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Weak Interest Rate Parity and Currency Portfolio
Diversification

ABSTRACT

This paper presents a dynamic model of optimal currency returns with a hid-

den Markov regime switching process. We postulate a weak form of interest

rate parity that the hedged risk premiums on currency investments are identi-

cal within each regime across all currencies. Both the in-sample and the out-of-

sample data during January 2002 - March 2005 strongly support this hypothesis.

Observing past asset returns, investors infer the prevailing regime of the economy

and determine the most likely future direction to facilitate portfolio decisions. Us-

ing standard mean variance analysis, we find that an optimal portfolio resembles

the Federal Exchange Rate Index which characterizes the strength of the U.S. dol-

lar against world major currencies. The similarity provides a strong implication

that our three-regime switching model is appropriate for modeling the hedged re-

turns in excess of the U.S. risk free interest rate. To investigate the impact of the

equity market performance on changes of exchange rates, we include the S&P500

index return as an exogenous factor for parameter estimation.
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1. Introduction

One of the key trends to emerge in recent years has been the growing investment

interest in non-traditional asset classes, not only as stand-alone investment instru-

ments but also as value-added components of an asset allocation program. Among

possible alternative instruments is a well formulated multi currency portfolio. When

determining the building blocks of asset allocation, investors will typically first review

the split between equities, fixed income instruments and cash. Recent exchange rate

rises and falls against the U.S. dollar indicate that portfolio managers denominated

in the U.S. may need to carefully consider their currency overlays in the international

investment arena.

Portfolio theory has been applied successfully in a variety of situations in which

investments are comprised of various assets from different industry sectors. The as-

sumption that asset returns are normally distributed is key for the theory. However,

empirical evidence suggests that asset returns may not be stationary in time, exhibit-

ing fat tails and jumps; see, e.g. Erb et al. (1994), King et al. (1994), Longin and

Solnik (1995, 2001), and De Santis and Gerard (1997). The time dependence of re-

turns has been modeled in a number of ways. Xia (2001) provided a framework of

dynamic learning for portfolio optimization with two assets. Ang and Bekaert (2002)

present an international asset allocation model with regime switching.

One particular feature of the time variation in returns on assets is the asymmetric

correlation phenomenon, where the relationship between asset returns changes for
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down and up markets. Our first goal is to formulate a model for currency returns

that reproduces the asymmetric correlation phenomenon in terms of Markov regime

switching. Related to asymmetric correlations is the premium on foreign exchange

rates. Market conditions suggest that forward exchange rates should be unbiased

predictors of future spot rates and there is no risk premium. However, the condition

does not hold up in reality. Bansal (1997) provided an explanation for the violation

of uncovered interest rate parity and suggested a particular term structure model

accounting for the puzzling empirical evidence. Bekaert and Hodrick (1993) proposed

a regime switching model for measurement of foreign exchange risk premiums.

What could be a reason for the interest rate parity to be violated in practice? It

may depend on how risk and return are defined. Different measurements may end

up with different conclusions. We look at the covered interest rate parity using a con-

tinuous series of futures contracts. Empirical evidence indicates that hedged excess

returns on all major currency investments exhibit no risk premium using statistical

tests based on normality. However, the distributions of the hedged excess returns are

highly skewed and excess kurtosis is too large; see Baz et al. (2001). We hypothesize

that the covered interest rate parity does not hold in its strong sense but in a weak

version. We assume that there are regimes and that the expected returns on the

hedged currency investments are constant across all currencies within each regime.

This is the result of the nominal rates being almost constant for each currency and

each regime of the economy; see Gray (1996). We term this assumption the weak

interest rate parity condition. Supporting evidence and tests of this hypothesis are
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provided in later sections.

Based on the existence of regimes in the foreign exchange market, an optimal

currency portfolio model is formulated. There has been a resurgence of interest in

dynamic asset allocation where investment opportunity sets change over time. Re-

search shows that a Markov switching model can explain the skewness and excess

kurtosis. In most of the literature, time varying parameters are captured by a lin-

ear function of the state variables. In contrast, expected returns and volatilities may

vary with regime switching, rather than with an explicitly specified function rela-

tion of the state variables, see Hamilton (1989), Gray (1996), and Kim (1994). In our

benchmark model, information on state variables is implicitly incorporated in deter-

mining returns on currency investments. To capture market expectation, we include

the S&P500 index returns in the estimation of the parameters for currency returns.

The reason for this inclusion is that returns on equity markets are statistically cor-

related with returns on the currency markets; see, e.g. Roll (1992) and Warren and

Chung (1995). For empirical analysis, a three regime model is specified with the

restriction that the weak interest rate parity condition holds. Due to the special fea-

tures of our model, the estimation is more computationally involved than a standard

algorithm for estimating a Markov switching model.

The regime switching model and the performance of the equilibrium portfolios are

contrasted with the Federal Exchange Rate Index (FERI) and the U.S. treasury bill.

The FERI index characterizes the strength of the U.S. dollar against world major cur-

rencies. We expect to see that a hedged portfolio using futures contracts has a similar
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performance to that of the treasury bill over time, while an unhedged portfolio has

a similar performance to that of the FERI index in equilibrium. The similar perfor-

mances of both the hedged and unhedged portfolios to those of the treasury bill and

the FERI index, respectively, indicate that our three regime model is appropriately

specified, with inclusion of the S&P 500 index as exogenous information for parameter

estimation. Hence, portfolios including the S&P 500 index for the model estimation

should perform better with both in-sample and out-of-sample.

Section 2 presents the setting of the model and the weak interest rate parity hy-

pothesis in the framework of Markov switching. Section 3 discusses parameter es-

timation using a modified EM algorithm to accommodate the constraints due to the

weak interest rate parity condition. We further elaborate the importance of incor-

porating market economic factors into the estimation procedure. Section 4 discusses

portfolio performance with both in-sample and out-of-sample data. Section 5 con-

cludes.

2. Model Setting and Formulation

2.1. Excess Returns in Foreign Currency Markets

The basis for considering regimes in foreign exchange markets is covered interest rate

parity. It is well-known that if the nominal rates are fixed over time, the forward pre-

mium must equal the differential of the nominal interest rates between the home and
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the foreign countries. In our analysis, the home country is the US and the numeraire

is the US dollar. To formalize the relationships, let Etj be the dollar price of currency

j at time t. Then, the continuously compounded rate of depreciation/appreciation of

the dollar against currency j is ln(Et+1,j/Etj). Let rt and rtj be the continuously

compound nominal interest rates of the home country and country j, respectively.

With constant nominal rates, rt = r and rtj = rj, an investor can generate a riskless

portfolio using currency futures contracts. Let Ftj be the futures price at time t with

delivery date T , then the interest rate parity condition (no risk premium) is

Ftj = Etje(r−rj)(T −t).

Let ftj = ln(Ft+1,j/Ftj) and etj = ln(Et+1,j/Etj). A variant of the above parity is

etj − ftj + rj − r = 0.

The validity of the above equation follows from the assumption that the nominal

rates are fixed over time. However, in reality the equation never holds exactly true

since short rates fluctuate. In other words, even the return on a fully hedged position

using futures contracts is subject to risk. The uncovered dollar return on a continu-

ously compounded currency j money market investment is Et+1,j/Etjerj . With time

varying nominal rates, the excess dollar rate of return on a currency money market

investment is

rtj − rt + etj.

