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Abstract

How to measure and model volatility is an important issue in finance. Recent
research uses high frequency intraday data to construct ex post measures of daily
volatility. This measure, called realized volatility, permits the modeling of volatil-
ity by traditional time-series methods. Barndorff-Nielsen and Shephard(2004) have
introduced additional volatility instruments called realized power variation and re-
alized bipower variation. We investigate the benefits of these volatility instruments
in modeling and forecasting volatility. The first contribution of this paper is to
demonstrate that realized power variation can provide dramatic improvements in
predicting volatility for foreign exchange and equity markets. Secondly, given the
large number of possible models, we consider the benefits of Bayesian model av-
eraging. The model average reduces the risk of choosing an individual model and
provides overall strong performance for each volatility series and forecast horizon.
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1 Introduction

A large literature investigates the modeling of asset returns. An important feature of any
model is the volatility dynamics. Volatility is directly related to the risk associated with
holding financial securities, it affects consumption and investment decisions, portfolio
choice, and is central to the theory and practice of asset pricing. Solutions to these
problems often require a full characterization of the distribution of volatility.

How to measure and model volatility become important questions. Volatility is latent
and not observed directly as other variables, such as prices or volume. Traditional para-
metric approaches, such as GARCH or stochastic volatility models depend upon specific
parameterizations as well as distributional assumptions. It is unclear how robust these
specifications are when these assumptions are invalid.

A new approach to modeling volatility dynamics has emerged which uses improved
measures of ex post volatility constructed from high frequency data. Andersen, Bollerslev,
Diebold and Labys (2001), Andersen, Bollerslev, Diebold and Ebens (2001) and Barndorff-
Nielsen and Shephard (2002a,2002b) advocate an ex post estimate called realized volatility
(RV). RV is constructed from the sum of high frequency squared returns and is a consistent
estimate of integrated volatility plus a jump component for a broad class of continuous
time models. In contrast to traditional measures of volatility, such as squared returns,
realized volatility is more efficient. Recent work has demonstrated the usefulness of this
approach in finance. For example, Bollerslev and Zhou (2002) use realized volatility
to simplify the estimation of stochastic volatility diffusions, while Fleming, Kirby and
Ostdiek (2003) demonstrate that investors who use realized volatility improve portfolio
decisions.

This paper contributes to a growing literature that investigates time series models
of realized volatility and their forecasting power. Recent contributions include Andersen,
Bollerslev, Diebold and Labys (2003), Anderson, Bollerslev and Meddahi (2005), Andreou
and Ghysels (2002), Barndorff-Nielsen and Shephard(2004a), Koopman, Jungbacker and
Hol (2005), Maheu and McCurdy (2002), and Martens, Dijk, and Pooter (2004). These
papers concentrate on pure time series specifications of RV, however, there may be benefits
to including additional volatility instruments.

Barndorff-Nielsen and Shephard (2004) have defined several new measures of volatility,
and associated estimators. Realized power variation (RPV), is a consistent estimate of
the integral of the spot volatility process raised to a positive power (integrated power
variation), while realized bipower variation is a consistent estimate of integrated volatility.
RPV defines a range of estimators that are constructed from the sum of powers of the
absolute value of high frequency returns, |rt|p, p > 0. Barndorff-Nielsen and Shephard
(2004) show that under certain circumstances power variation is robust to jumps.

There are several reasons why RPV can improve the modeling of volatility. First, the
absolute value of returns is less sensitive to large movements in prices. Thus models with
RPV may provide better predictions during periods with jumps. Secondly, the absolute
value of returns displays stronger persistence than squared returns (Ding, Granger and
Engle (1993)), and therefore may provide a better signal for volatility. If higher order
moments of returns do not exist, such as the fourth moment, the absolute value of returns
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will be more reliable since its variance is more likely to exist. Finally, Ghysels, Santa-Clara
and Valkanov (2005) find the absolute value of high frequency returns improve forecasts
of lower frequency realized volatility.

The first contribution of this paper is to provide a detailed investigation of the use
of realized power variation in modeling and forecasting volatility. We construct realized
volatility and realized power variation at a daily frequency using high frequency intraday
observations on returns. We focus on modeling of daily, weekly and biweekly logarithmic
average volatility and the forecasting of levels of average volatility. Our analysis relies on
simple linear regression models which are easy to estimate. Using Bayesian methods we
rank the predictive power in volatility models for foreign exchange and equity markets.
Model specifications can include lag terms of power variation, realized volatility, bipower
variation as well as a leverage effect. The heterogeneous autoregressive (HAR) model
of Corsi(2004), a logarithmic version (log-HAR) and an ARFIMA model are popular
specifications for volatility and are included for comparison.

Based on the marginal likelihood we find that the top models include power variation of
orders 0.5, 1.0, and 1.5. In some cases the best model includes no lags of realized volatility,
and only combinations of RPV terms. In general, our results show that good models
of volatility can be obtained by adding in realized power variation into autoregressive
specifications of realized volatility. Although there are generally improvements in all
forecast horizons, the largest are from one-step ahead daily predictions. As the forecast
horizon increases, lags of realized volatility become more important. The ARFIMA model
improves upon all pure autoregressive specifications of RV. However, linear models which
include RPV terms consistently improve upon the results of all the benchmark models.

In addition, our results from out-of-sample point forecasts support the use of RPV,
however, the improvements are less dramatic. The point forecasts only assess one feature
of the predictive distribution, the predictive mean, while the marginal likelihood provides
a complete assessment of the predictive distribution. This indicates that RPV is most
useful for improving the forecast distribution of volatility. The HAR performance, which
uses levels of RV can be poor since the distribution of volatility is highly skewed. A
leverage effect is found in all the best parameterizations for S&P 500 volatility. We find
bipower variation has very limited forecasting power. With one exception, none of the
top models include bipower variation regressors.

In all cases, no single specification dominates across markets and forecast horizons. In
this situation it is natural to consider the benefits of Bayesian model averaging. Choosing
one model ignores model uncertainty which understates the risk in forecasting and can lead
to poor predictions. Recent examples of Bayesian model averaging in a macroeconomic
context include Fernández, Ley, and Steel (2001), Jacobson and Karlsson (2004), Koop
and Potter (2004), and Wright (2003).

The second contribution of this paper is to investigate the benefits of Bayesian model
averaging for volatility prediction. There is considerable model uncertainty in all our
applications. The ranking of individual models can change dramatically over data series
and forecast horizons. The model average combines individual model forecasts based on
their past predictive record. Therefore, models with good predictions receive large weights
in the model average. The empirical results show the model average to be consistently
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ranked near the top of the best individual models. Considering all data series and forecast
horizons, the Bayesian model average is the dominate model. Model averaging reduces
the risk associated with selecting a single model. Our results are in line with Hibon
and Evgeniou (2004) who argue that the advantage of model averaging is not necessarily
model performance but a reduction in risk.

This paper is organized as follows. In Section 2, we briefly describe the theory behind
the improved volatility measures: realized volatility, realized power variation and realized
bipower variation. Section 3 presents the regression models in our study and estima-
tion, forecasting and model averaging. Section 4 describes several benchmark models of
volatility. Sections 5 details the data. Section 6 reports model comparisons, forecasting
performance and estimates for foreign exchange and stock market volatility. The last
section concludes with a discussion.

2 Realized Volatility, Power variation and Bipower

variation

Suppose the price process belongs to the class of special semi-martingales with jumps,
and for illustration, consider the following logarithmic price process:

dp(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤ T, (1)

where µ(t) is a continuous and locally bounded variation process, σ(t) is the stochastic
volatility process, W (t) denotes a standard Brownian motion, dq(t) is a counting process
with dq(t) = 1 corresponding to a jump at time t and dq(t) = 0 otherwise, with jump
intensity λ(t), and κ(t) refers to the size of the corresponding jumps. The increment in
quadratic variation from time t to t + 1 is

QVt+1 =

∫ t+1

t

σ2(s)ds +
∑

t<s≤t+1,dq(s)=1

κ2(s) (2)

where the first component, called integrated volatility, is from the continuous component
of (1), and the second term is the contribution from discrete jumps. Barndorff-Nielsen
and Shephard (2004) consider integrated power variation of order p defined as

PVt+1(p) =

∫ t+1

t

σp(s)ds (3)

where 0 < p ≤ 2. Clearly PVt+1(2) is integrated volatility.
To consider estimation of these quantities, we normalize the daily time interval to

unity and divide it into h periods. Each period has length ∆ = 1/h. Then define the
∆ period return as rt,j = p(t + j∆) − p(t + (j − 1)∆), j = 1, ..., h. Note that the daily

return is rt =
∑h

j=1 rt,j. Barndorff-Nielsen and Shephard (2004) introduce the following
estimator called realized power variation of order p defined as

RPVt+1(p) = µ−1
p ∆1−p/2

h∑
j=1

|rt,j|p, (4)
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where

µp = E |µ|p = 2p/2 Γ(1
2
(p + 1))

Γ(1
2
)

for p > 0 where µ ∼ N(0, 1) and they show that as h →∞,

RPVt+1(p)
p→





∫ t+1

t
σp(s)ds p ∈ (0, 2)

QVt+1 p = 2
∞ p > 2.

