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A Test of APT with Maximum Sharpe Ratio

ABSTRACT

This paper tests the asymptotic arbitrage pricing theory (APT) on individual stocks

with the factors extracted by the Connor-Korajczyk method. The asymptotic APT fails

if and only if the number of unbounded eigenvalues of the second-moment matrix of

excess returns exceeds that of the variance matrix of excess returns by one. A test is

developed using this theoretical result based on the eigenvectors extracted using the CK

method. The test statistic is shown to be related to the maximum Sharpe ratio among

portfolios of all individual stocks. The empirical evidence, supplemented by simulation

results, lends support to the implication of the asymptotic arbitrage pricing theory.



Mainstream asset pricing theory is based on the notion of systematic risks represented

by marketwide factors. Expected returns on individual securities are linear functions of

their standardized covariances, or betas, with the factors. The Capital Asset Pricing

Model (CAPM) developed by Sharpe (1964) is the first example of a beta pricing model

in which the return on the market portfolio is the single factor that matters for determin-

ing expected returns on individual securities. The Inter-temporal Capital Asset Pricing

Models (ICAPM) of Merton (1973) and the Arbitrage Pricing Theory (APT) of Ross

(1976) extend the CAPM to multi-factor settings. Despite their vintage, these models

remain the most commonly used in theoretical and empirical analysis by academics and

practitioners.

The most popular way of testing a beta pricing model has been the method of Gib-

bons, Ross and Shanken (1985), which examines a measure of deviations from the beta

pricing model for certain given portfolio returns as mimicking portfolios for systematic

factors. The test basically examines whether a given set of portfolio returns is a suf-

ficient set of factors. If the test rejects a particular model, it is always possible that

the beta-pricing principle is correct, while the factors in the model are mis-specified.

In addition, the test requires that the number of securities be smaller than the number

of time-series observations in the return data used for the test. As a result, the beta

pricing model is typically tested on a small number of portfolios sorted by certain stock

characteristics.

On another front, methods of extracting factors from individual stock returns have

been developed in the factor structure of the APT. The asymptotic APT extended by

Chamberlain and Rothschild (1983) relaxes the strict factor assumption made by Ross

(1976) and others. Connor and Korajczyk (CK, 1986, 1988) develop a method to deal

with the case of a large number of securities and a much smaller number of time-series

observations. The CK method has been widely used to extract factors from individual

stock returns and to test asset pricing anomalies. For example, McCulloch and Rossi
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(1991) use the CK method to test the firm size anomaly and Brennan et al. (1998)

extract the CK factors to examine the size and book-to-market effects. Surprisingly,

however, the implication of the asymptotic APT that errors from the beta pricing should

be contained has never been tested although the method of extracting factors has been

well developed. In fact, there is a debate in the literature about whether the APT

implication can be meaningfully tested. Shanken (1992) summarizes the controversy

surrounding the testability issue.

The purpose of the current paper is to develop a test of the beta pricing implication

of the asymptotic APT using factors extracted by the CK method from individual stock

returns. Despite the difficulty pointed out by Shanken, the basic implication of the as-

ymptotic APT can be tested. More importantly, the implication of the asymptotic APT

should be tested before extracted factors are used to examine asset pricing anomalies

because, if the implication of the asymptotic APT is invalid, the “factors” extracted

by any method will be contaminated by pricing errors, so the result of examining asset

pricing anomalies using these “factors” may not be relied upon.

The simple test presented in this paper is based on a theoretical result that, if the

implication of the asymptotic APT does not hold, the number of unbounded eigenvalues

from the (non-centered) second-moment matrix of the stock returns equals one plus the

number of unbounded eigenvalues of the variance matrix of the stock returns, as the

number of testing securities goes to infinity. Theoretically speaking, by examining the

number of unbounded eigenvalues of the second-moment matrix and of the variance

matrix, the implication of the asymptotic APT can be tested. In practice, there are

only a finite number of testing securities, so determining the number of unbounded

eigenvalues is tricky. The literature on determining the number of factors in individual

US stock returns has not reached a consensus. To bypass this difficulty, the current

paper uses a test conditioned on the given number of extracted eigenvectors using the

CK method. If the implication of the asymptotic APT is violated, for a certain number
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of extracted factors, the test should detect the violation. On the other hand, if the

test does not detect any violation of the APT implication for all potentially reasonable

numbers of factors, then it is safe to conclude that the implication of the asymptotic

APT is upheld by the empirical evidence. The asymptotic distribution as the number

of testing securities tends to infinity is derived for the test statistic.