Let

Rtj = etj − ftj + rtj − rt. (1)
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Then Rtj , the hedged excess return on a currency, is the excess return of an investment

in currency j with a fully hedged position in the futures contract. It is expected that

Rtj has little value in terms of expectation but substantial risk. Our concern is with

modeling the risk of Rtj and the implication for equilibrium allocation of capital in

the currency market. With a fully hedged position, a representative investor should

earn a substantial amount while risk is controlled to its minimum.

2.2. Returns as Mixtures of Normals

A particular violation of the parity condition is the situation where market regimes

exist, so that switching between regimes causes the violation of the covered interest

rate parity. The essential concept in the Markov switching model is that the depen-

dent variables in the system vary by regime. Given a finite number of regimes, the

behavior of the dependent variables is determined by which regime the model is in at

a point in time. The likelihood of being in a particular regime is determined by a set

of transition probabilities.

Assume Mt is a Markov chain, which can take exclusively any one of k states,

viewed as regimes of the economy. Suppose that, the initial regime is M0 with prob-

ability qi = Pr[M0 = i], i = 1, ..., k. The transition matrix for the Markov chain is

P =


p11 · · · p1k

... . . . ...

pk1 · · · pkk

 . (2)
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where

pij = Pr[Mt+1 = j | Mt = i].

The Markov property is that the conditional probability distribution of the process at

time s given the whole history of the process up to and including time t < s, depends

only on the state of the process at time t.

Under the interest rate parity condition, the hedged excess return, Rtj , is assumed

to carry no risk premium, but empirical evidence suggests that the expected return

on a hedged position has different risk premiums in different regimes of the economy;

see Evans (2002). To accommodate that evidence, we assume that the hedged risk

premiums across all foreign currencies are equal in each regime of the economy to

avoid currency arbitrage. This premise is referred to as weak interest rate parity.

The implication of weak interest rate parity is that Rt1, ..., Rtn have the same

mean but different variances in each regime. Given that the regime at time t is

Mt = i, then conditionally Rt1, ..., Rtn are jointly normally distributed with common

mean µi = E[Rtj | M(t) = i], for j = 1, 2, ..., n, and the variance covariance matrix

σi =


σ11i · · · σ1ni

... . . . ...

σn1i · · · σnni

 . (3)

Assuming the regimes over time are not observable, the unconditional joint distri-

bution of Rt1, ..., Rtn is a mixture of k n-normals. The mixing coefficients are the

transition probabilities depending on the prevailing regime at time t. Given that the
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prevailing regime is i at a point in time, the one-period conditional expected return is

R̄i =
k∑

j=1

pijµj. (4)

Since the hedged risk premiums are all equal across assets within each regime, the

conditional variance-covariance matrix is,

Vi =
k∑

j=1

pij

(
σj + (µj − R̄i)

2J
)
, (5)

where J is the n × n matrix with all entries equal to 1.

However, the values of all parameters, including qj, P , µj and σj, are unknown to

the investors and estimates are required for portfolio decision and implementation.

The assumption of the weak interest rate parity poses an element of complexity in

parameter estimation. Tsao and Wu (2005) developed a nonparametric method for

estimation of a common mean with different variances based on empirical likelihood,

and the procedure can be adapted to the Markov switching process.

The estimation procedure becomes even more complex when extra information,

such as equity and/or bond returns are considered. Research work has documented

that equity market returns are negatively correlated with foreign exchange rates.

This information is useful for improving the accuracy of parameter estimates. The

extra variables may be introduced through regression based models; see Hamilton

(1989). However, it is possible to incorrectly specify a functional relationship. To

avoid such biases in parameter estimation, we assume that the impact of economic

factors or other relevant market securities are implicit through their correlations.
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This setting requires us to study how returns on currency investments are related to

changes of asset returns in other categories.

To consider the relationship between currencies and other assets, assume the se-

lected n currencies and the m exogenously specified economic factors are driven by

the same Markov chain. Let Qt1, ..., Qtm be the rates of change in the factors. Given

M(t) = i, the factors and the currencies

Qt1, ..., Qtm, Rt1, ..., Rtn

are jointly normally distributed, with mean vector

µ̃i = [αi1, ..., αim, µi, ..., µi]

and variance covariance matrix  τi γi

γ>
i σi

 .

τi is the m × m covariance matrix of Qt1, ...Qtm and γi the m × n covariance matrix

between Qt1, ..., Qtm and Rt1, ..., Rtn, for i = 1, ..., k. This expanded setting poses

challenges in parameter estimation. Details on estimation in the expanded model are

given in Section 3 and the Appendix.

Another difficulty in applying the Markov switching model is the determination of

the regimes over time. At each point, investors should know the state of the economy

in determining their portfolio decision. They need to find a way of acquiring such in-

formation to facilitate further decision making. If outreach is not available, investors

must then estimate the probability of a regime from observation of past data and
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statistically infer the prevailing regime. This amounts to calculating the posterior

probabilities for the regime states at each point in time.

2.3. The Objective of Risk Diversification

With values (estimates) for parameter in the switching model, the optimal portfolio

for risk minimization can be considered. In the standard portfolio problem an investor

is presented at each time point with a variety of investment opportunities, and a de-

cision is made to allocate available capital to the various assets. At decision points,

the investor has information on past prices and preferences for the growth and secu-

rity of capital. We assume that all investors maximize the expected growth rate of

capital. This strategy is equivalent to maximizing the log of accumulated capital, and

it is myopic since the objective function is separable and the decision is Markovian;

see Hakansson 1971. Under this assumption (with expected growth rate objective),

the optimal investment portfolio also maximizes the Sharpe ratio over time. The two

fund separation theory states that all investors will invest in the same risky portfolio

(constructed by risky assets only) but with different proportions of their total wealth

in the risky asset portfolio. So, the problem reduces to a sequential problem of mean

variance optimization by maximizing the Sharpe ratio over time.

We have proposed a switching model for characterizing hedged excess returns over

time. Is there any evidence in portfolio performance to support regime switching? If

sample means and sample variances and covariances within regimes can be used as

parameter estimates, then portfolio theory says that the equilibrium portfolio should
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Figure 1. unhedged Excess Currency Returns in Equilibrium

have performance which is close to a broadly diversified benchmark. Figure 1 pro-

vides an example of why we should look for other modeling approaches than constant

interest rates (interest rate parity) for the dynamics of exchange rates. The return on

an unhedged portfolio does not match the return in the FERI.

With the regime switching model, let wti =

[
wt1i, · · · , wtni

]>

be the weight

vector in the n foreign currencies in regime i and at time t. Then 1 −
∑n

j=1(wtji) is

the proportion allocated to the home currency (the U.S. dollar), the numeraire for our

model. For t = 1, ..., T and i = 1, ..., k, the holding period return of the portfolio is

rt +
n∑

j=1

wtjiRtji,

where Rtji is the hedged excess return of currency j in regime i and at time t as
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defined in (1). For regime i, the expected excess return of the hedged portfolio is

R̄ti = R̄i

n∑
j=1

wtji, ∀i = 1, ..., k.

and its variance covariance matrix is

Ωti = w>
tiViwti.

