of y0. This distribution result is primarily driven by the almost zero µy around yc.

5.4 Results

Figure 10 graphs a number of relevant asset price measurements for the heterogeneous household model. The

price/dividend ratio as well as many of the other measures are smoother than in the previous section, but the

broad patterns for all the variables remain unchanged.

The only substantive change is that the risk premium is increasing uniformly through both the uncon-

strained and the constrained regions. We have now introduced some leverage into intermediaries in the

unconstrained region, which results in reduced risk sharing and an increased risk premium even in the uncon-
19Note that the x−axis is our state-variable y. The length of each bin is yb/20 = 1.17; hence the bin 16 is [17.50,18.67], and

bin 17 is [18.67,19.83].
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Figure 10: Asset Price Measurements when λ = 0.25
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strained region. The range of the risk premium is similar to the previous sections. From levels around 3% in

the unconstrained region, the risk premium doubles near the bankruptcy point of the constrained region.

Table 3 presents a number of statistics from the simulation. Our baseline simulation results are in the first

column. The most striking result is that average risk premium is only 3.32%. In the benchmark model with

γ = 3 we would find a risk premium of 3%. Thus, while the conditional risk premium in the model can rise

300bps with the tightness of capital constraints, the unconditional risk premium rises only about 32bps.

There are two reasons behind this result. First, from Figure 10 we see that the risk premium resembles a

quadratic function of the capital constraints. The biggest effect is when the constraint places intermediaries

close to the bankruptcy boundary. Second, we focus on simulation parameters for which the probability of

bankruptcy is small, and in most of time our economy stays in the unconstrained region. In Table 3, we report

that the probability of bankruptcy for the baseline simulation is less than 2%, and about 18% of time the
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intermediaries are capital constrained. If we move the initial condition closer to the constrained region, the

bankruptcy probability rises to 4.44%, and the average risk premium rises an additional 10bps.

Our failure to generate a large equity premium is mirrored in a low interest rate volatility (at most 4bps

per year). The economy does not move between constrained and unconstrained regions enough to generate

volatility.

The measured liquidity premium (see equation 16) is 44bps in our baseline simulations. This number is

of the same magnitude as that reported in Figure 7. The average number also reflects that since λ > 0, the

specialist will be sensitive to wealth shocks even in the unconstrained region.

The last column of Table 3 reports asset price measurements for the case where m = 0, which corresponds

to a limited market participation model. The average equity premium in the model now rises to 3.92%, in

keeping with Figure 10. In this model there is never any household participation in the equity market.

The last panel of Table 3 reports average statistics on the composition of wealth. Note that on average

households delegate around 70% of wealth in the intermediation model. In the limited participation model,

households invest none of their wealth in the stock market. We conjecture that combining our intermediation

mechanism and a more sizable limited participation may generate both a larger equity premium as well as a

sizable liquidity premium. We will pursue this avenue in future research.

36



Table 3: Simulation Results

m = 0.85 m = 0.95 m = 0.85 m = 0

Starting Value y0 y0 = 18.32 y0 = 18.38 yc = 19.16 y0 = 15.61

Panel A: Asset Pricing Statistics

E [R − r] (%) 3.32 3.31 3.42 3.92

σ [R − r] (%) 10.34 10.29 10.65 10.77

E [r] (%) 1.44 1.45 1.42 1.25

σ [r] (%) 0.026 0.021 0.041 0.390
E[R−r]
σ[R−r] 0.32 0.32 0.32 0.35

ρ (R, r) (%) -1.45 -1.27 -0.06 -2.46

E [P/D] 36.44 36.50 35.83 34.31

Panel B: Constraints

Pr (Bankruptcy) (%) 1.62 1.24 4.44 6.61

Pr (Constrained Region) (%) 18.05 10.69 42.07 100

E (Y ears in Constrained Region) 1.04 0.88 1.72 100

E [Liquidity P remium] (%) 0.44 0.43 0.44 1.23

Panel C: Wealth Composition and Intermediated Funds

Average Debt (%)a 7.79 7.50 9.14 20.73

Participation in Stock Market (%)b 86.53 86.98 83.86 79.27

Household Delegation (%)c 71.17 71.66 66.85 0
a Average debt in the economy, measured as 100× E [θb/P ].
b Average total participation rate in stock market, measured as 100× E