The asymptotic APT is intimately related to the notion of the (generalized) Sharpe

ratio, defined as the expected payoff of a zero-cost investment divided by its standard

deviation. An asymptotic arbitrage opportunity is defined as a situation in which a

sequence of portfolios can be formed such that their Sharpe ratios tend to infinity as

the number of stocks in the portfolios increases to infinity. Chamberlain and Rothschild

(1983) establish that the squared norm of the pricing error from the beta pricing equation

is bounded by the product of the maximum squared Sharpe ratio and the maximum

variance of idiosyncratic risk. The test statistic developed in this paper, based on the

minimum eigenvalue of the variance matrix of the extracted eigenvectors, turns out to

be related to the sample version of the maximum squared Sharpe ratio of the portfolios

formed from all individual stocks. This provides a nice interpretation of the proposed

test statistic.

The method of testing the asymptotic APT is applied to data from US individ-

ual stocks traded on NYSE/AMEX/NASDAQ that have complete observations during

eight non-overlapping sixty-month sample periods between 1965 and 2004. For all the

eight sample periods, the test does not find evidence against the implication of the as-

ymptotic APT. Although the maximum squared sample Sharpe ratios tend to be much

higher than those of the value-weighted and equally weighted market portfolio of all the

NYSE/AMEX/NASDAQ stocks, they are well contained in the region that does not vi-

olate the implication of the asymptotic APT. Since the inference is based on asymptotic

distribution of the test statistic, a simulation exercise is carried out to ensure that the

results based on the finite sample of actual data are not due to inferential error.
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The rest of this paper is organized as follows. Section 1 presents theoretical results on

the implication of the asymptotic APT regarding the number of unbounded eigenvalues

of the second-moment and variance matrices. The connection between extracted factors

and the Sharpe ratio is given there as well, followed by the test statistic based on the

minimum eigenvalue of the variance matrix of the extracted eigenvectors. Section 2

reports empirical results on US individual stock returns from eight sixty-month sample

periods. Section 3 conducts simulations confirming the results from actual data. The

last section concludes the paper and an appendix contains the proof of the analytical

results.

I. Methodology

A. Theoretical Foundation

Suppose rt is the vector of returns in excess of the riskfree rate on n securities in month

t. In a factor model, the excess returns are driven by

rt = a + Bft + εt, (1)

where a is an n-vector of constants, known as Jensen’s alpha, B is an n × k matrix of

betas of, or loadings on, the k-vector of factors, ft, at t, and εt is the idiosyncratic risk of

the n securities, satisfying E(εt|ft) = 0. The vector a is the focus of this paper. Without

loss of generality, we can assume that a is orthogonal to B, i.e., a′B = 0. Otherwise, we

can let ã = a−B(B′B)−1B′a, f̃t = ft +(B′B)−1B′a and rewrite (1) as rt = ã+Bf̃t + εt.

The factors are unobserved with mean µf and variance Σf . Without loss of generality,

Σf is assumed to be positive definite, which means that ft contains no redundancy. The

idiosyncratic risk has a mean of zero and a variance matrix denoted Σε. The variance

matrix of rt is Σr = BΣfB
′ + Σε.

In the strict factor model, Σε is assumed to be a diagonal matrix, so the components

of εt are uncorrelated. Chamberlain and Rothschild (1983) relax the strong assumption
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of the uncorrelated idiosyncratic risk and propose an approximate factor model. The

approximate factor model is characterized by the structure of the variance matrix of rt,

Σr. As the number of securities, n, grows, if k largest eigenvalues of Σr increase without

bound while the other eigenvalues remain bounded, the returns are said to be generated

from an approximate k-factor model. In the approximate factor model, the idiosyncratic

risk can be cross-sectionally correlated. The implication of the asymptotic APT is that

the squared norm of the pricing error, a′a, is bounded. If the asymptotic APT holds,

the returns in an approximate factor model can also be written as (1), where the factors

can be taken as the k linear combinations of the returns where the coefficients are the k

eigenvectors of Σr corresponding to the k largest eigenvalues and the idiosyncratic risks

are the linear combinations of returns associated with the remaining eigenvectors.