Since Merton (1973) shows that maximizing the expected growth of the portfolio is

instantaneously mean variance efficient, investors generate their portfolios by maxi-

mizing the risk-adjusted expected return

max
wti

{
rt + R̄ti − 1

2
λΩti

}
, (6)

where λ is investor’s risk aversion parameter. Assuming the market is free of friction,

the solution to (6) is standard, and it can be obtained analytically by calculus. The

optimal weights are

wti =
R̄i

λ
V −1

i 1, ∀i = 1, ..., k, (7)

where 1 is the unit vector of length n. Equation (7) implies that all investors allocate

fixed proportions to foreign currencies, though different investors may have different

amount in all currencies. Hence, in equilibrium, all investors will share the same

foreign currency portfolio which is

w̄ti =
V −1

i 1
1>V −1

i 1
. (8)

That is, investors portfolio weights among foreign currencies depend on the prevailing

regime and its risk level characterized by the conditional variances. In equilibrium,

the market portfolio is identical to the equilibrium portfolio since all investors hold
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the same foreign currency portfolio (8). The optimal foreign currency portfolio is the

minimum variance portfolio. The intuition is that, when the risky assets have a

common risk premium, the minimum variance portfolio coincides with the tangency

portfolio. Hence, the efficient frontier is a single point.

How does an individual investor optimally allocate his/her capital over time? De-

pending on the risk/return profile (or a target return level), they will allocate the total

capital between the home currency and the optimal foreign currency portfolio. To be

specific, by (6) investors with risk aversion λ will invest R̄i

λ
1>V −1

i 1 percent of the to-

tal wealth in the optimal currency portfolio over time. The rest of wealth is invested

in the home currency.

Based on Markowitz (1952) mean variance analysis and the Capital Asset Pricing

Model developed by Sharpe (1964), all investors will hold the same risky portfolio in

equilibrium. This risky portfolio is generated by maximizing the Sharpe ratio. Since

the expected returns on hedged currency investments are assumed to be constant

across all currencies, the tangency portfolio and the minimum variance portfolio con-

verge to the same point on the efficient frontier. That is, the investors’ objective is

equivalent to minimizing risk among all currencies. We examine whether the equilib-

rium theory under mean variance analysis will hold in the currency market. We use

the Federal Exchange Rate Index that characterizes the strength of the U.S. dollar

against world major currencies as a proxy for the market return on currency invest-

ments. With regime switching and weak interest rate parity, we expect to see that the

optimally hedged portfolio has a similar performance to that of the U.S. dollar, while
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the unhedged optimal currency portfolio has a similar performance to the currency

index in equilibrium. We examine whether this expectation holds in Section 4.

3. Model Estimation

Having derived the optimal portfolio in (8), we now turn to the procedure for pa-

rameter estimation. Small estimation error of parameters can greatly change the

formalism of the optimal portfolio; see e.g. Kallberg and Ziemba (1984), Best and

Grauer (1991), and Chopra and Ziemba (1993). To enhance the estimation accuracy,

we propose a new estimation procedure. The algorithm is a modified EM algorithm

that is tailored to suit our restrictive model.

3.1. The Algorithm

Given the special structure of the switching model for currency returns, it is necessary

to develop an algorithm for solving for the maximum likelihood estimates of parame-

ters in the model. With Markov switching models, the estimation is an adaptation

of the EM algorithm which consists of two steps, the E-Step and the M-Step. Given

an initial condition, the two steps alternate in updating parameters. This iteration

algorithm guarantees to converge to a local optimal point.

Let Θ be the set of all parameters, xt the observations on hedged currency returns

and asset returns, and yt the unobservable regimes. Let x = (x1, ..., xT ) and y =

(y1, ..., yT ). The full maximum likelihood estimator is calculated from the log of the

16



marginal likelihood.

max
Θ

ln P (x; Θ) = ln
∑
y∈Y

P (x, y; Θ) = ln
∑
y∈Y

P (x|y, Θ)P (y; Θ)

where y takes values in the sample space Y of the regimes.

This problem is difficult to solve due to the summation inside the log function.

However, we can use a sequential iteration method to reduce the computational com-

plexity. The following inequality holds,

ln P (x; Θ) ≥ sup
f

{∑
y∈Y

f(y) ln
P (x, y; Θ)

f(y)

}

where f(·) ∈ F , the set of probability distribution functions on Y . The right hand

side is a lower bound for the log likelihood of the parameter Θ. The objective is to

maximize the lower bounds (to find a distribution) such that the bound is tight for the

given data and the parameters. Then, the parameter Θ is updated by maximizing the

expected log likelihood with the obtained probability measure.

The inner maximization problem is solved by calculus of variation to obtain

f(y) = P (y|x; Θ).

This optimality can be written as

sup
Θ

{
sup

Q

{
EQ [ln P (x|y; Θ)]

}}
,

where Q is an arbitrary probability distribution on Y . Equivalently, we look for a

probability measure Q and the related parameters so that the likelihood is maxi-

mized. The algorithm proceeds as follows:
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(1) Set an initial value for Θ(0).

(2) Find the prior distribution of y for the given Θ(0). Then calculate the condi-

tional distribution given the data, P (y|x; Θ(0)).

(3) Maximize the expected log likelihood with the probability distribution function

on y from [2], P (y|x; Θ(0)). That is

max
Θ(1)

∑
y∈Y

P (y|x; Θ(0)) ln P (x|y; Θ(1)).

(4) With Θ(1) as the new initial value, return to [2]. The process continues until

some stopping criterion is satisfied.

The details of the algorithm are in Appendix A. Updating with the normal distrib-

ution is straightforward, since one needs only calculate the sample means and the

sample variances. However, our problem is constrained, so that the means across all

currencies are equal within each regime with possible unequal means for different

regimes. The following proposition is useful in implementing the algorithm.

Proposition 1. Let x1, ..., xS be independently drawn from a multivariate normal

distribution with equal mean value µ, and the variance covariance matrix, σ. The

optimal solution, (µ̂, σ̂), to the following maximization problem

max
µ,σ

S∑
t=1

pt ln φ(xt, µ1, σ)

satisfies 
µ̂ =

S∑
t=1

ptx
>
t σ̂−11

1>σ̂−11

σ̂ =
S∑

t=1

pt(xt − µ̂1)(xt − µ̂1)>.
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where p1, ..., pS are nonnegative numbers with a sum equal to 1 and φ is a multivari-

ate normal density function with n components.

Since µ̂ is a scalar, we can use Newton’s search method to find the solution for µ̂

and then calculate σ̂.

Another complication in the estimation process arises from introducing exogenous

variables. Let z1, ..., zS be independently drawn from a multivariate normal distrib-

ution with m components. Assume that x′
is and z′

js are jointly normally distributed

with mean vector partitioned as

[α1, ..., αm, µ, ..., µ]> =:

 α

µ1


and the variance-covariance matrix

Ω =

 γ δ

δ> σ

 .

Then the maximum log likelihood estimates can be represented in the form of simul-

taneous equations. Proposition 2 develops the solution procedure.

Proposition 2. Let x1, ..., xS and z1, ...zS be given as above. The optimal solution,

(µ̂, α̂, Ω̂), to the following maximization problem

max
µ,α,Ω

S∑
t=1

pt ln φ ((zt, xt), [α, µ1], Ω) ,
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satisfies 

µ̂ =

S∑
t=1

pt(x
>
t Ω̄22 + zt − α̂>Ω̄12))1

1>Ω̄221

α̂ =
S∑

t=1

pt(zt − Ω̄−1
11 Ω̄12(xt − µ̂1))

Ω̂ =
S∑

t=1

ptΩt.

p1, ..., pT are nonnegative numbers with a sum equal to 1 and

Ωt =

 (zt − α̂)(zt − α̂)> (zt − α̂)(xt − µ̂1)>

(xt − µ̂1)(zt − α̂)> (xt − µ̂1)(xt − µ̂1)>

 ,

with

Ω̂−1 =

Ω̄11 Ω̄12

Ω̄21 Ω̄22

 .