[
min(F−λy,(1+m)(F−y))

F

]
c Average fraction of households wealth that is intermediated.
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A Appendix A: Proof of Proposition 1

Denote the value functions of household and specialist as Jh
(
wh; Y

)
and JI

(
wI ; Y

)
where wh and wI are

household’s and specialist’s wealth respectively, and Y is the relevant state variable vector. Assume that they

are smooth enough, and note that marginal values of wealth Jh
w

(
wh; Y

)
and JI

w

(
wI ; Y

)
must be positive.

Claim 1 follows directly from the assumption of the contract. For Claim 2, given Th ≤ wh, participation

constraint for household (Assumption 3) is:

Et

[
Jh( (w − Th)(1 + d̃Rt − fdt) + Th + (1 − β)T d̃Rt − Cdt); Y

]
≥

Et

[
Jh( (w − Th)(1 + d̃Rt − fdt) + Th + Th(d̃Rt − fdt); Y )

]
with the choice variable C. Since (1 − β)T = Th, Taylor expansion immediately implies C ≤ Thf . Full

bargaining power of the specialist and positiveness of JI
w imply that C = Thf , and given this contract the

household is willing to hand over all his wealth Th as long as the specialist’s IC constraint is satisfied.

Now we have the IC constraint for specialist as:

Et

[
JI( (wI − T I)(1 + d̃Rt) + T I + βT d̃Rt + Cdt; Y )

]
≥

Et

[
JI( (w − T I)(1 + d̃Rt) + T I + βT (d̃Rt − xdt) + Tbdt + Cdt; Y )

]
where the choice variable T I ≤ wI . Plugging in βT = T I and carrying through Taylor expansion (note that

2nd order terms cancel on both sides), we find that

JI
w(T Ix − Tb) ≥ 0

or,

T I
(x

b
− 1

)
≥ Th.

Note that T I ≤ wI , Th ≤ mwI where m ≡ x
b − 1. Q.E.D.

B Appendix B: ODE solution

In this appendix, we detail the solution of the ODE that characterizes the equilibrium.

B.1 ODE

Recall

g +
F ′

F
µy +

1
2

F ′′

F
σ2

y +
1
F

+
F ′

F
σyσ = ρ + γg − γρ

1 − ρy
(µy + σyσ) (17)

+γ

(
σ − ρ

1 − ρy
σy

)(
σ +

F ′

F
σy

)
− 1

2
γ(γ + 1)

(
σ − ρ

1 − ρy
σy

)2

and σy = − θ̂b

1−θsF ′ σ, µy = 1
1−θsF ′

(
θs + (r + σ2 − g)θ̂b − ρy − f min(m(F − y), y) + 1

2
θsF

′′σ2
y

)
.
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B.1.1 Unconstrained Region: y < yc

In this region θs = y
F and θ̂b = 0; hence σy = 0 and µy = 1

1−θsF ′ (θs − ρy − fy), which yields the following

first-order ODE to solve on the region y ∈ [0, yc]:(
F ′

F
+

γρ

1 − ρy

)(
1
F

− (ρ + f)
)

=
(

F ′

F
− 1

y

)(
1
F

−
(

ρ + g(γ − 1) +
γσ2

2
(1 − γ)

))
(18)

B.1.2 Constrained Region: yc ≤ y ≤ yb

In this region µy = 1
1−θsF ′

(
θs + (r + σ2 − g)θ̂b − ρy − fm(F − y) + 1

2θsF
′′σ2

y

)
and σy = − θ̂b

1−θsF ′ σ, where

θs = m
1+m . Substituting for µy, we find,(

F ′

F
+

γρ

1 − ρy

)(
1

1 − θsF ′

)(
θs + θ̂b(r − g) − ρy − fm(F − y)

)
+

1
F

(19)