(5)

When p ∈ (0, 2), RPVt+1(p) is robust to jumps. Note that for the special case of p = 2
equation (4) becomes

RPVt+1(2) =
h∑

j=1

rt,j
2 = RVt+1 (6)

and we have the realized volatility (RVt+1) estimator discussed in Andersen, Bollerslev,
Diebold and Labys (2001), Barndorff-Nielsen and Shephard (2002b), and Meddahi (2002).
To avoid confusion we refer to RPV (p) for p < 2 as realized power variation, and to (6)
as realized volatility (RV).

A second estimator considered in Barndorff-Nielsen and Shephard (2004) is realized
bipower variation which is,

RBPt+1 ≡ µ−2
1

h∑
j=2

|rt,j−1||rt,j|, (7)

where µ1 =
√

2/π. As h →∞, RBPt+1
p→ ∫ t+1

t
σ2

t (s)ds, which also excludes the effect of
jumps.

As advocated by Andersen, Bollerslev, Diebold and Labys (2003), integrated volatil-
ity which can be approximated very closely by realized volatility under weak regularity
conditions, provides a natural ex post measure of the variance of the return process. For
specifications including jumps, and a predetermined mean process, realized volatility will
be an unbiased estimator of the conditional variance of returns. For further details on the
relationship between RV and the second moments of returns see Barndorff-Nielsen and
Shephard (2002a,2005) and Meddahi (2003).

3 Linear Models of Realized Volatility

It has been noted by Andersen, Bollerslev, Diebold and Labys(2001) and Andersen, Boller-
slev, Diebold and Ebens (2001) that the logarithm of foreign exchange and equity volatil-
ity is approximately bell shaped. Therefore, we consider the following linear regression
models of the form

yt,h = Wt−1θ + Zt−1γ + ut,h ut,h v NID(0, σ2). (8)
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where

yt,h = log(RVt,h), and RVt,h =
1

h

h∑
i=1

RVt+i−1. (9)

RVt,h is the h-step ahead average realized volatility which is an estimate of the corre-
sponding average quadratic variation over the same time interval. A number of popular
continuous time models are shown by Meddahi (2003) to imply ARMA forms for real-
ized volatility. Therefore, we consider AR models as our base specification using lags of
log(RVt) as in,

Wt−1 = [1, yt−1,1 · · · , yt−p,1]

and other regressors contained in Zt−1, which may include lags of log(RPVt(p)), 0 < p < 2,
log(RBPt), and a leverage effect parameterized as log(RVt−1)I(rt−1 < 0), where rt−1 is
the daily return defined in Section 2, and I(·) is the indicator function. When h > 1
the overlapping nature of yt,h will result in a moving average autocorrelation structure in
the innovations, however, most of the specifications we consider include an ample number
of lags of the dependent variable which will account for this. Section 6 provides a list
of the models included in the Bayesian model averaging. In this paper we evaluate the
predictive distribution of future log-volatility yt+1,h, as well as point forecasts of the levels
of volatility, RVt+1,h based on time t information. How these quantities are computed is
discussed below.

3.1 Bayesian Estimation

To conduct formal model comparisons and model averaging we use Bayesian estimation
methods. Our model is the standard Normal linear regression

Y = Xβ + ε (10)

where X = [W Z], β = [θ, γ]T and ε ∼ N(0, σ2I). By Bayes rule, the prior p(β, σ2), given
data and a likelihood function p(Y |β, σ2), are updated to the posterior distribution,1

p(β, σ2|Y ) =
p(Y |β, σ2)p(β, σ2)∫ ∫

p(Y |β, σ2)p(β, σ2)dβdσ2
. (11)

We specify independent conditionally conjugate priors for β and σ2. They are

p(β) ∼ N(b0, B0), σ2 ∼ IG
(v0

2
,
s0

2

)
, (12)

where IG(·, ·) denotes the inverse Gamma distribution. Although the posterior is not
a well known distribution we can obtain samples from the posterior based on a Gibbs
sampling scheme. For instance, the conditional distributions used in sampling are

β|Y, σ2 ∼ N(M, V ) (13)

1To minimize notation we suppress the conditioning on X in the following derivations.
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where

M = V −1

(
X ′Y
σ2

+ B−1
0 b0

)
, V =

(
X ′X
σ2

+ B−1
0

)−1

,

and
σ2|Y, β ∼ IG

(v

2
,
s

2

)
(14)

where
v = T + v0, s = (Y −Xβ)′(Y −Xβ) + s0.

Good introductions to Gibbs sampling and Markov chain Monte Carlo methods can be
found in Geweke(1997) and Chib (2001). Formally, Gibbs sampling involves the following
steps. Choose a starting value, β(0) and σ2(0) and number of iterations N , then iterate on

• Take a random draw, β(i) from p(β|Y, σ2(i−1)).

• Take a random draw, σ2(i) from p(σ2|Y, β(i)).

Repeating these steps N times produces the draws {β(i), σ2(i)}N
i=1. To eliminate the ef-

fect of starting values, we drop the first N0 draws and collect the next N . For a sufficiently
large sample this Markov chain converges to draws from the stationary distribution which
is the posterior distribution. From this posterior sample, any function of interest can be
consistently estimated. For example,

̂g(β, σ2) =
1

N

N∑
i=1

g(β(i), σ2(i)) (15)

is a simulation consistent estimate of E [g (β, σ2)], the posterior mean of g(β, σ2).
Forecasting a future observation y∗ given the information It is based on the predictive

density defined as

p(y∗|It) =

∫ ∫
p(y∗|β, σ2, It)p(β, σ2|It)dβdσ2 (16)

which integrates out the parameter uncertainty. In this paper we compute out-of-sample
forecasts of RVt+1,h. Since RVt+1,h is conditionally log-normal, we use the following cal-
culation for the predictive mean of a particular model2:

EtRVt+1,h =
1

N

N∑
i=1

exp

[
Et

[
yt+1,h|β(i), σ2(i)

]
+

1

2
Vart

[
yt+1,h|β(i), σ2(i)

]]
(17)

where
Et

[
yt+1,h|β(i), σ2(i)

]
= Wtθ

(i) + Ztγ
(i)

and
Vart

[
yt+1,h|β(i), σ2(i)

]
= σ2(i).

Note that in forecasting RVt+1,h for h = 5, and 10 we are careful to compute true out-of-
sample forecasts. For instance, if we used data till time t for estimation, the last regressand
would be yt−h+1,h = log ((RVt−h+1 + · · ·+ RVt)/h), then the forecast is computed based
on this information set as EtRVt+1,h.

2The use of the analytical moments in (17) has been referred to as a Rao-Blackwellization, and can
be expected to be more accurate than a fully simulated approach to calculating the posterior mean.
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3.2 Model Averaging

In a Bayesian context it is straightforward to entertain many models and combine their
information and forecasts in a consistent fashion. There are several justifications for model
averaging. Min and Zellner (1993) show that the model average minimizes the expected
predicted squared error when the models are exhaustive. More generally, Fernández-
Villaverde and Rubio-Ramı́ez (2004) show that even when all models are misspecified
and/or non-nested, Bayes factors consistently choose the best model according to the
Kullback-Leibler measure. This implies that asymptotically the model average will put
a probability of 1 on the best model. For an introduction to Bayesian model averaging
see Koop (2003). Suppose we have K different models, Mk, k = 1, . . . , K and data
Yt = {y1, . . . , yt}, the probability of model Mk given Yt is,

p(Mk|Yt) =
p(Yt|Mk)p(Mk)∑K
i=1 p(Yt|Mi)p(Mi)

. (18)

where

p(Yt|Mk) =

∫ ∫
p(Yt|β, σ2,Mk)p(β, σ2|Mk)dβdσ2. (19)

In this equation, p(Mk) is the prior model probability, p(Yt|Mk) is the marginal likelihood,
p(Yt|β, σ2,Mk) the likelihood and p(β, σ2|Mk) the prior for model Mk.

Given the information set at time t denoted by It, we can predict future unobserved
data (or function of) y∗ using the predictive density p(y∗|It) of the model average, defined
as,

p(y∗|It) =
K∑

k=1

p(y∗|It,Mk)p(Mk|It), (20)

where each model’s predictive density is defined in (16). The predictive mean of the
function g(y∗) is,

E[g(y∗)|It] =
K∑

k=1

E[g(y∗)|It,Mk]p(Mk|It), (21)

which is a weighted average, using the model probabilities, of model specific predictive
means. In our calculations g(y∗) = RVt+1,h, and E[g(y∗)|It,Mk] is calculated from (17).