Substituting Ω̂ in the expressions for µ̂ and α̂ reduces the solution to an iteration

procedure of m + 1 variables1.

4. Empirical Analysis

The presence of regimes and the weak interest rate parity condition is now tested

with data on major currencies. The regimes will be validated based on the normality

of hedged currency returns. The weak interest rate parity hypothesis is tested using

analysis of variance and pairwise comparisons of means within regimes.

In addition to the U.S. dollar, five major currencies are used in our study: the

Australian dollar (AUD), the Canadian dollar (CAD), the euro (EURO), the Japanese
1Matlab codes are available on request.
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yen (JPY), and the British pound (GBP). Their daily exchange rates to the U.S. dollar

during January 2002 - March 2005 were collected from the Datastream database. The

nominal rates are the short interest rates (available at the Datastream database).

Time series of futures prices are generated as the average futures prices available on

each day. By formula (1), we first calculate the hedged excess returns, Rtj , for money

market j. The accumulated hedged excess returns are plotted in Figure 2
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Figure 2. Except for the Japanese yen and the euro, all other currencies have strong performance

against the dollar. The strong performances of the Australian dollar and the Canadian dollar are

due to the effect of large standard deviations and correlations in the market. The sample means are

not efficient or not unbiased estimators of the actual means, since the normality is violated and the

distributions over time are not homogeneous.
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Figure 3. Non-Normality of Daily Returns for EURO.

4.1. Tests for Regimes

We assume that the unconditional distribution of Rtj is a mixture of normals, violat-

ing the normality assumption for the underlying data generating process. To illus-

trate the non-normality, consider Figure 3 which depicts the cumulative distribution

of returns during January 2, 2002, – April 20, 2004.

We performed Lilliefors and Jarque-Bera tests with the observed time series to

verify the validity of the assumption. Both tests are 2-sided test of normality with

sample mean and sample variance used as estimates of the population mean and

variance, respectively. The sample descriptive statistics and the statistical test re-

sults are given in Table I.
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Both the Jarque Bera and Lilliefors tests suggest that the null hypotheses be re-

jected in favor of non-normality for all hedged currency returns. The t-statistic shows

that the means of Rtj for all currencies are consistent with the null hypothesis. How-

ever, the t-tests are performed on the assumption of normality, and the results are

questionable.

With the rejection of normality, the presence of regimes was considered. The

regimes are the basis of the weak interest rate parity condition. All currencies have

an equal hedged risk premium in each regime. The first 600 data points from the data

set are used for model training to obtain the estimates of the parameters. A Markov

process with 3 regimes is suitable for characterizing the economic uncertainty in the

currency market. The 3 regimes can be interpreted as the economic stages of reces-

sion, normalization, and expansion, as in Hamilton (1989). Tables II and III present

the estimates of the initial regime probability q, the transition matrix P , the expected

excess returns µ and the volatility matrices σ. To initialize the algorithm, we use a

random vector and a stochastic matrix for the vector q and the transition matrix P ,

respectively. For the hedged risk premium µ and the volatility matrix σ, we divide

the sample into three groups randomly and use the sample mean and the covariance

matrix of each group.

To validate the proposed 3-regime switching model, we perform the Lilliefors and

the Jarque-Bera tests for each regime to see whether they are normally distrib-

uted. Based on the posterior probabilities, three subsamples are generated using

the Viterbi algorithm. For the three regimes, there are 92, 34, and 474 data points,
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respectively, for the case of excluding the S&P 500. For the case of including the

S&P500, there are 365, 101, and 134, respectively. If a permutation is made by the

size of risk premiums, the corresponding order of inferred regimes for the second ap-

proach should be 101, 134, and 365, which implies a 66% of regimes in common for

the two approaches.

The null hypothesis that the conditional marginal distribution for each currency is

normally distributed for each regime cannot be rejected by neither Lilliefors nor Jar-

gue Bera tests. That is, the hedged risk premium for each currency has a conditional

normal distribution for each regime.

4.2. Impact of Equity Returns on Parameter Estimation

Standard approaches for estimating means and variances are based on the sample

statistics of the random variables. Auxiliary variables are rarely considered in prac-

tice, even if they are correlated to study variables. Exclusion of such variables may

lead to inaccurate estimates. The equity market is negatively correlated with the cur-

rency market. We include such information in our estimation procedure. From a U.S.

investor’s point of view, we consider returns on the S&P500 index for our parameter

estimation in the framework discussed in Section 2.

From the estimation results, we observe some dramatic changes when the S&P500

is included as an exogenous factor for the estimation. Since estimation results may

depend on initialization, we set the initial values to be equal for the two estimation
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approaches to make a fair comparison. First, the hedged risk premiums in the three

regimes are changed from (3.2216, −1.8641, 0.2086) to (0.2480, 0.8247, 0.1826) in

base points. Furthermore, changes in standard deviation and correlation terms are

also obvious. Overall, risk levels measured by variances and covariances are dropped

substantially, indicating a strong effect from including the index in the estimation

procedure. As well, all other parameters such as the transition probability matrix are

different using the different estimation techniques; see Tables II and III.

Due to an identification problem of regimes, the estimated regime sequences from

the two approaches may be different. In order to find the percentage of regimes that

are in common by the two estimation approaches, we need to set a criterion for classi-

fying regimes. If we consider regimes in increasing order of the risk premiums, then

regimes 1, 2, and 3 for excluding the S&P500 correspond to regimes 2, 3, and 1 for

including the S&P500. In this way of classifying regimes, the two approaches imply

a 66% of coincidence in the two inferred regime sequences, which is incredibly high.

4.3. Weak Interest Rate Parity Tests

The back testing shows that our specification of a three regime model is appropriate,

with normality within regimes. A t-test is performed for each pair of currencies to

see whether the hypothesis of the weak interest rate parity holds within each regime.

Both techniques passed all the tests with high p-values; see Tables IV and V.

We also present an F-test for the weak interest rate parity. Although a paired
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sample test for equal means does not need the assumption of equal variances (as long

as the two samples are of the same length and independent normally distributed), a

joint test maybe even more powerful asymptotically. We conduct an F-test for equal

means, ignoring the assumption of equal variances. The results are in Tables X and

XI. Consistent with the pairwise tests, the F-tests show strong support for the weak

interest rate parity hypothesis.

4.4. Optimal Portfolio Weights and Capital Accumulation

Having estimated the parameters required for the optimization model, we now study

the portfolio performance and obtain the equilibrium implication. To examine the

value of information we also study a steady state portfolio which is generated using

the steady state probability of the Markov chain to find the unconditional distrib-

ution. The steady state probability indicates how often the chain will stay in that

state (regime). Both the estimated models with or without the S&P 500 index imply

that there exists a steady state distribution for each of the model. The steady state

probability is

lim
n→∞

[1, 0, ..., 0] · P n.

For the model excluding the S&P500 index, the steady state probability distribution is

qs1 =

[
0.2604 0.5958 0.1438

]
. The probabilities are qs2 =

[
0.1042 0.7143 0.1815

]
for the case including the index.