+
1
2
F ′′σ2

y

(
1

1 − θsF ′

)(
1
F

+ θs
γρ

1 − ρy

)
= ρ + g(γ − 1) + γ

(
σ − ρ

1 − ρy
σy

)(
σ +

F ′

F
σy

)
−1

2
γ(γ + 1)

(
σ − ρ

1 − ρy
σy

)2

where,

r = ρ + gγ − ργ

1 − ρy

θs + (r − g) θ̂b − ρy − fm (F − y) + σ2

2
θsF

′′ θ̂2
b

(1−θsF ′)2

1 − θsF ′

−γ (γ + 1)σ2

2

(
1 +

ρθ̂b

1 − ρy

1
1 − θsF ′

)2

We define a function, G(y) ≡ 1
1−θsF ′ ; with this definition, we can write G′ = θsG

2F ′′, and

σy = − θ̂b

1 − θsF ′σ = −θ̂bσG.

Then rewriting (19),

G′ (θ̂Bσ)2

2
G

(
1

θsF
+

γρ

1 − ρy

)
= ρ + g(γ − 1) − 1

F

+
1
2
γσ2

(
1 +

ρ

1 − ρy
θ̂BG

)⎛⎝2
(
y − Gθ̂b

)
θsF

− (1 + γ)
1 − ρy + ρGθ̂b

1 − ρy

⎞⎠
−
(

G − 1
θsF

+
γρ

1 − ρy
G

)(
θs + θ̂b(r − g) − ρy − fm(F − y)

)
and

r =
ρ + gγ − ργG

1−ρy

(
θs − gθ̂b − ρy − fm (F − y) + σ2

2 G′θ̂2
b

)
− γ(γ+1)σ2

2

(
1 + ρθ̂bG

1−ρy

)2

1 + ργGθ̂b

1−ρy

.
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We combine these two pieces, using the relation, θ̂b

(
G−1
θsF

+ γρG
1−ρy

)
= −y−Gθ̂b

θsF
+ 1−ρy+γρGθ̂b

1−ρy
, and arrive at a

final expression of the ODE:

G′ (θ̂bσ)2

2
G

θsF

(
1 + ρy(γ − 1)

1 − ρy + ργGθ̂b

)
(20)

= ρ + g(γ − 1) − 1
F

+
γ (1 − γ) σ2

2

(
1 +

ρGθ̂b

1 − ρy

)
y − Gθ̂b

θsF

[
1 − ρy − ρGθ̂b

1 − ρy + ργGθ̂b

]

−
(

(1 − ρy) (G − 1)
θsF

+ γρG

)
θs + θ̂b(g(γ − 1) + ρ) − ρy − fm(F − y)

1 − ρy + ργGθ̂b

.

Since,

F ′ =
1
θs

G − 1
G

,

we arrive at a system of first-order ODE’s (in F and G) to solve on the region y ∈ [
yc, yb

]
.

When m = 0, the ODE is:

F ′′ (yσ)2

2F
= ρ + g(γ − 1) − 1

F
+

γ (1 − γ) σ2

2

(
1

1− ρy

)[
1 − 2ρy

1 + ρy(γ − 1)

]
−
(

F ′

F
(1 − ρy) + γρ

)
yg(γ − 1)

1 + ρy(γ − 1)
.

B.2 Boundary Conditions and Numerical Approach

B.2.1 Unconstrained Region: 0 < y < yc

First, we solve F for y ∈ (0, yc]. From (18), we can derive F (0) = 1

ρ+g(γ−1)+ γσ2
2 (1−γ)

. Note that F (0) is the

stock price when the economy only comprises of specialists (the households have zero wealth). Although we

never reach this limit, when y is small the economy must be “close” to the limit case, in order to rule out Ponzi

games (see below). Then, continuity of F at the origin requires F (0+) = F (0). Utilizing this continuity, the

singularity at y = 0 allows us to derive

F ′(0) = γρ

(
1

ρ + f
− F (0)

)
;

and the sign of F ′(0) depends on the sign of g(γ − 1) + γσ2

2
(1 − γ) − f .

The behavior of the solution to our 1st−order ODE (18) depends crucially on the above parameterization

conditions. For better understanding the dynamic economic evolution behind the solution of (18), it is helpful

to have the next Lemma.