3.3 Model Comparison

The Bayesian approach allows for the comparison and ranking of models by Bayes factors
or posterior odds. In contrast to the classical likelihood based test statistics, model
comparison can be conducted for both nested and non-nested models. The Bayes factor
for M0 versus M1 based on the data Yt is defined as

BF01 = p(Yt|M0)/p(Yt|M1) (22)

which is the ratio of marginal likelihoods and summarizes the evidence for model M0 versus
M1. An advantage of using Bayes factors for model comparison is that they automatically
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include Occam’s razor effect in that they penalize highly parameterized models that do
not deliver improved predictive content.3 Kass and Raftery (1995) recommend considering
twice the logarithm of the Bayes factor for model comparison, as it has the same scaling
as the likelihood ratio statistic. They suggest the following interpretation of support for
M0 based on 2 log BF01: 0 to 2 not worth more than a bare mention, 2 to 6 positive, 6 to
10 strong, and greater than 10 as very strong.

There is a long tradition in the Bayesian literature of comparing models based on
predictive distributions (Box (1980), Gelfand and Dey (1994), and Gordon (1997)). In
a similar fashion to the Bayes factor which is based on all the data, we can compare
the performance of models on a specific out-of-sample period. In this case the predictive
likelihood (Geweke (1995,2005)) is defined for the data ys, ..., yt, s < t as

p(ys, ..., yt|Is−1,Mk) =

∫ ∫
p(ys, ..., yt|β, σ2, Is−1,Mk)p(β, σ2|Is−1,Mk)dβdσ2. (23)

This is the same as the marginal likelihood if s = 1, and t = T . The predictive likelihood
is the predictive density evaluated at the realized outcome ys, ..., yt. Note that integration
is performed with respect to the posterior distribution based on the data Is−1.

Both the marginal likelihood and the predictive likelihood contain the out-of-sample
prediction record of a model, making them the central quantity of interest for model
evaluation (Geweke and Whiteman (2005)). For example, (23) is simply the product of
the individual predictive likelihoods:

p (ys, ..., yt|Is−1,Mk) =
t∏

j=s

p (yj|Ij−1,Mk) . (24)

Models with good past predictions have larger predictive likelihoods and receive larger
weights in the model average.

In this paper we report estimates of the marginal likelihood for the full sample of data
and the predictive likelihood corresponding to an out-of-sample period in which point fore-
casts are also investigated. In exactly the same way as a Bayes factor is defined, a predic-
tive Bayes factor can be computed as PBF01 = p(ys, ..., yt|Is−1,M0)/p(ys, ..., yt|Is−1,M1).

3.4 Calculations

Many of the above results require the calculation of the marginal likelihood or the predic-
tive likelihood for each model. One approach to obtain these quantities is due to Geweke
(1995). This method incorporates the information step-by-step and is useful when re-
cursive out-of-sample forecasts are calculated. It is less computationally demanding than
other methods such as Gelfand and Dey (1994) that require a full evaluation of the like-
lihood function for every draw from the posterior simulator and it is also very accurate.4

3For the advantages of the use of Bayes factors see Koop and Potter (1999),
4For instance, we can replicate our marginal likelihood estimates using the Gelfand and Dey approach.
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Each of the individual terms of the right hand side of (24) can be estimated consistently
from the Gibbs sampler output as

p (yj|Ij−1,Mk) ≈ 1

N

N∑
i=1

p
(
yj|β(i), σ2(i), Ij−1,Mk

)
(25)

where p(yj|β(i), σ2(i), Ij−1,Mk) denotes the normal density with mean Xj−1β
(i) and vari-

ance σ2(i), evaluated at yj, and the Gibbs sampler draws are obtained using the data Ij−1.
Computing the predictive likelihood for all observations and models allows us to calcu-
late model probabilities in (18) and the predictive likelihood (marginal likelihood) for the
model average using a similar expression to (20) where the predictive density is replaced
by the predictive likelihood estimates. Note that the predictive likelihood of the model
average must be bounded above by the largest predictive likelihood from the individual
models.

4 Benchmark Models

Besides several AR specifications we include two versions of the heterogeneous autore-
gressive model (HAR) of realized volatility by Corsi (2004). Corsi (2004) shows that
this model can account for many of the features of volatility including long-memory. In
formal model comparisons we consider a logarithmic version (HAR-log) implemented by
Andersen, Bollerslev, and Diebold (2003),

yt,h = β0 +β1yt−1,1 +β2yt−5,5 +β3yt−22,22 +γyt−1,1I(rt−1 < 0)+εt, εt ∼ NID(0, σ2). (26)

This model postulates three factors that affect volatility: daily log-volatility yt−1,1, weekly
log-volatility yt−5,5 and monthly log-volatility yt−22,22. Compared to Andersen, Bollerslev,
and Diebold (2003), we have not included a jump term, but we have included a leverage
term in the case of equity. For FX volatility we omit the leverage effect, γ = 0. We
also include a levels version (HAR), in which y in (26) is replaced by RV , when we
compute out-of-sample loss functions for forecasting average realized volatility. Once
again a leverage term is included for equity. The methods discussed above for parameter
estimation, forecasting and calculation of the predictive likelihood are applicable to these
models.

The final comparison model is an ARFIMA(p,d,0) specification in log-volatility,

Φ(L)(1− L)d(yt,1 − µ) = εt, εt ∼ NID(0, σ2), (27)

where short-run autoregressive components are modeled through the lag polynomial Φ(L) =
(1 − φ1L − · · · − φpL

p − γI(rt−1 < 0)L). γ captures the impact of a leverage effect for
equity volatility and we restrict estimation to 0 ≤ d < 1/2. For a d > 0 the autocorre-
lation function decays at a hyperbolic rate and offers an intermediate case between the
exponential decay of short memory and the infinite persistence of a unit root. We follow
Beran (1995) and Chung and Baillie(1993) and consider joint estimation of this model by
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using a truncated expansion of the fractional differencing operator (1−L)d.5 Chung and
Baillie(1993) show this approximation to work well for low order models in a maximum
likelihood context. Since we are dealing with large datasets of several thousand observa-
tions the finite expansion of (1− L)d should provide a sufficiently accurate likelihood for
our purposes.

Bayesian estimation is more involved for the ARFIMA model. In this paper we use a
random walk Metropolis-Hasting routine to jointly sample the full parameter vector from
the posterior distribution. Joint sampling is known to reduce the dependence in the chain
output and provide more accurate posterior estimates. Let θ(i) denote the last parameter
vector drawn and π(θ) the posterior density. Then a new proposal is obtained as follows

• propose θ ∼ q(θ(i), θ)

• calculate α = min{π(θ)/π(θ(i)), 1}
• Set θ(i+1) = θ with probability α and otherwise θ(i+1) = θ(i).

Here q(θ(i), θ) is a fat tailed multivariate mixture of 2 Normals both centered around θ(i)

where one component has a variance-covariance matrix 100 times the other. The latter
distribution is sampled from with probability 0.1. To capture the parameter correla-
tions in the posterior and ensure efficient proposals, we calibrate the variance-covariance
of the mixture with a series of preliminary runs that provide an approximate estimate
to this matrix.6 As a result, our proposal density efficiently explores the posterior dis-
tribution and the dependence in the output from the chain quickly diminishes.7 Even
so, posterior simulation remains computationally expensive compared to linear models.
As such we do not update the posterior as we do with the other models when fore-
casting. Instead we fix the posterior based on the in-sample data. This also means
we do not obtain a full decomposition of the marginal likelihood as discussed above.
Instead we compute the marginal likelihood based on the simulation output using the
Gelfand and Dey (1994) method as implemented by Geweke (1999). We can always
compute the predictive likelihood for observations ys, ..., yt s < t through the identity
p(ys, ..., yt|y1, ..., ys−1) = p(y1, ..., ys−1, ys, ..., yt)/p(y1, ..., ys−1) which requires us to sepa-
rately estimate the marginal likelihood of y1, ..., yt and y1, ..., ys−1 (Geweke (2005)). This
is what we do to compute the predictive likelihood and allow for a training sample as
discussed in the results section.

Finally, note that in contrast to the other models the ARFIMA is a one period model.
Therefore, to calculate the predictive mean we take a random draw from the posterior,
and simulate the model forward. This entails simulating the short memory component
forward, applying the long memory operator with −d and then exponentiating to obtain

5Note that (1 − L)d =
∑∞

j=0 πjL
j where π0 = 1, and πj = −d−j+1

j πj−1, ∀j ≥ 1. We replace

(1− L)d(yt,1 − µ) in (27) with
∑t−1

j=0 πj(yt−j,1 − µ).
6The very first estimate is based on a single move random walk proposal in which each parameter is

sampled conditional on all other parameters.
7For instance, the autocorrelation function of the sampled parameter values are close to 0 before 50

lags.
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levels of R̃V t+i, i = 1, ..., h, from which a simulated value of R̃V t+1,h is obtained.8 The
average of a large number of draws is used as the predictive mean, EtRVt+1,h.