The optimal portfolio weights in each regime are given in Table IV. We see that

our currency portfolio is able to capture the momentum of the growth of foreign cur-
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rencies. In particular, the Canadian dollar did extremely well. The currency had

an annualized 8.83% rate of appreciation against the U.S. dollar with a standard

deviation of 8.14% from January 2002 to April 2004. Figure 4 depicts the hedged

and unhedged optimal portfolio performances for the two estimation approaches. The

implication of auxiliary information on regimes is important as evidenced from dif-

ferences in the transition probabilities and the estimated excess risk premiums and

covariances. Also, the implied regimes are distributed differently for the two ap-

proaches.
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Figure 4. In-sample performance against benchmarks: The effect of including the S&P 500 index

returns are not substantial for the two benchmarks which represent the two extremes, either fully

hedging or not hedging at all.

Having derived the optimal currency portfolio, we now examine the optimal port-

folio of a U.S. investor with a specific performance target. Consider the U.S. rate rt
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and let α be the required excess return over the interest rate of the U.S. dollar. The

investor must determine τt, the amount to invest in the risky portfolio over time by

the formula

τt =
α · rt∑

j pitj · µj

,

where it is the regime at time t. Figure 5 presents the performance of a portfolio with

α = 30%. The portfolio is close to riskless with a steeper rate of accumulating wealth
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Figure 5. Individual portfolio performance with a target return higher than the risk free rate by

α = 30%. With rt = 1.5%, the optimal weight in the optimal foreign currencies is given as in Figure

6. The average holding of the portfolio in foreign currencies is 0.2997 with small variation between

two periods (days), while the minimum is −0.1828 and the maximum 0.5083.

with little holdings in the currency portfolio.
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Figure 6. This figure displays the optimal portfolio weights over time for the in-sample data. The

weights are plotted every 30 days, so there are 20 data points in total. For the case of including the

S&P500 index, it has an expected growth rate of 6.77% with a standard deviation 3.41%. However, for

the case of excluding the index, it has an expected return of 1.95% with a standard deviation of 0.56%.

4.5. Out-Of-Sample Performance

To examine out-of-sample performance of the model, we use the remainder of the data

set from April 20, 2004 to March 18, 2005 (exactly 238 points). Figure 7 presents

the hedged and unhedged optimal portfolio performances for the two estimation ap-

proaches. The pattern for the out of sample performance is similar to that for the

in-sample data.

Assuming the estimated model is correct, we simulate the most plausible path of

regimes over time by using the Viterbi algorithm. For each of the two estimation tech-

niques, the whole data set including the training data is classified into three regimes.

The distribution of regimes for the two approaches are (122, 37, 678) and (567, 123,
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Figure 7. Out-Of-Sample performance. While the hedged portfolio slightly under-performed the U.S.

dollar, the unhedged portfolio has a close performance as the currency index. The under-performance

of the hedged portfolio is consistent with the recent U.S. interest hikes in 2005.

147), respectively. With a permutation mentioned previously, the percentage of co-

incidence of regimes for the two approaches is as high as 72.4% based on a dynamic

updating of regimes.

First, we test whether the normality holds for each regime. At the significance

level2, α = 0.2 , Table VII shows that 12 out of 15 tests fail to reject normality for

each of the two estimation approaches.

Tables VIII and IX present the test results for the weak interest rate parity. Only
2This is the largest value that the Matlab routine can allow for performing this test. Since our

intention is not to reject the null hypothesis, a large value of significance is more convincing when the

null hypothesis is not rejected by the test.
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a single comparison out of 30 for each of the two approaches rejects equality at the

5% significance level. Furthermore, most of the p-values for the tests are quite high,

indicating strong evidence that the weak interest rate parity holds.

For out-of-sample individual portfolio performance, we assume that the investor

has a target return of 30% over the risk free rate. Figure 8 presents the performances

for both estimation approaches.
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Figure 8. This figure displays the optimal portfolio weights over time for the out-of-sample data.

The weights are plotted every 30 days, so there are 8 periods represented in total. For the case of

including the S&P500 index, it has an expected growth rate of 10.66% with a standard deviation

5.5%. However, for the case of excluding the index, it has an expected return of 5.5% with a standard

deviation of 3.07%.

5. Conclusion

We have developed a three regime switching model for the dynamics of hedged excess

returns of currency investments, assuming a weak version of covered interest rate
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parity. Then, we studied the performance of optimal portfolios in the presence of

regimes.

We show that the sample distribution of the hedged excess returns on currency

investments are highly skewed and have excess kurtosis. Both Lilliefors and Jarque-

Bera tests reject the normality hypothesis of the hedged excess returns for the se-

lected world major currencies. We proposed a three-regime switching model for char-

acterizing the dynamics of the hedged excess returns and a weak version of the cov-

ered interest rate parity. The weak version of the parity states that the hedged excess

returns are equal in each regime across all currencies. To test the validity of this hy-

pothesis, we performed a series of in-sample and out-of-sample tests. There is strong

statistical evidence that the weak interest rate parity holds.

Our results on portfolio performance with switching regimes are promising. Our

unhedged optimal currency portfolio is similar to the Federal Exchange Rate Index,

and the hedged optimal currency portfolio is similar to the performance of the U.S.

treasury bill. These results have important implications for the equilibrium allocation

of investments in currency markets.
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A. Estimation for Hidden Markov Models

A.1. Defining a Hidden Markov Model

The Hidden Markov Model is a finite set of states, each of which is associated with a

(generally multidimensional) probability distribution. Transitions among the states
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are governed by a set of probabilities called transition probabilities. In a particular

state an outcome or observation can be generated, according to the associated proba-

bility distribution. It is only the outcome, not the state, that is visible to an external

observer and therefore states are “hidden” to the outside; hence the name Hidden

Markov Model.

In order to define an HMM completely, the following elements are needed.

• The number of states of the model, k.

• The number of observation symbols. If the observations are continuous then the

set of symbols is infinite.

• A set of state transition probabilities P = [pij],

pij = Pr[Mt+1 = j | Mt = i]

where M(t) denotes the current state. Transition probabilities should satisfy

the normal stochastic constraints,

pij > 0, ∀1 ≤ i, j ≤ 1,

and
k∑

j=1

pij = 1.

• A probability distribution in each of the states (in the continuous type, e.g. a

normal distribution)

bj(xt) = φ(xt, µj, Σj),
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where µj is the mean vector and Σj is the variance-covariance matrix for state

j. φ is a multivariate normal density function and xt is the observation at time

t. Let x be the set of all observations from time 1 to time T .

• The initial state distribution q = {q1, q2, ...qk}.

The compact form for defining an HMM is

Θ = {P, B, q}

with P as the transition matrix, B as the conditional distribution parameters, and q

the initial state distribution.

A.2. Forward and Backword Algorithms

The forward variable is defined as the probability of the partial observations up to

time t, i.e.,

αt(i) = Pr[Mt = i, x1, x2, ..., xt | Θ].

Then, it is easy to see that the following recursion holds true,

αt+1(j) = bj(xt+1)
k∑

i=1

αt(i)pij, 1 ≤ j ≤ k, 1 ≤ t ≤ T − 1

where

α1(j) = qjbj(x1), 1 ≤ j ≤ k.

Using the above recursion, we can calculate

αT (i), 1 ≤ j ≤ k
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and then the required probability is

Pr[x1, x2, ..., xT | Θ] =
k∑

i=1

αT (i).

Similarly, we can define the backward variable

βt(i) = Pr[xt+1, ..., xT | Mt = i, Θ].