Lemma 3 Suppose there is no delegation friction in this economy and f �= g(γ − 1)+ γσ2

2 (1− γ). Then there

does not exist y∗ ∈
(
0, 1

ρ

)
to have F (y∗) = 1

ρ+f
.

Proof. Note that the (scaled) wealth change of passive investors, µy, is proportional to θs − (ρ + f) y =

y( 1
F
− (ρ + f)) (the dividend income less the consumption and delegation fee; no bond here). Suppose there
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exists y∗ so that F (y∗) = 1
ρ+f , which implies that µy = 0 and the economy stays at (or approaches to) y∗ with

F (y∗) = 1
ρ+f . But we know in the absorbing state the equilibrium price/dividend ratio implied by the active

specialist is F (0) (note that then specialist just consumes 1 − ρy∗ fraction of total endowment, or converges

to this limit), which leads to a contradiction.

Now we are ready to discuss our three cases, where the idea is similar to the “saddle path” argument.

Assume away delegation frictions; so the relevant domain for ODE (18) is
(
0, 1

ρ

)
. Note that the ending point

1
ρ

represents the world where households are wealthy enough to consume everything.

1. f > g(γ − 1) + γσ2

2 (1 − γ). In this case there is a unique solution for F satisfying the continuity

condition F (0+) = F (0), F ′(y) < 0, and F
(

1
ρ

)
= 1

ρ+f
. Since F (0) > 1

ρ+f
it is not difficult to check

that in this solution we have dy
dt = µy < 0, which implies that the households’ wealth diminishes with

time. Intuitively, we need a large management fee to ensure that the wealth is slowly transfered from

households to the intermediary sector. Now for any y > 0, F (y) is determined by the future price, which

is F (0).

We find other solutions diverges (F (0+) = +∞ or −∞) on the singular point y = 0. F (0+) = −∞ is

easily ruled out by no-arbitrage, or the result that F must stay above 1
ρ+f

(Lemma 3). On the other

hand, since yt converges to 0 deterministicly when t → ∞, this implies that in those solutions with

F (0+) = +∞ the specialists are playing Ponzi game with each other.

2. f < g(γ − 1) + γσ2

2 (1 − γ). Due to relatively small management fee the households become wealthier

over time, or dy
dt

= µy > 0.20 It is because F (0) < 1
ρ+f

and there is no F (y) to be above 1
ρ+f

. In

this case there are continuum of solutions for F satisfying the continuity condition F (0+) = F (0), and

F ′(0) > 0. However, under this parameter assumption, y = 1
ρ plays the same role as y = 0 in the

first case. As a result, we find that among these solutions only one of them will land at F
(

1
ρ

)
= 1

ρ+f ,

and other solutions diverges at this ending point. The result in Lemma 3, combined with the similar

“no-arbitrage” argument, show that this is the only equilibrium solution in this case (without capital

constraints).

3. f = g(γ − 1) + γσ2

2 (1 − γ). In this case constant function F (y) = 1

ρ+g(γ−1)+ γσ2
2 (1−γ)

= 1
ρ+f solves (18),

and µy = 0. The appropriate management fee just balances the passive households’ dividend income

and their cash outflow (consumption and management fee), so any wealth point y works as an absorbing

state.

Throughout this paper we choose the first parameter case, not only because this is consistent with most

of existing calibration specifications, but because it also gives rise to a unique equilibrium once delegation

friction is introduced (see below). It is less appealing to have specialists “die out” slowly in the economy.

20Even though F ′ > 0, it is easy to check that in solution to (18) 1 − y
F

F ′ stays bounded below from 0.
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In sum, under the condition f > g(γ−1)+ γσ2

2 (1−γ), in the unconstrained region yt → 0 deterministically

with time, and each F (y) for y ∈ (0, yc] is pinned down by the future stock price F (0) through (18).