5 Data

High frequency foreign exchange data on the JPY-USD and DEM-USD spot rates are
from Olsen & Associates. The data is updated from Maheu and McCurdy (2002). We
adopt the official conversion rate between DEM and Euro after January 1, 1999 to obtain
the DEM-USD rate. Spot rates on a five minute grid for a 24 hour day are constructed
from the nearest logarithmic middle prices. The end of a day is defined as 21:00:00 GMT
and the start as 21:05:00 GMT. Weekends (21:05:00 GMT Friday - 21:00:00 GMT Sunday)
and slow trading dates (December 24-26, 31 and January 1-2) and the moving holidays
Good Friday, Easter Monday, Memorial Day, July Fourth, Labor Day, Thanksgiving and
the day after were removed. Also a small number of slow trading days were removed.
From this remaining data, 5 minute returns where constructed, from which a MA(4) and
MA(10) filter was applied to JPY-USD and DEM-USD returns respectively to remove
any market microstructure effects that may bias the daily volatility estimators.9 From
the filtered 5 minute return data, daily returns, realized volatility, bipower variation and
power variation of order 0.5 and 1, were constructed. The sample period for JPY-USD is
from December 16, 1986 to December 31, 2002 (4001 observations), while for the DEM-
USD it is November 4, 1986 to December 31, 2002 (4026 observations). For both data
series we reserve the first 35 observation as startup values for the models. This results in
the final FX data of 3966 observations (JPY-USD) and 3991 observations (DEM-USD).

For equity we consider the S&P 500 index by using the Spyder (Standard & Poor’s
Depository Receipts), which is an Exchange Traded Fund that represents ownership in
the S&P 500 Index. The ticker symbol is SPY. Since this asset is actively traded, it
avoids the stale price effect of the S&P 500 index. The Spyder price transaction data
are obtained from the Trade and Quotes (TAQ) database. After removing errors from
the transaction data10, a 5 minute grid from 9:30 to 16:00 was constructed by finding
the closest transaction price before or equal to each grid point time. The first obser-
vation of the day occurring just after 9:30 was used for the 9:30 grid time. From this
grid, 5 minute intraday log returns are constructed. Next intraday periodicities were re-
moved using a MA(1) model on returns. Finally, this filtered return data was used to
construct daily returns, realized volatility, bipower variation and power variation of order

8In the case of equity there is the added complication of the leverage effect. For h > 1 we simulated
returns based on the assumption they follow N(0, R̃V t+i) where R̃V t+i is the simulated value from the
model.

9See Bandi and Russell (2005), Hansen and Lunde (2006), Oomen (2005) and Zhang et al. (2005) for
more details on the effects of market microstructure noise on volatility estimation.

10Data was collected with a TAQ correction indicator of 0 (regular trade) and when possible a 1 (trade
later corrected). We also excluded any transaction with a sale condition of Z, which is a transaction
reported on the tape out of time sequence, and with intervening trades between the trade time and the
reported time on the tape. We also checked any price transaction change that was larger than 3%. A
number of these were obvious errors and were removed.
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0.25,0.5,0.75,1.0,1.25,1.5, and 1.75. The final data ranges from January 29, 1993 to March
30, 2004, and conditioning on the first 35 observations leaves 2778 observations.

Statistics for daily logarithmic realized volatility for all three data series are presented
in Table 1. The distributions are approximately bell shaped. The time series movements
of volatility are shown in Figure 1.

6 Results

6.1 Choice of prior

For our time series models, the coefficients of the regressors do not have a clear economic
meaning. It is difficult to set a reasonable ”informative” prior. On the other hand, when
priors are very diffuse, model probabilities can be very small. This can be a problem for
many of our highly parameterization models. These models will tend to provide imprecise
predictions early in the sample, even though they can perform much better given accurate
parameters values. As a result, poor performance at the start of the sample will diminish
their contributions to the model averaging forecasts in the latter part of the sample. To
avoid these issues we follow Geweke (1995) among others and use a training sample of
data to set an informative prior for each model. The information in this presample of
data, which is common to all models, along with our proto-prior is combined to form an
updated prior. We first specify highly uninformative proto-priors, then assign some data
as the training sample.

We do Bayesian model comparison, and model averaging conditional on the updated
prior. For the linear models proto-priors are specified as β ∼ N(0, 100I), and σ2 ∼
IG(v0/2, s0/2), where v0 = 5, s0 = 5. For β this is highly uninformative while the proto-
prior on σ2 represents a wide range of plausible values for volatility data. We use the
same priors for the ARFIMA model parameters and assume d is uniformly distributed on
the interval (0, .5).

In our model averaging exercises, we set the first 1000 observations as the training
sample for each model. After this, the prior model probabilities are set to P (Mi) =
1/K, i = 1, ..., K, and are updated based on (18). For the linear models the first 100
Gibbs draws were discarded and the next 5000 were collected for posterior inference.
The output from the Gibbs sampler mixed very well with a fast decaying autocorrelation
function. We obtain a complete decomposition of the marginal likelihood and update
all estimates through time for forecasting. For the ARFIMA model we discard the first
5000 draws and collect the next 5000 for posterior inference from the final run. Due
to the computational cost associated with estimation we do not update the posterior in
out-of-sample forecasts. We compute the marginal likelihood as discussed in Section 4.

6.2 Foreign Exchange Volatility

Before we begin a more detailed discussion of the estimation and forecasting results for
FX volatility we list our results. The model specifications included in the model average
are listed in Table 2, marginal likelihood and predictive likelihood estimates are recorded
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in Tables 3 - 4, selected model estimates in Table 5, and out-of-sample forecast results in
Tables 6 and 7. The cumulative probabilities for selected models are displayed in Figures 2
and 3. For both currencies, the first 3000 observations are split into the training sample
(1–1000) and an estimation sample (1001-3000). This leaves an out-of-sample period of
February 17, 1999 – December 31, 2002 (966 observations) for the JPY-USD, and January
14, 1999 – December 31, 2002 (991 observations) for the DEM-USD.

The models that enter into the model average are selected based on augmenting au-
toregressive models of log(RVt), and are listed in Table 2. They are not an exhaustive
list of all the potential specifications, but do represent combinations that we felt worth
study, and being linear are simple to estimate. We have not included as many configu-
rations with bipower variation since our initial analysis found this regressor to have low
forecasting value.

Table 3 lists the model specifications for the JPY-USD, the full sample marginal
likelihood and the out-of-sample predictive likelihood estimates for each of the forecast
horizons h = 1, 5, and 10.11 This corresponds to daily, weekly and biweekly average
volatility. The table includes results for the model average (MA), HAR-log, and ARFIMA
models discussed in Section 4.12 Models 1 – 5 are pure autoregressive specifications of
realized volatility, while models 6 and 7 allow for only lags of realized bipower variation.
All remaining models include realized power variation regressors of order 0.5 or 1. Models
6 – 13 have no lags of realized volatility.

The results for h = 1 show the pure AR specifications to be strongly dominated
by models which include power variation terms. For instance, based on the marginal
likelihood values for the JPY-USD, the best pure AR model is the AR(20) (model 5)
with a value of -1830.9 while every model that includes at least one RPV term provides
a dramatic improvement.13 The best model is 32 with a value of -1761.8, and has 10 lags
of RV and 5 lags of RPV(0.5). There is strong support for the realized power variation
regressors, since 2 log(BF ) for model 32 against 5 is 138.2. Similar results are obtained for
the longer horizons of h = 5, 10 with some strengthening of the pure AR models. Based
on the marginal likelihood values for h = 5, and 10 the model with 10 lags of RPV(1.0)
performs best, however, based on the predictive likelihood the pure AR(20) model in RV
is preferred.

To see the improvements for different h consider the AR(10) (model 3) and compare
it to an AR(10) with 1 extra RPV term (models 35 and 36) for h = 1, 5, 10. In each
case the addition of the RPV regressor provides an improvement over the pure AR(10)
specification. The gains from including RPV appear to be greatest for small h.

The model average (MA), the HAR-log specification, and an ARFIMA(5,d,0) are
listed in the last three rows of the table.14 The model average is close to the best model
for all forecast horizons based on the marginal likelihood or predictive likelihood values.

11Bayes factors or predictive Bayes factors can be used to compare any of the models in these tables.
12Note that the model average does not include the HAR-log or ARFIMA model.
13The exception being model 14 which does not contain sufficient lags to account for the dynamics of

volatility.
14The ARFIMA(5,d,0) specification is used in Andersen, Bollerslev, Diebold and Labys (2003) for a

similar FX data series. The posterior mean of d was 0.45 based on the in-sample data.
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For example, based on rank the MA places 7, 14, 4, 3, 3, and 4 in the criteria listed in
Table 3. The HAR-log model is in general not very competitive with the majority of
alternatives, although its performance improves as the forecast horizon lengthens. The
ARFIMA is better than the HAR-log and any of the pure autoregressive models (1-5),
but there are still dramatic improvements found in the linear specifications which include
power variation.

Figure 2, shows selected model probabilities through time. The first panel shows
considerable changes in model performance and hence probability through time for the
top models. For the JPY-USD h = 5 case it is interesting to note that model 9 has
the highest probability for most of the sample, however, model 5 which has the highest
predictive likelihood over the out-of-sample period has essentially 0 weight except at the
start of the sample prior to 1992. Hence model selection based on the out-of-sample
period alone may be misleading. What is clear from the plots and Table 3 is that no
single model always dominates.