Then,

βt(i) =
k∑

j=1

βt+1(j)pijbj(xt+1), 1 ≤ j ≤ k, 1 ≤ t ≤ T − 1,

where

βT (i) = 1, 1 ≤ i ≤ k.

Hence we obtain

αt(i)βt(i) = Pr[x, Mt = i | Θ], 1 ≤ i ≤ k, 1 ≤ t ≤ T.

Therefore

Pr[x | Θ] =
k∑

i=1

Pr[x, Mt = i | Θ] =
k∑

i=1

αt(i)βt(i).

A.3. Baum-Welch Algorithm

Using calculus we maximize the auxiliary quantity

max
Θ̄

Q(Θ, Θ̄) =
∑

y

p(y | x, Θ) ln[p(x, y, Θ̄)]

We need to calculate the posterior probability of a prevailing state, qt(i) = Pr[Mt =

i | x, Θ]. Let,

ξt(i, j) = Pr[Mt = i, Mt+1 = j | x, Θ].
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This is the same as

ξt(i, j) =
Pr[Mt = i, Mt+1 = j, x|Θ]

Pr[x| Θ]
.

Using forward and backward variables, this can be expressed by

qt(i) =
αt(i)βt(i)∑k

j=1 αt(j)βt(j)
.

One can see that the relationship between qt(i) and ξt(i, j) is

qt(i) =
k∑

j=1

ξt(i, j), 1 ≤ j ≤ k, 1 ≤ t ≤ T.

A.4. Parameter Updating

p̂ij =

∑T −1
t=1 ξt(i, j)∑T −1

t=1 qt(i)
, 1 ≤ i ≤ k, 1 ≤ j ≤ k.

q̂i = q1(i), 1 ≤ i ≤ k.

A.5. Maximum Likelihood

The maximization step uses the updated parameters, Θ, as known, and maximizes

the log likelihood, Q(Θ, Θ̄), over Θ̄. Continuing the iteration procedure guarantees a

local convergence.
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Table I: Sample Statistics and Normality Tests

The daily returns and the standard deviations are measured using a “base point”.

The skewness and excess kurtosis for the excess returns on the five currencies and

the S&P500 index are statistically not equal to zero, indicating that the returns on

currency investments are not evidently normally distributed. Both the Lilliefors and

Jarque Bera tests reject the null hypothesis that the hedged risk premium, Rtj , are

normally distributed. There are some evidence showing that the currencies are likely

to be negatively correlated to the equity market. The EURO, JPY, and GBP are gener-

ally moving together against the equity market, while the AUD and CAD are moving

with the U.S. market, but not in a significant scale. This implies a significant oppor-

tunity for diversification.

Statistics S&P500 AUD CAD EURO JPY GBP

Mean Return -0.45 1.28 0.6769 0.05 -0.48 -2.02

Standard Deviation 129.74 32.39 20.53 25.52 23.98 49.09

Correlation 1.0000 0.1500 0.0948 -0.0405 -0.0932 -0.0512

0.1500 1.0000 0.4297 0.3347 0.0259 0.3377

0.0948 0.4297 1.0000 0.2136 0.0996 0.2103

-0.0405 0.3347 0.2136 1.0000 0.2965 0.6038

-0.0932 0.0259 0.0996 0.2965 1.0000 0.3223

-0.0512 0.3377 0.2103 0.6038 0.3223 1.0000

Skewness 0.27 0.28 -0.11 -0.07 0.09 0.13

Excess Kurtosis 1.55 7.58 2.96 4.81 6.82 0.61

Lilliefors Test – 1 1 1 1 1 1

test statistic 0.0593 0.0744 0.0538 0.0829 0.0881 0.0824

Critcal Value 0.0306 0.0306 0.0306 0.0306 0.0306 0.0306

Jarque Bera Test 1 1 1 1 1 1
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Table II: Estimation for Means and Variance-Covariances (I)

This table presents the estimation results of the initial probability q, the mean ex-

cess returns of the five currency returns and their variance-covariance matrices, and

the transition matrix P . The S&P500 index returns are not used in this estimation

procedure.

Statistics AUD CAD EURO JPY GBP

Regime 1 µ1 = 3.2216, q1 = 0.

Standard Deviations 38.3662 27.5456 36.2456 40.3105 33.2757

Correlations 1.0000 0.2599 0.6039 0.1749 0.7083

0.2599 1.0000 0.4050 0.1699 0.2704

0.6039 0.4050 1.0000 0.4054 0.7297

0.1749 0.1699 0.4054 1.0000 0.0798

0.7083 0.2704 0.7297 0.0798 1.0000

Regime 2 µ2 = −1.8641, q2 = 1.

Standard Deviations 77.7775 42.8397 56.5907 47.7489 38.5394

Correlations 1.0000 0.6492 0.0820 -0.2665 0.0894

0.6492 1.0000 -0.1055 -0.0583 0.1168

0.0820 -0.1055 1.0000 -0.0330 0.2967

-0.2665 -0.0583 -0.0330 1.0000 0.6686

0.0894 0.1168 0.2967 0.6686 1.0000

Regime 3 µ3 = 0.2086, q3 = 0.

Standard Deviations 22.7248 14.9195 16.7986 14.0490 14.1620

Correlations 1.0000 0.3611 0.3537 0.1428 0.2077

0.3611 1.0000 0.3008 0.1592 0.2055

0.3537 0.3008 1.0000 0.4825 0.7050

0.1428 0.1592 0.4825 1.0000 0.4232

0.2077 0.2055 0.7050 0.4232 1.0000

Transition Probabilities 0.6141 0.0610 0.3249

0.0000 0.6556 0.3444

0.0890 0.0156 0.8954
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Table III: Estimation for Means and Variance-Covariances (II)

This table presents the estimation results of the same parameters as in Table II but

with the S&P500 index return as an exogenous factor. Means and standard deviations

are represented by based points.

Statistics AUD CAD EURO JPY GBP

Regime 1 µ1 = 0.2480, q1 = 0.

Standard Deviations 24.7493 16.9046 19.7100 15.4814 15.9288

Correlations 1.0000 0.3720 0.4629 0.2282 0.3235

0.3720 1.0000 0.3971 0.3083 0.2809

0.4629 0.3971 1.0000 0.4899 0.6819

0.2282 0.3083 0.4899 1.0000 0.3710

0.3235 0.2809 0.6819 0.3710 1.0000

Regime 2 µ2 = 0.8247, q2 = 0.

Standard Deviations 58.1820 35.2593 46.8211 46.1690 38.6658

Correlations 1.0000 0.4936 0.2985 -0.0576 0.3863

0.4936 1.0000 0.1311 0.0471 0.2002

0.2985 0.1311 1.0000 0.1998 0.5597

-0.0576 0.0471 0.1998 1.0000 0.2936

0.3863 0.2002 0.5597 0.2936 1.0000

Regime 3 µ3 = 0.1826, q3 = 1.