B.2.2 Constrained Region: yc ≤ y ≤ yb

From the unconstrained region, we obtain a boundary at yc = m
m+1F (yc). We require continuity of F ,

F (yc+) = F (yc). At the other boundary, yb = F
(
yb
)

= δ
ρ . Hence, our problem is second-order ODE with two

boundary conditions, and the shooting method is the natural solution method to employ. Specifically, starting

from
(

δ
ρ
, δ

ρ

)
, we attempt different values for φ = F̃ ′ (yb

)
and integrate equation (19) down to yc; when F̃ (yc)

hits F (yc) (in fact, until the solution pastes smoothly to the unconstrained region solution), we pin down the

desired solution. We use Matlab 7’s built-in solver ode15s with tolerance level 10−12 to numerically solve our

problem; other solvers, such as ode45, ode15i etc., deliver almost identical results once we find the correct φ.

There is one theoretical caveat, though. Notice that (yc, F c) is a singular point for (19) (at this point

θ̂b = 0 so σy = 0). Theoretically we cannot rule out the situation where the solutions are too stable to be

unique (i.e., they always land at the same point regardless of the initial condition). Fortunately, the concern

does not seem serious for any of the parameters we study. We find that the ending value F̃ (yc) is very sensitive

to our starting trial φ and usually diverges away from (yc, F c), suggesting that our solution is unique.

What happens when f < g(γ − 1) + γσ2

2 (1 − γ)? Because in this case y tends to grow with time, (yc, F c)

is no longer pinned down by F (0). When there is no capital constraint, it is determinend by y = 1
ρ

> yc

(see Section B.2.1). However, in the presence of capital constraint, (yc, F c) is indeterminate. Intuitively, now

the bankruptcy state
(

δ
ρ , δ

ρ

)
or the capital constraint threshold point (yc, F c) becomes the remote future

for any y between yc and yb, and the endogenous boundary (yc, F c) gives rise to a multiplicity of solutions.

More specifically, there could be continuum of equilibrium price/dividend ratio F ’s for y ∈ [
yc, yb

]
: for any

(yc, F c) with yc = m
1+mF c and F c < 1

ρ+f , combining with the bankruptcy state
(

δ
ρ , δ

ρ

)
we could determine

an equilibrium evolution path for F . In any of these solutions, if we start from y < yc, then the households’

wealth shrinks and the economy slowly slides into the capital constrained region
[
yc, yb

]
. Once the capital

constrained region is reached, the economy stays inside until it hits the bankruptcy state.

C Appendix C: Simulation

C.1 Modified ODE

The only difference between this model and our previous one is in the household’s assets positions. We arrive

at the same second order ODE after simply substituting the new scaled bond position θ̂sb
b and the new stock

position θsb
s into those expressions in Lemma 2.

1. If mwI ≥ (1− λ)wh then all of the stock investor’s wealth (1 − λ)wh is intermediated, while the debt
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investor purchases λwh = λyD of the riskless bond. The specialist’s positions are αb and αs. The

relations, wI = P − wh = D (F − y) along with the trust constraint and market clearing in the short-

term bond imply that,
F − y + (1 − λ) y

F − y
αb + λyD = 0,

where the first term is the total bond position of mutual fund (including stock investors holdings), and

the second term λyD is the bond position directly held by the debt investor. So αb = −λy(F−y)
F−λy D, and as

a result the stock investor’s indirect bond holding is (1−λ)y
F−y

αb = −λ(1−λ)y2

F−λy
D. Therefore the household’s

total scaled bond holding is

θ̂sb
b = −λ (1 − λ) y2

F − λy
+ λy = λy

F − y

F − λy
.

Applying a similar argument to αs, we have θsb
s = (1−λ)y

F−y
αs = (1−λ)y

F−λy
. The scaled delegation fee is

(1 − λ) fy.

The intermediation sector is capital constrained when mwI = (1 − λ)wh, or m (F − y) = (1 − λ) y. We

can solve for this cutoff as

yc =
m

1 − λ + m
F (yc).

and the economy is in the unconstrained region if 0 < y ≤ yc.

2. If mwI < (1 − λ)wh (or y > yc) then the intermediation sector is capital constrained. The stock investor

will invest mwI into the intermediary, and put the rest of his wealth (1 − λ) wh − mwI into the riskless

bond; the debt investor still invests λwh into the short-term bond. Since all stocks are held through

intermediaries, and the ratio of intermediated funds to the specialist’s capital is always m, the trust

constraint tells us that θsb
s = m

1+m
. Hence θ̂sb

b = y−θsb
s F (y), and the scaled delegation fee is fm (F − y).