Now we turn to the results for the DEM-USD listed is Table 4. The results are similar
to the JPY-USD and show large improvements for models with RPV terms at h = 1.
Based on the marginal likelihood the models 36, 38 and 39 all improve upon the AR
specifications (models 1-5) for h = 1, 5, 10. Each of these models adds RPV terms to an
AR(10).

We see that as the forecast horizon lengthens the AR(20) (model 5) specification per-
forms best according to the predictive likelihood. However, there are several models with
power variation that have performance quite close. For instance, models 36 – 38 are quite
competitive with the AR(20) model. Like the JPY-USD results, the bipower regressors
do not appear to offer any improvements for models that include them.15 Including 1 lag
of power variation in an AR(10) appears to be a useful specification as model 36 performs
well over h = 1, 5, and 10, and dominates the HAR-log model.16

The model average is very near the top model for all criteria and forecast horizons.
Based on the marginal and predictive likelihood values in the table, the model average
ranks as 3, 9, 3, 7, 4, and 6 respectively out of 42 models. The model average out performs
both the HAR-log and ARFIMA(5,d,0) specification for each h. The model probabilities
for DEM-USD h = 10 in Figure 3 give a good illustration of the changing fortunes of
individual models through time. The model average combines the best models available
at any point in time, based on their past predictive record.

To see the effect that power variation has on an autoregressive model, Table 5 reports
full sample posterior estimates for an AR(5), AR(5) with RPV(0.5), and AR(5) with
RPV(1) terms respectively, for h = 1.17 The coefficients on realized power variation are
both large and accurately estimated. The autoregressive coefficients diminish when the
RPV terms are added. This shows that RPV contains considerable information on the
persistence of RV. Bayes factors favor the AR(5) model with a power variation regressor.

15A direct comparison of model 3 (AR(10) in log(RVt)) and model 7 (AR(10) in log(BPVt)) in Tables 3
and 4 yields mixed results, with no clear winner.

16This is not true for the JPY-USD where the HAR-log is preferred for h = 5, 10 according to the
predictive likelihood.

17These are models 2, 20 and 21 in Table 3.
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Next we consider the out-of-sample point forecasts of average volatility based on the
predictive mean. The out-of-sample period corresponds exactly to the period used to
calculate the predictive likelihood. Tables 6 and 7 report a summary of the results for
both currencies. These tables list the root mean squared forecast error (RMSE) and the
R2 obtained from a regression of average realized volatility on a constant and a model
forecast. Forecast performance is listed for the best model an AR(5), AR(20), ARFIMA,
HAR, HAR-log, the model average, and the worst model. The rank is also reported.

Models which include power variation for h = 1 perform the best. These are models 15
and 38 for the JPY-USD and DEM-USD respectively. For h = 5, and 10 the best models
are pure AR models of RV and bipower variation for the JPY-USD. This is consistent
with the good performance of AR models based on the predictive likelihood. In contrast
to this, it is interesting to find that models with power variation are the best forecasters
(model 39) for DEM-USD for h = 5, 10.

Based on the RMSE the model average performs well against the HAR, HAR-log,
and ARFIMA models and is always close to the best model. The model average does
particularly well for the DEM-USD. It should be noted that the RMSE of many of the
models are not separated by much, which suggests this criteria may not be useful to
discriminate among models.18 The HAR-log model does better than the levels version,
particularly for the DEM-USD volatility. This is expected since RVt is highly skewed
while log(RVt) is approximately normal.

In summary for FX volatility we find: models with RPV terms provide dramatic im-
provements based on the marginal and predictive likelihoods for 1 period ahead forecasts
and smaller improvements for longer forecast horizons. With one exception, bipower vari-
ation regressors offer no improvement over realized volatility regressors or power variation
regressors. The Bayesian model average consistently performs well. With the exception
of the model average, there is no dominate individual model for both currencies. In many
cases, the benchmark models are beaten with models that include RPV terms.

6.3 S&P500 Volatility

The model specifications for S&P500 volatility are listed in Table 8, the full sample
marginal likelihood and out-of-sample predictive likelihood estimates in Table 9, addi-
tional forecast results are in Table 10. The first 2000 observations are split into the
training sample (1–1000) and an estimation sample (1001-2000). The out-of-sample pe-
riod in which the predictive likelihood and predictive mean are calculated is February 21,
2001 to March 30, 2004 (778 observations).

Given the encouraging results in the FX application, we have expanded the number
of power variation terms to RPV (p), p = .25, .5, .75, 1, 1.25, 1.5, and 1.75, and dropped
the bipower variation regressors. This results in a total of 60 models that enter into the
model average. In addition, we include a HAR, HAR-log and ARFIMA(5,d,0) model each
with a leverage term for comparison.

18An advantage of model comparison based on the predictive or marginal likelihood is that it takes
into consideration the whole predictive distribution, not just one part of it such as the predictive mean.
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Table 9 records the full sample marginal likelihood and the out-of-sample predictive
likelihood for all model specifications. For h = 1 the top ranked model 51 includes 10 lags
of RPV(0.5) and RPV(1) and no lags of realized volatility. This model provides a large
improvement over the HAR-log model. For instance, the marginal likelihood is -1244.9
for this model and -1288.1 for the HAR-log.19 The ARFIMA model is much stronger for
the equity series as compared to the FX case. The full sample marginal likelihood results
favor models with power variation terms. However based on the predictive likelihood the
pure autoregressive models of RV along with a leverage term dominate for h = 5, and
h = 10.

Similar to the FX results, the model average is consistently a top performer. The rank
of the MA based on marginal likelihood values is 3, 5, and 2 for h = 1, 5, 10, respectively,
while it is 5, 4, and 5 based on the predictive likelihood. Note the improvements that a
leverage effect has on all of the pure autoregressive specifications (models 1-10) for each
forecast horizon h = 1, 5, 10.

The performance of the out-of-sample forecasts (predictive mean) for average realized
volatility is summarized in Table 10. Compared to the ranking in Table 9 for h = 1,
a very similar specification with RPV(p) terms of p = 0.5, 1, and 1.5 has the smallest
RMSE. The model average is quite close to the best model, while both HAR models fall
behind. In contrast to the predictive likelihood ranking for h = 5, and 10, models which
include RPV terms of 1.5 and 1.75 display the best forecasts according to RMSE.20 Once
again the MA is very competitive with the best model and all benchmarks.

In summary, models with power variation provide improvements in describing volatility
for the S&P 500. Power variation regressors appear to be most useful for short term
forecasts of one day. They are also included in the top forecasting models for longer
horizons. All of the best models include a leverage term. Over all cases, the MA performs
well, better than any individual model.

7 Discussion

This paper uses Bayesian methods to evaluate the importance of additional volatility
instruments in modeling and forecasting realized volatility. We compare these new models
which include realized power variation, to a number of standard models of log-volatility.
We discuss and summarize our findings.

First, for the benckmark HAR, HAR-log and ARFIMA models of volatility, based
on point forecasts the HAR-log and ARFIMA models provide similar results with the
HAR specification being slightly worse. However, based on the marginal likelihood the
ARFIMA model is strongly favored.

We find robust improvements in both FX and equity markets when power variation
terms are included for models of one period ahead volatility. Our results also show power

19Similarly, the predictive likelihood supports this specification with a value of -504.7 while it is -519.3
for the HAR-log.

20The RMSE of the AR(15)+LE favored by the predictive likelihood is 0.8120 and 0.7802 for h = 5,
and 10, respectively.
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variation to be useful for longer horizon forecasts. A summary of the five top models
according to the marginal likelihood is listed in Table 11. In most cases, significant
improvements to autoregressive models can be obtained by adding RPV terms of order
0.5, 1, and 1.5. There are a few cases in which the best model only includes RPV regressors
and no RV lags. In general, we can recommend an AR(10) with the inclusion of 1 - 5
lags of realized power variation. As we have shown, these specification compare favorably
with the HAR, HAR-log and ARFIMA models. In constructing RV, there is little to
no cost in also computing RPV of various orders. Our empirical results offer significant
improvements in modeling volatility with only the use of linear models. Given the smaller
gains in point forecasts, RPV is most useful for improving the forecast distribution of
volatility.

Our results lead to the question of why power variation is a useful instrument. As we
mentioned in Section 2, power variation is robust to jumps. Jumps are generally thought to
be large outliers that may have a strong effect on model estimates and forecasts. However,
bipower variation, which is also robust to jumps, shows no benefits in forecasting in our
study. Forsberg and Ghysels (2004) investigate why the absolute value of returns is such
a good forecaster. They demonstrate that the absolute value of returns forecasts future
quadratic variation better than squared returns. They argue that improvements are due
to the absolute value having higher predictability, less sampling error and a robustness to
jumps. Our results show that these desirable features appear to extend to power variation
terms, notably RPV(0.5), RPV(1.0), and RPV(1.5).