Standard Deviations 17.3314 10.7179 9.8515 13.9717 9.8244

Correlations 1.0000 0.2025 -0.1253 -0.0624 -0.0850

0.2025 1.0000 -0.2009 -0.3405 -0.1341

-0.1253 -0.2009 1.0000 0.4876 0.6102

-0.0624 -0.3405 0.4876 1.0000 0.4000

-0.0850 -0.1341 0.6102 0.4000 1.0000

Transition Probabilities 0.8475 0.0977 0.0548

0.3024 0.6308 0.0668

0.1462 0.0483 0.8056
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Table IV: t-Tests for the Weak Interest Rate Parity (In-Sample Data with

S&P 500 Index Excluded for Parameter Estimation))

Regimes Currencies (i, j) Test Result p-Value t-Statistics Confidence Interval (5%)

Regime 1 (2,1) 0 0.1492 -1.4486 (-0.0019, 0.0005)

(3,1) 0 0.0932 -1.6876 (-0.0023, 0.0004)

(4,1) 1.0000 0.0230 -2.2923 (-0.0028, 0.0000)

(5,1) 0 0.5127 -0.6559 (-0.0016, 0.0009)

(3,2) 0 0.6450 -0.4616 (-0.0014, 0.0010)

(4,2) 0 0.2357 -1.1897 (-0.0019, 0.0006)

(5,2) 0 0.4249 0.7998 (-0.0007, 0.0015)

(4,3) 0 0.5031 -0.6709 (-0.0018, 0.0010)

(5,3) 0 0.2617 1.1258 (-0.0007, 0.0019)

(5,4) 0 0.0764 1.7820 (-0.0003, 0.0024)

Regime 2 (2,1) 0 0.8796 0.1520 (-0.0036, 0.0041)

(3,1) 0 0.8074 0.2447 (-0.0038, 0.0046)

(4,1) 0 0.8604 0.1766 (-0.0037, 0.0043)

(5,1) 0 0.7635 0.3021 (-0.0033, 0.0043)

(3,2) 0 0.8865 0.1433 (-0.0029, 0.0032)

(4,2) 0 0.9665 0.0421 (-0.0027, 0.0028)

(5,2) 0 0.8226 0.2250 (-0.0022, 0.0027)

(4,3) 0 0.9208 -0.0999 (-0.0033, 0.0031)

(5,3) 0 0.9673 0.0412 (-0.0029, 0.0030)

(5,4) 0 0.8692 0.1654 (-0.0025, 0.0029)

Regime 3 (2,1) 0 0.6982 0.3879 (-0.0002, 0.0003)

(3,1) 0 0.9855 0.0182 (-0.0003, 0.0003)

(4,1) 0 0.8578 0.1793 (-0.0003, 0.0003)

(5,1) 0 0.9316 0.0858 (-0.0003, 0.0003)

(3,2) 0 0.6529 -0.4499 (-0.0003, 0.0002)

(4,2) 0 0.7788 -0.2810 (-0.0002, 0.0002)

(5,2) 0 0.6884 -0.4012 (-0.0003, 0.0002)

(4,3) 0 0.8440 0.1968 (-0.0002, 0.0003)

(5,3) 0 0.9348 0.0819 (-0.0002, 0.0002)

(5,4) 0 0.9006 -0.1250 (-0.0002, 0.0002)
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Table V: t-Tests for the Weak Interest Rate Parity (In-Sample Data with S&P

500 Index Included for Parameter Estimation)

Regimes Currencies (i, j) Test Result p-Value t-Statistics Confidence Interval (5%)

Regime 1 (2,1) 0 0.6878 0.4021 (-0.0003, 0.0004)

(3,1) 0 0.8200 0.2276 (-0.0003, 0.0004)

(4,1) 0 0.8440 0.1969 (-0.0003, 0.0004)

(5,1) 0 0.9170 0.1043 (-0.0003, 0.0004)

(3,2) 0 0.8531 -0.1852 (-0.0003, 0.0003)

(4,2) 0 0.7866 -0.2708 (-0.0003, 0.0002)

(5,2) 0 0.6985 -0.3875 (-0.0003, 0.0002)

(4,3) 0 0.9549 -0.0566 (-0.0003, 0.0003)

(5,3) 0 0.8703 -0.1633 (-0.0003, 0.0003)

(5,4) 0 0.9036 -0.1211 (-0.0003, 0.0003)

Regime 2 (2,1) 0 0.2664 -1.1144 (-0.0024, 0.0009)

(3,1) 0 0.1775 -1.3532 (-0.0028, 0.0008)

(4,1) 0 0.0666 -1.8444 (-0.0032, 0.0004)

(5,1) 0 0.6771 -0.4170 (-0.0020, 0.0014)

(3,2) 0 0.6696 -0.4273 (-0.0017, 0.0012)

(4,2) 0 0.2973 -1.0449 (-0.0020, 0.0008)

(5,2) 0 0.3743 0.8905 (-0.0008, 0.0017)

(4,3) 0 0.5883 -0.5422 (-0.0020, 0.0012)

(5,3) 0 0.2383 1.1827 (-0.0007, 0.0022)

(5,4) 0 0.0752 1.7885 (-0.0003, 0.0026)

Regime 3 (2,1) 0 0.4088 0.8273 (-0.0003, 0.0006 )

(3,1) 0 0.4511 0.7547 (-0.0003, 0.0005 )

(4,1) 0 0.3307 0.9746 (-0.0003, 0.0006 )

(5,1) 0 0.5764 0.5593 (-0.0003, 0.0005 )

(3,2) 0 0.8961 -0.1307 (-0.0003, 0.0003 )

(4,2) 0 0.7913 0.2649 (-0.0003, 0.0004 )

(5,2) 0 0.6904 -0.3987 (-0.0003, 0.0002 )

(4,3) 0 0.6981 0.3884 (-0.0003, 0.0004 )

(5,3) 0 0.7772 -0.2832 (-0.0003, 0.0002 )

(5,4) 0 0.5353 -0.6207 (-0.0004, 0.0002
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Table VI: Optimal Portfolio Weights

The numbers in brackets are the portfolio weights when the S&P 500 index returns

are included for estimating parameters.

Portfolio AUD CAD EURO JPY GBP

Regime (1) 0.0178 0.4596 -0.0503 0.2386 0.3342

( 0.0371 0.3645 -0.0138 0.2919 0.3203)

Regime (2) -0.0045 0.4148 0.2350 0.2931 0.0616

(-0.0081 0.4520 0.1100 0.2250 0.2211)

Regime (3) 0.0493 0.3799 -0.0534 0.2900 0.3342

( 0.0520 0.4008 0.0950 0.2159 0.2362 )

Steady State 0.0243 0.4032 0.0520 0.2479 0.2727

(0.0214 0.4041 0.0542 0.2528 0.2675)

Naive 0.0210 0.4045 0.0550 0.2534 0.2662
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Table VII: Lilliefors and Jarque-Bera Tests for Normality (α = 0.2)

With a significance level 0.05, all testing results are in favor of the null hypothesis

that all returns on the currencies are normally distributed within each regime. The

skewness and the excess kurtosis are close to zero. The mean absolute values of the

skewness and the excess kurtosis for all regimes and all currencies are 0.2240 and

0.6382, respectively.

IN := In sample, OUT :=Out of Sample.