3. Intermediaries go bankrupt when wI = P − wh = 0. The bankruptcy threshold is implicitly defined by

the equation yb = F (yb) = δ
ρ .

C.2 Solution Method

Note that the ODE,(20), and the boundary conditions F (0) = 1

ρ+g(γ−1)+ γσ2
2 (1−γ)

and F
(
yb
)

= αF (0) remain

unchanged. Similar to the previous method, we could attempt different φ = F ′ (yb
)

so that the solution to

(20) lands at F (0). It turns out that, due to the high nonlinearity of (20) and the singularity at y = 0, the

ode15s in this backward-shooting scheme diverges easily for y close to 2. Note that this observation implies

the uniqueness of our solution, and this uniqueness holds even when f < g(γ − 1)+ γσ2

2 (1− γ) because of the

non-dying 2nd-order term (households have some positive bond position always).

To oversome this issue, we adopt a “forward-shooting and line-connecting” method. More specifically,

starting from ε > 0, for each trial φ ≡ F̃ ′ (ε) we set F̃ (ε) = F (0) + φε. Since
(
ε, F̃ (ε)

)
is off from the

singularity, via attemping different φ’s we could apply the standard shooting method to obtain the desired
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solution F that lands at
(
yb, F

(
yb
))

. For y < ε, we simply approximate the solution by a line connecting

(0, F (0)) and (ε, F (ε)), and by construction this line meets the solution F tangentially for ε ≤ y ≤ yb. For

Model 2 simulation parameters, we use ε = 0.15 which gives error bouded by 3× 10−7 for y < ε, and different

ε’s deliver almost identical solutions for y ≥ 1. Because we are mainly interested in the solution behavior

near yc and onwards, our main calibration results are free of the approximation errors due to the choice of

ε. Finally, we find that, in fact, these errors are at the same magnitude as those generated by the capital

constraint around yc (3.5× 10−7).

D Appendix D: Sensitivity

In Figure 11 we plot the price/dividend ratio F , interest rate, risk premium, and Sharpe ratio for the case

of f = 1.1%, f = 1.5%, as well as our baseline case of f = 1.2%. The lower value of f reduces the slope of

F (y), consistent with the intuition we provided earlier: wealth is transferred more slowly from households to

specialists when f is lower, leading to a smaller discount rate effect. The risk premium effect continues to

dominate the shape of F in the constrained region. In the panel for the risk premium, we see that the risk

premium behaves almost identically across these different values of f .

In Figure 12 we illustrate the behavior of the economy for different values of γ. We consider γ = 1 and

γ = 2 in addition to the baseline case of γ = 3. Higher values of γ raise the risk premium and Sharpe

ratio, as one would expect. Roughly speaking, the risk premium doubles in all cases when moving from the

unconstrained region to the point y = yb when intermediaries are bankrupt.

We also note that when γ = 1, the hump in F (·) around y = yc disappears. This behavior is in keeping

with the earlier intuition we offered regarding the precautionary savings effect on the interest rate. For the

smaller γ, the interest rate does not fall as fast for y larger than yc, and the hump vanishes.

In Figure 13 we illustrate the behavior of the economy for different values of α, which determines F (yb).

We note that changing α mainly affects the speed (in terms of y) at which the economy hits the bankruptcy

boundary. For example, in the risk premium panel, we see that the risk premium take on similar values across

the constrained region; however, in the case where α is smallest, the economy hits the highest risk premium

more quickly.
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Figure 11: Effect of varying f .
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The price/dividend ratio F , interest rate, risk premium, and Sharpe ratio for the

case of f = 1.1% and f = 1.5%. Baseline case result is plotted in solid line for

comparison.
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Figure 12: Effect of varying γ.
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the case of γ = 1 and γ = 2. Baseline case result is plotted in solid line for

comparison.
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Figure 13: Effect of varying α.
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