With all the possible models, we show the benefits to model averaging. Although not
always number one, the Bayesian model average, ranked by any of the criteria studied in
this paper, is always near the top in performance. Moreover, the model average is the
top performer when all forecast horizons and data series are considered.21 This is not
surprising, given that Bayesian model averaging fully accounts for model risk.
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Table 1: Summary statistics for log(RVt)

JPY-USD DEM-USD S&P500

Mean -0.7865 -0.8657 -0.2495
Median -0.8276 -0.8854 -0.1671
Min -3.5400 -3.2995 -3.2938
Max 3.5377 2.3861 3.4951
Std Dev. 0.6949 0.6225 0.9660
Skewness 0.3757 0.3287 0.0949
Excess Kurtosis 1.0404 0.8139 0.1220

JPY-USD data February 12, 1987 to December 31, 2002 (3966 observations).
DEM-USD data January 5, 1987 to December 31, 2002 (3991 observations).
S&P500 data March 22, 1993 to March 24, 2004 (2778 observations).



Table 2: Model Specifications for FX market
Lags

Model RV RPV(.5) RPV(1) BP
1 1 0 0 0
2 5 0 0 0
3 10 0 0 0
4 15 0 0 0
5 20 0 0 0
6 0 0 0 5
7 0 0 0 10
8 0 0 5 0
9 0 0 10 0
10 0 5 0 0
11 0 10 0 0
12 0 5 5 0
13 0 5 5 5
14 1 1 1 0
15 1 5 5 0
16 1 5 0 0
17 1 5 0 5
18 1 10 0 0
19 1 0 10 0
20 5 1 0 0
21 5 0 1 0
22 5 0 0 1
23 5 1 1 0
24 5 1 1 1
25 5 2 0 0
26 5 0 2 0
27 5 0 0 2
28 5 2 2 0
29 5 5 0 0
30 5 0 5 0
31 5 0 0 5
32 5 10 0 0
33 5 0 10 0
34 5 0 0 10
35 10 1 0 0
36 10 0 1 0
37 10 0 0 1
38 10 5 0 0
39 10 0 5 0
40 10 0 0 5



Table 3: Model Comparison, JPY-USD Volatility
h=1 h=5 h=10

Model log(ML) log(PL) log(ML) log(PL) log(ML) log(PL)
1 -2013.5 -596.5 -1688.9 -434.3 -1668.3 -413.2
2 -1841.6 -539.3 -1421.6 -354.8 -1407.1 -341.5
3 -1831.9 -537.7 -1391.6 -349.3 -1361.1 -327.7
4 -1831.4 -536.5 -1380.0 -342.9 -1337.0 -317.3
5 -1830.9 -536.0 -1372.6 -340.0 -1330.9 -314.1
6 -1842.5 -537.9 -1425.9 -352.0 -1402.6 -330.4
7 -1833.0 -536.3 -1395.5 -346.4 -1357.7 -317.6
8 -1773.0 -519.3 -1376.7 -347.9 -1361.3 -330.0
9 -1768.8 -519.1 -1356.7 -344.5 -1326.4 -320.5
10 -1777.5 -523.4 -1402.2 -364.9 -1375.8 -342.5
11 -1773.9 -523.5 -1384.8 -362.0 -1344.1 -334.3
12 -1764.1 -513.9 -1379.7 -345.3 -1366.9 -329.6
13 -1766.3 -513.9 -1382.4 -350.9 -1371.7 -335.3
14 -1849.9 -542.2 -1558.8 -398.0 -1549.8 -375.2
15 -1764.9 -514.2 -1380.2 -345.4 -1366.6 -328.3
16 -1776.2 -523.1 -1391.2 -356.8 -1370.9 -338.2
17 -1770.9 -518.0 -1389.4 -352.4 -1372.4 -336.1
18 -1771.8 -523.2 -1372.5 -353.6 -1337.8 -329.6
19 -1764.8 -517.4 -1357.5 -344.9 -1327.3 -320.7
20 -1766.6 -516.2 -1395.3 -351.9 -1385.0 -337.7
21 -1768.0 -514.8 -1388.9 -349.3 -1379.1 -334.3
22 -1838.4 -536.6 -1421.6 -354.3 -1406.4 -340.2
23 -1766.6 -515.3 -1390.8 -347.8 -1380.9 -332.1
24 -1766.7 -515.7 -1388.9 -347.3 -1381.5 -334.0
25 -1767.8 -516.1 -1395.2 -352.6 -1384.2 -338.0
26 -1769.0 -515.0 -1387.4 -350.1 -1376.7 -334.1
27 -1839.0 -536.6 -1422.6 -354.8 -1407.1 -340.3
28 -1767.1 -517.1 -1389.0 -347.5 -1378.6 -330.0
29 -1768.6 -516.5 -1388.1 -351.9 -1373.0 -336.2
30 -1768.6 -515.6 -1378.3 -348.7 -1362.7 -330.2
31 -1839.5 -535.8 -1423.6 -354.4 -1406.0 -337.6
32 -1761.8 -515.5 -1365.9 -347.1 -1336.5 -326.0
33 -1763.9 -514.8 -1359.3 -344.8 -1330.2 -321.1
34 -1829.7 -533.9 -1392.5 -347.8 -1360.9 -324.2
35 -1762.3 -516.0 -1369.6 -347.2 -1343.7 -325.2
36 -1763.9 -514.8 -1364.1 -345.1 -1338.9 -322.5
37 -1828.9 -535.1 -1391.8 -349.0 -1360.8 -326.8
38 -1764.1 -515.5 -1369.0 -348.2 -1341.8 -325.9
39 -1765.2 -514.9 -1361.9 -346.0 -1334.7 -321.8
40 -1830.3 -534.4 -1394.6 -350.2 -1362.2 -326.2
MA -1764.6 -515.6 -1360.0 -343.5 -1329.7 -317.6

HAR-Log -1835.2 -538.7 -1384.2 -341.3 -1343.0 -314.9
ARFIMA -1817.1 -534.7

This table reports each model’s full sample log-marginal likelihood (log(ML)) and the out-of-sample log-predictive
likelihood (log(PL)). MA denotes the model average, HAR-log and ARFIMA models are discussed in Section 4.
The bold entries are the largest values for the models 1-40.



Table 4: Model Comparison, DEM-USD Volatility
h=1 h=5 h=10

Model log(ML) log(PL) log(ML) log(PL) log(ML) log(PL)
1 -1886.8 -530.6 -1420.9 -360.0 -1310.2 -324.9
2 -1702.3 -466.0 -1101.4 -258.9 -972.5 -216.5
3 -1685.2 -462.7 -1050.8 -244.3 -918.6 -194.9
4 -1683.8 -458.7 -1047.3 -239.5 -915.1 -190.2
5 -1680.0 -456.6 -1051.0 -239.3 -921.5 -190.2
6 -1702.5 -464.2 -1113.2 -258.6 -989.6 -217.5
7 -1686.6 -460.8 -1065.3 -244.1 -937.3 -196.4
8 -1661.6 -450.9 -1104.0 -260.5 -991.2 -221.7
9 -1652.4 -450.2 -1068.2 -248.4 -951.1 -204.8
10 -1707.5 -463.7 -1190.4 -290.4 -1077.2 -249.7
11 -1697.0 -463.6 -1157.7 -278.9 -1039.6 -234.3
12 -1641.3 -442.2 -1070.2 -248.2 -948.5 -209.4
13 -1643.1 -442.4 -1068.4 -249.0 -947.8 -210.3
14 -1748.9 -483.2 -1286.6 -316.6 -1193.8 -290.2
15 -1642.1 -442.2 -1069.6 -248.0 -948.6 -209.6
16 -1683.8 -459.0 -1142.0 -275.5 -1031.2 -235.9
17 -1656.9 -445.4 -1105.1 -256.6 -987.0 -216.5
18 -1674.4 -458.4 -1112.0 -264.2 -995.9 -220.4
19 -1653.0 -450.3 -1064.5 -247.3 -945.5 -203.1
20 -1652.6 -446.1 -1094.2 -255.8 -970.1 -215.3
21 -1650.8 -446.4 -1087.9 -253.5 -966.3 -214.1
22 -1697.1 -463.2 -1101.6 -257.8 -974.4 -216.0
23 -1652.1 -446.9 -1079.1 -251.0 -958.8 -212.7
24 -1652.6 -447.1 -1078.3 -251.9 -958.4 -213.2
25 -1653.1 -446.3 -1094.3 -255.7 -969.9 -215.2
26 -1650.6 -446.6 -1088.4 -253.6 -966.7 -214.2
27 -1697.6 -463.1 -1103.1 -258.0 -976.0 -216.3
28 -1648.6 -445.9 -1072.3 -248.2 -953.7 -211.0
29 -1651.0 -445.0 -1095.0 -256.0 -970.9 -215.5
30 -1651.0 -446.4 -1088.6 -254.3 -967.4 -214.6
31 -1700.5 -463.5 -1109.2 -258.4 -981.5 -216.9
32 -1638.4 -443.6 -1059.8 -242.6 -928.6 -197.3
33 -1637.5 -445.0 -1047.9 -239.9 -920.0 -194.5
34 -1684.8 -460.4 -1062.1 -244.2 -929.8 -196.4
35 -1637.8 -443.9 -1043.5 -241.6 -916.1 -194.0
36 -1636.0 -444.3 -1037.8 -239.6 -912.7 -193.0
37 -1680.0 -459.8 -1050.9 -243.2 -920.5 -194.4
38 -1632.3 -442.1 -1042.8 -240.7 -912.3 -192.7
39 -1633.4 -443.9 -1038.6 -239.4 -911.0 -192.3
40 -1682.7 -460.2 -1058.1 -243.8 -925.7 -195.4
MA -1635.7 -443.9 -1041.1 -241.4 -914.3 -192.9

HAR-Log -1696.4 -468.4 -1069.8 -249.7 -943.0 -203.6
ARFIMA -1680.8 -458.4

This table reports each model’s full sample log-marginal likelihood (log(ML)) and the out-of-sample log-predictive
likelihood (log(PL)). MA denotes the model average, HAR-log and ARFIMA models are discussed in Section 4.
The bold entries are the largest values for the models 1-40.