YES :=Including the S&P500, NO := Excluding the S&P500

Regimes Currencies (NO, IN) (YES, IN) (NO, OUT) (YES, OUT)

Regime 1 AUD 0 1 0 1

CAD 0 0 1 0

EUR 1 0 1 0

JPY 0 1 0 0

GBP 0 0 0 1

Regime 2 AUD 0 0 0 0

CAD 1 0 1 0

EUR 0 0 0 0

JPY 0 1 0 1

GBP 0 0 0 0

Regime 3 AUD 0 0 0 0

CAD 1 0 0 0

EUR 0 0 0 0

JPY 0 0 0 0

GBP 1 0 0 0
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Table VIII: t-Tests for the Weak Interest Rate Parity (Out-Of-Sample with

S&P500 Index Excluded for Parameter Estimation)

Regimes Currencies (i, j) Test Result p-Value t-Statistics Confidence Interval (5%)

Regime 1 (2,1) 0 0.1522 -1.4363 (-0.0015, 0.0002)

(3,1) 0 0.0718 -1.8080 (-0.0019, 0.0001)

(4,1) 1.0000 0.0138 -2.4800 (-0.0024, -0.0003)

(5,1) 0 0.4893 -0.6924 (-0.0013, 0.0006)

(3,2) 0 0.5630 -0.5792 (-0.0011, 0.0006)

(4,2) 0 0.1503 -1.4431 (-0.0016, 0.0002)

(5,2) 0 0.4355 0.7812 (-0.0005, 0.0011)

(4,3) 0 0.3966 -0.8492 (-0.0014, 0.0006)

(5,3) 0 0.2155 1.2418 (-0.0003, 0.0015)

(5,4) 1.0000 0.0462 2.0036 ( 0.0000, 0.0020)

Regime 2 (2,1) 0 0.9490 0.0641 ( -0.0030, 0.0031)

(3,1) 0 0.8992 0.1271 ( -0.0031, 0.0035)

(4,1) 0 0.9463 -0.0676 ( -0.0033, 0.0031)

(5,1) 0 0.7336 0.3417 ( -0.0027, 0.0038)

(3,2) 0 0.9254 0.0940 ( -0.0023, 0.0025)

(4,2) 0 0.8534 -0.1855 ( -0.0024, 0.0020)

(5,2) 0 0.6898 0.4007 ( -0.0018, 0.0027)

(4,3) 0 0.8058 -0.2467 ( -0.0029, 0.0023)

(5,3) 0 0.7981 0.2567 ( -0.0023, 0.0030)

(5,4) 0 0.5901 0.5412 ( -0.0018, 0.0031)

Regime 3 (2,1) 0 0.6718 0.4238 (-0.0002, 0.0003)

(3,1) 0 0.9985 0.0018 (-0.0002, 0.0002)

(4,1) 0 0.7712 0.2908 (-0.0002, 0.0002)

(5,1) 0 0.8040 0.2482 (-0.0002, 0.0002)

(3,2) 0 0.5973 -0.5284 (-0.0002, 0.0001)

(4,2) 0 0.8555 -0.1821 (-0.0002, 0.0001)

(5,2) 0 0.8099 -0.2405 (-0.0002, 0.0001)

(4,3) 0 0.7161 0.3638 (-0.0001, 0.0002)

(5,3) 0 0.7562 0.3105 (-0.0001, 0.0002)

(5,4) 0 0.9532 -0.0587 (-0.0002, 0.0001)
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Table IX: t-Tests for the Weak Interest Rate Parity (Out-Of-Sample with

S&P500 Index Included for Parameter Estimation)

Regimes Currencies (i, j) Test Result p-Value t-Statistics Confidence Interval (5%)

Regime 1 (2,1) 0 0.6379 0.4708 ( -0.0002, 0.0003)

(3,1) 0 0.8578 0.1793 ( -0.0002, 0.0003)

(4,1) 0 0.6934 0.3944 ( -0.0002, 0.0003)

(5,1) 0 0.7893 0.2672 ( -0.0002, 0.0003)

(3,2) 0 0.7313 -0.3434 ( -0.0002, 0.0002)

(4,2) 0 0.9191 -0.1016 ( -0.0002, 0.0002)

(5,2) 0 0.7829 -0.2756 ( -0.0002, 0.0002)

(4,3) 0 0.8023 0.2505 ( -0.0002, 0.0002)

(5,3) 0 0.9248 0.0945 ( -0.0002, 0.0002)

(5,4) 0 0.8626 -0.1731 ( -0.0002, 0.0002)

Regime 2 (2,1) 0 0.2041 -1.2733 ( -0.0020, 0.0004)

(3,1) 0 0.1196 -1.5621 ( -0.0024, 0.0003)

(4,1) 1.0000 0.0200 -2.3417 ( -0.0029, -0.0003)

(5,1) 0 0.6929 -0.3954 ( -0.0015, 0.0010)

(3,2) 0 0.6177 -0.4997 ( -0.0013, 0.0008)

(4,2) 0 0.1359 -1.4961 ( -0.0019, 0.0003)

(5,2) 0 0.3000 1.0387 ( -0.0005, 0.0015)

(4,3) 0 0.3660 -0.9057 ( -0.0017, 0.0006)

(5,3) 0 0.1687 1.3805 ( -0.0003, 0.0019)

(5,4) 1.0000 0.0230 2.2876 ( 0.0002, 0.0025)

Regime 3 (2,1) 0 0.4526 0.7521 ( -0.0002, 0.0005)

(3,1) 0 0.5243 0.6375 ( -0.0002, 0.0004)

(4,1) 0 0.3686 0.9004 ( -0.0002, 0.0005)

(5,1) 0 0.6498 0.4545 ( -0.0002, 0.0004)

(3,2) 0 0.8491 -0.1904 ( -0.0003, 0.0002)

(4,2) 0 0.8015 0.2517 ( -0.0002, 0.0003)

(5,2) 0 0.6578 -0.4434 ( -0.0003, 0.0002)

(4,3) 0 0.6668 0.4309 ( -0.0002, 0.0003)

(5,3) 0 0.7875 -0.2698 ( -0.0002, 0.0002)

(5,4) 0 0.5138 -0.6537 ( -0.0004, 0.0002)
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Table X: F-Tests for the Weak Interest Rate Parity (with S&P500 Index

excluded for Parameter Estimation)
The p-values for the F-test in the three regimes imply that none of the null hypotheses

are rejected at the level of 5%. Actually the p-values in two of the three regimes

are as high as 0.99, which shows a strong support for the weak interest rate parity

hypothesis.

Regime 1:

Source SS df MS F Prob>F

Columns 0.00010454 4 2.6134e-005 1.8932 0.11053

Error 0.006281 455 1.3804e-005

Total 0.0063855 459

Regime 2:

Source SS df MS F Prob>F

Columns 4.8361e-006 4 1.209e-006 0.036006 0.9975

Error 0.0055405 165 3.3579e-005

Total 0.0055454 169

Regime 3:

Source SS df MS F Prob>F

Columns 7.5534e-007 4 1.8883e-007 0.065311 0.99217

Error 0.0068379 2365 2.8913e-006

Total 0.0068387 2369
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Table XI: F-Tests for the Weak Interest Rate Parity (with S&P500 Index

included for Parameter Estimation)
The p-values for the F-test in the three regimes imply that none of the null hypotheses

are rejected at the level of 5%. Actually the p-values in all of the three regimes are

greater than 0.2 with 0.9975 in one regime, which shows a strong support for the

weak interest rate parity hypothesis.

Regime 1:

Source SS df MS F Prob>F

Columns 8.138e-007 4 2.0345e-007 0.057071 0.99396

Error 0.0064881 1820 3.5649e-006

Total 0.0064889 1824

Regime 2:

Source SS df MS F Prob>F

Columns 0.00012787 4 3.1967e-005 1.4354 0.22103

Error 0.011135 500 2.2271e-005

Total 0.011263 504

Regime 3:

Source SS df MS F Prob>F

Columns 2.6463e-006 4 6.6157e-007 0.41586 0.79728

Error 0.0010579 665 1.5909e-006

Total 0.0010606 669
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