Table 5: Model Estimates for JPY-USD
AR(5) AR(5)+RPV(0.5) AR(5)+RPV(1)

Parameters mean stdev mean stdev mean stdev
Intercept -0.1208 0.1241 0.0826 0.0194 0.0967 0.0202

θ1 0.4729 0.0158 0.1028 0.0311 -0.1834 0.0502
θ2 0.1324 0.0173 0.0962 0.0173 0.0835 0.0176
θ3 0.0559 0.0176 0.0507 0.0171 0.0451 0.0171
θ4 0.0726 0.0174 0.0560 0.0171 0.0562 0.0171
θ5 0.1132 0.0158 0.0866 0.0157 0.0883 0.0157
γ 1.8040 0.1310 1.5280 0.1113
σ2 0.2226 0.0050 0.2123 0.0048 0.2124 0.0048

This table reports posterior mean and standard deviations for model parameters from the
following specifications,

yt = φ0 +
5∑

i=1

φiyt−i + γ log(RPVt−1(p)) + et, et ∼ NID(0, σ2)

with yt = log(RVt), AR(5) sets γ = 0, AR(5)+RPV(0.5) p = 0.5, and AR(5)+RPV(1) p =
1.0. Sample period starts from February 12, 1987 to December 31, 2002 (3966 observations).



Table 6: Out-of-Sample Forecast Results, JPY-USD, RVt,h

h = 1
RMSE R2

Model value Rank value Rank
Best model 0.3181(M15) 1 0.3452(M29) 1
AR(5) 0.3299 40 0.3048 37
AR(20) 0.3290 37 0.3063 35
ARFIMA 0.3321 42 0.3029 41
HAR-log 0.3308 41 0.2992 42
HAR 0.3377 43 0.2677 43
MA 0.3201 17 0.3381 17
Worst model 0.3551(M1) 44 0.2275(M1) 44

h = 5
RMSE R2

Model value Rank value Rank
Best model 0.2135(M4) 1 0.4642(M4) 1
AR(5) 0.2153 18 0.4590 10
AR(20) 0.2135 2 0.4635 2
ARFIMA 0.2182 36 0.4554 17
HAR-log 0.2156 22 0.4484 24
HAR 0.2220 41 0.4155 42
MA 0.2174 31 0.4394 34
Worst model 0.2438(M1) 44 0.3411(M1) 44

h = 10
RMSE R2

Model value Rank value Rank
Best model 0.2030(M7) 1 0.4155(M5) 1
AR(5) 0.2082 27 0.3962 14
AR(20) 0.2035 2 0.4155 1
ARFIMA 0.2099 35 0.4102 3
HAR-log 0.2047 5 0.3390 42
HAR 0.2097 34 0.3587 41
MA 0.2080 24 0.3830 30
Worst Model 0.2317(M1) 44 0.2892(M1) 44

Model forecasts are the predictive mean. This table reports root mean square error (RMSE)
for the forecast errors, and the R2 from a forecast regression of realized volatility on a
constant and a model forecast from different models. The out-of-sample period goes from
February 17, 1999 to December 31, 2002 (966 observations). MA is the Bayesian model
average. Best(Worst) model denotes the model with the best(worst) out-of-sample perfor-
mance according to RMSE or R2 criteria. The model label appears in parenthesis. Rank =
relative ranking among all models.



Table 7: Out-of-Sample Forecast Results, DEM-USD, RVt,h

h = 1
RMSE R2

Model value Rank value Rank
Best model 0.4171(M38) 1 0.2144(M38) 1
AR(5) 0.4247 40 0.1830 40
AR(20) 0.4233 30 0.1882 30
ARFIMA 0.4278 42 0.1732 41
HAR-log 0.4278 42 0.1726 42
HAR 0.4411 44 0.1400 44
MA 0.4173 2 0.2136 4
Worst model 0.4411(HAR) 44 0.1400(HAR) 44

h = 5
RMSE R2

Model value Rank value Rank
Best model 0.2391(M39) 1 0.3426(M39) 1
AR(5) 0.2439 35 0.3154 35
AR(20) 0.2409 12 0.3328 12
ARFIMA 0.2437 33 0.3241 24
HAR-log 0.2484 40 0.2938 40
HAR 0.2611 43 0.2361 43
MA 0.2392 3 0.3421 3
Worst model 0.2640(M1) 44 0.2103(M1) 44

h = 10
RMSE R2

Model value Rank value Rank
Best model 0.1982(M39) 1 0.3790(M39) 1
AR(5) 0.2027 34 0.3503 35
AR(20) 0.1991 8 0.3734 8
ARFIMA 0.2012 19 0.3717 11
HAR-log 0.2071 40 0.3259 40
HAR 0.2188 42 0.2631 43
MA 0.1985 2 0.3769 2
Worst model 0.2232(M1) 44 0.2248(M1) 44

See notes to Table 6. Out-of-sample period is from January 14, 1999 to December 31, 2002
(991 observations).



Table 8: Model Specifications for S&P500

Lag length of power variation, log(RPV (p))
Model p=.25 .5 0.75 1 1.25 1.5 1.75 2 Lev.Effect

1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 5 1
4 0 0 0 0 0 0 0 5 0
5 0 0 0 0 0 0 0 10 1
6 0 0 0 0 0 0 0 10 0
7 0 0 0 0 0 0 0 15 1
8 0 0 0 0 0 0 0 15 0
9 0 0 0 0 0 0 0 20 1
10 0 0 0 0 0 0 0 20 0
11 5 0 0 0 0 0 0 1 0
12 0 5 0 0 0 0 0 1 0
13 0 0 5 0 0 0 0 1 0
14 0 0 0 5 0 0 0 1 0
15 0 0 0 0 5 0 0 1 0
16 0 0 0 0 0 5 0 1 0
17 0 0 0 0 0 0 5 1 0
18 1 0 0 0 0 0 0 5 1
19 0 1 0 0 0 0 0 5 1
20 0 0 1 0 0 0 0 5 1
21 0 0 0 1 0 0 0 5 1
22 0 0 0 0 1 0 0 5 1
23 0 0 0 0 0 1 0 5 1
24 0 0 0 0 0 0 1 5 1
25 0 5 0 0 0 0 0 1 1
26 0 0 0 5 0 0 0 1 1
27 0 0 0 0 0 5 0 1 1
28 0 5 0 0 0 0 0 5 0
29 0 0 0 5 0 0 0 5 0
30 0 0 0 0 0 5 0 5 0
31 0 5 0 0 0 0 0 5 1
32 0 0 0 5 0 0 0 5 1
33 0 0 0 0 0 5 0 5 1
34 0 5 0 0 0 0 0 10 0
35 0 0 0 5 0 0 0 10 0
36 0 0 0 0 0 5 0 10 0
37 0 5 0 0 0 0 0 10 1
38 0 0 0 5 0 0 0 10 1
39 0 0 0 0 0 5 0 10 1
40 0 5 0 0 0 0 0 0 0



Table 8: Model Specifications for S&P500 (Continue)

Lag length of power variation, log(RPV (p))
Model p=.25 .5 0.75 1 1.25 1.5 1.75 2 Lev.Effect

41 0 0 0 5 0 0 0 0 0
42 0 0 0 0 0 5 0 0 0
43 0 5 0 5 0 5 0 0 0
44 0 5 0 0 0 0 0 0 1
45 0 0 0 5 0 0 0 0 1
46 0 0 0 0 0 5 0 0 1
47 0 5 0 5 0 5 0 0 1
48 0 10 0 0 0 0 0 0 1
49 0 0 0 10 0 0 0 0 1
50 0 0 0 0 0 10 0 0 1
51 0 10 0 10 0 0 0 0 1
52 0 0 0 10 0 10 0 0 1
53 0 10 0 0 0 10 0 0 1
54 0 10 0 10 0 10 0 0 1
55 0 10 0 0 0 0 0 10 1
56 0 0 0 10 0 0 0 10 1
57 0 0 0 0 0 10 0 10 1
58 0 10 0 0 0 0 0 5 1
59 0 0 0 10 0 0 0 5 1
60 0 0 0 0 0 10 0 5 1

The list of models: The first column is the model index. Column 2 to column 9 is the lags of
realized power variation terms where p=0.25,0.5,0.75,1,1.25,1.5,1.75,2 respectively. The last
column is the index to leverage effect(i.e, including leverage when it has value 1, no leverage
effect when it has value 0).



Table 9: Model Comparison, S&P500 Volatility
h=1 h=5 h=10

Model log(ML) log(PL) log(ML) log(PL) log(ML) log(PL)
1 -1493.0 -599.3 -1295.5 -476.9 -1280.2 -466.6
2 -1495.5 -601.3 -1299.0 -478.4 -1283.4 -468.0
3 -1285.1 -515.4 -945.8 -346.3 -922.4 -339.5
4 -1288.2 -517.6 -951.1 -348.1 -928.4 -341.1
5 -1260.6 -508.4 -896.8 -333.9 -865.0 -322.5
6 -1263.9 -510.9 -902.8 -336.2 -871.9 -324.6
7 -1257.1 -505.7 -889.1 -330.2 -858.5 -323.3
8 -1260.2 -508.2 -894.9 -332.5 -865.5 -325.7
9 -1256.8 -505.7 -892.4 -335.2 -864.5 -333.8
10 -1260.0 -508.2 -898.3 -337.6 -871.5 -336.0
11 -1344.0 -575.7 -1052.8 -459.0 -1032.4 -476.9
12 -1323.9 -561.3 -1017.5 -434.0 -994.4 -447.9
13 -1303.8 -547.4 -982.3 -409.4 -956.7 -419.4
14 -1287.3 -535.4 -955.0 -388.9 -927.4 -395.5
15 -1275.1 -526.2 -937.2 -373.9 -908.4 -377.7
16 -1267.4 -519.7 -927.6 -364.0 -898.7 -365.7
17 -1263.1 -515.6 -924.4 -358.2 -895.9 -358.3
18 -1274.8 -521.3 -940.1 -369.9 -916.6 -379.3
19 -1273.2 -519.3 -937.7 -366.4 -913.1 -373.5
20 -1270.8 -517.8 -934.6 -364.1 -909.2 -369.6
21 -1268.1 -516.5 -931.3 -362.0 -905.1 -366.1
22 -1265.5 -515.1 -928.3 -359.8 -901.5 -362.6
23 -1263.3 -513.9 -925.8 -357.8 -898.5 -359.3
24 -1261.5 -512.7 -923.7 -355.8 -896.2 -356.1
25 -1322.8 -559.8 -1014.1 -432.8 -990.4 -447.0
26 -1285.8 -533.9 -951.3 -387.6 -923.2 -394.6
27 -1265.8 -518.2 -923.8 -362.7 -894.8 -364.8
28 -1275.6 -524.0 -952.8 -381.2 -938.2 -398.1
29 -1272.0 -522.1 -946.4 -377.6 -929.1 -391.7
30 -1268.4 -520.2 -939.1 -373.4 -918.6 -384.3
31 -1274.2 -522.3 -948.9 -379.6 -933.9 -396.8
32 -1270.6 -520.5 -942.6 -376.2 -924.7 -390.6
33 -1267.0 -518.7 -935.3 -372.2 -914.4 -383.4
34 -1257.8 -513.8 -911.9 -358.9 -891.1 -368.1
35 -1255.5 -512.6 -907.9 -356.6 -884.6 -363.5
36 -1252.8 -511.3 -902.7 -353.6 -876.8 -358.0
37 -1256.1 -511.9 -907.3 -356.8 -885.6 -366.3
38 -1253.7 -510.8 -903.2 -354.7 -879.1 -361.8
39 -1251.1 -509.5 -898.1 -351.9 -871.5 -356.5
40 -1497.9 -681.8 -1227.2 -595.7 -1172.6 -593.1



Table 9: Model Comparison, S&P500 Volatility (Continued)
h=1 h=5 h=10

Model log(ML) log(PL) log(ML) log(PL) log(ML) log(PL)
41 -1326.7 -566.5 -1005.1 -434.0 -957.9 -427.0
42 -1265.0 -516.6 -921.9 -355.2 -888.4 -347.9
43 -1260.8 -511.8 -926.9 -358.4 -917.4 -376.6
44 -1461.8 -657.8 -1183.9 -566.1 -1131.3 -564.6
45 -1319.4 -561.0 -994.1 -427.0 -946.9 -420.1
46 -1263.8 -515.0 -918.2 -353.5 -884.1 -346.3
47 -1259.2 -510.0 -922.6 -356.6 -912.3 -374.8
48 -1463.5 -659.0 -1185.9 -570.5 -1132.1 -568.8
49 -1317.4 -560.7 -986.2 -428.0 -935.2 -419.8
50 -1252.1 -511.2 -890.7 -347.5 -849.6 -337.0
51 -1244.9 -504.7 -895.4 -345.6 -875.1 -355.1
52 -1251.9 -509.2 -905.8 -354.1 -882.2 -362.4
53 -1250.6 -508.4 -904.0 -352.6 -882.4 -362.0
54 -1247.8 -505.3 -892.8 -343.9 -873.9 -352.1
55 -1258.6 -513.3 -915.1 -361.1 -892.4 -370.7
56 -1256.4 -512.0 -911.5 -358.9 -887.1 -367.2
57 -1253.9 -510.6 -906.8 -356.1 -880.7 -363.1
58 -1260.6 -515.6 -920.2 -366.4 -903.2 -381.1
59 -1255.9 -512.6 -909.1 -359.3 -886.2 -368.7
60 -1251.9 -510.2 -900.0 -353.4 -873.4 -358.7
MA -1248.9 -506.9 -893.0 -331.6 -853.6 -323.9

HAR-log -1288.1 -519.3 -947.6 -349.5 -933.1 -348.7
ARFIMA -1249.2 -509.4

This table reports each model’s full sample log-marginal likelihood (log(ML)) and the out-of-
sample log-predictive likelihood (log(PL)). MA denotes the model average, HAR-log and ARFIMA
models are discussed in Section 4. The bold entries are the largest values for the models 1-60.



Table 10: Out-of-Sample Forecast Results, S&P500, RVt,h

h = 1
RMSE R2

Model value Rank value Rank
Best model 1.0975(M54) 1 0.5172(M54) 1
AR(5) 1.1275 45 0.4783 59
AR(5)+LE 1.1082 10 0.4955 37
AR(20) 1.1205 34 0.4848 54
AR(20)+LE 1.1041 5 0.5004 30
ARFIMA 1.1171 30 0.4931 42
HAR-log 1.1200 33 0.4848 55
HAR 1.1153 26 0.4899 49
MA 1.1024 4 0.5129 3
Worst model 1.2787(M40) 64 0.4158(M2) 64

h = 5
RMSE R2

Model value Rank value Rank
Best model 0.7890(M46) 1 0.6360(M44) 1
AR(5) 0.8197 41 0.5815 56
AR(5)+LE 0.7935 4 0.6061 35
AR(20) 0.8361 53 0.5636 61
AR(20)+LE 0.8170 39 0.5825 55
ARFIMA 0.8376 54 0.5675 59
HAR-log 0.8273 47 0.5702 57
HAR 0.8335 50 0.5675 59
MA 0.8030 14 0.6047 39
Worst model 0.9592(M40) 64 0.4848(M2) 64

h = 10
RMSE R2

Model value Rank value Rank
Best model 0.7498(M24) 1 0.6126(M33) 1
AR(5) 0.7895 50 0.5570 55
AR(5)+LE 0.7645 21 0.5801 49
AR(20) 0.8070 56 0.5348 60
AR(20)+LE 0.7890 49 0.5525 56
ARFIMA 0.8066 56 0.5332 61
HAR-log 0.7960 52 0.5411 59
HAR 0.8235 59 0.5058 62
MA 0.7611 12 0.5832 45
Worst Model 0.8813(M40) 64 0.4716(M2) 64

Model forecasts are the predictive mean. This table reports root mean square error (RMSE) for the forecast errors,
and the R2 from a forecast regression of realized volatility on a constant and a model forecast. The out-of-sample
period is from February 21, 2001 to March 30, 2004 (778 observations). MA is the Bayesian model average.
Best(Worst) model denotes the model with the best(worst) out-of-sample performance according to RMSE or R2

criteria. The model label appears in parenthesis. Rank = relative ranking among all models. LE=leverage effect.
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Figure 1: Time Series of Daily Log-Realized Volatility
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Figure 2: Cumulative Model Probabilities for JPY-USD
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Figure 3: Cumulative Model Probabilities for DEM-USD
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