If the implication of the asymptotic APT is violated, i.e., a′a is unbounded, we say

that a is a systematic pricing error. Otherwise, when a′a is bounded as the asymptotic

APT claims, we say that the pricing error is unsystematic. The notion of a systematic

pricing error parallels the notion of systematic factors with unbounded eigenvalues. This

can be seen more easily in a one-factor model, rt = bft + εt, with σf = 1 and uncorre-

lated idiosyncratic risks. The second-moment matrix of the returns has one unbounded

eigenvalue equal to b′b.

When extracting factors from the variance matrix of the return, the effect of a is

absent because the variance is invariant to a mean shift. The effect of a nonzero a is,

however, retained in the second-moment matrix. Let Sr = E(rtr
′
t) be the second-moment

matrix of rt. From (1),

Sr = aa′ + BSfB
′ + Σε, (2)

where Sf = Eftf
′
t is the second-moment matrix of ft. A test of existence of a systematic

pricing error can be based on the following proposition.

Proposition 1. Suppose the returns follow an approximate k-factor model. Let k∗ be

the number of unbounded eigenvalues of the second-moment matrix of excess returns,
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Sr. Then, as n goes to infinity, k∗ = k + 1 if a′a is unbounded, or k∗ = k if a′a is

bounded.

The proposition gives a simple criterion that can be used to test the existence of

a systematic pricing error. If the pricing error is unsystematic, then the number of

unbounded eigenvalues of the second-moment matrix of excess returns equals that of

the variance matrix. If the pricing error is systematic, then the number of unbounded

eigenvalues of the second moment matrix of excess returns equals that of the variance

matrix plus one.

By writing a + Bft = (a B)(1 f ′t)
′, we see that the difference between a k-factor

model with a pricing error and a (k + 1)-factor model without a pricing error is that, in

the model with a pricing error, the “factors” contain a constant. Since factors are not

observed, any inference about pricing error must be based on extracted factors. Suppose

that gt is a k∗-vector of extracted “factors” from the second-moment matrix of returns.

From Proposition 1, we know that, in the limit as the number of stocks tends to infinity,

gt is a linear transformation of ft if there is no systematic pricing error, or a linear

combination of (1 f ′t)
′ if there is a systematic pricing error. We can write gt = Cf ∗t

where the dimension of gt is k∗. Either f ∗t = ft or f ∗t = (1 f ′t)
′ depending on whether

there is a systematic pricing error. The matrix C is nonsingular because Σf is assumed

to be positive definite. In terms of extracted “factors”, the difference between a k-factor

model with a pricing error and a (k + 1)-factor model without a pricing error is that,

in the former situation, the variance matrix of gt is degenerate, while in the latter, the

variance matrix is positive definite.

In the empirical work in the next section, we use extracted factors based on the

Connor-Korajczyk method. Extracted factors are linear combinations of returns. As

Chamberlain and Rothschild (1983) show, extracted factors can be linear combinations

of the factors themselves, if the variance matrix of the return is known. In particular,

the Connor-Korajczyk factors are normalized because they are orthonormal eigenvectors
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of the sample second-moment matrix. Suppose gt is normalized to have Egtg
′
t = Ik and

the mean of gt is denoted as µg. The proposition below characterizes the theoretical

properties of the normalized “factors” and relates them to the maximum squared Sharpe

ratio of portfolios of the excess returns.

Proposition 2. Let gt be the k∗-vector of “factors” extracted from the second-moment

matrix of the return, normalized to have Egtg
′
t = Ik∗ . Denote µg = Egt and γ = µ′gµg.

Then, (i) 0 ≤ γ < 1. (ii) There is a systematic pricing error if and only if γ = 1. (iii)

The maximum squared Sharpe ratio equals

s =
γ

1− γ
(3)

or infinity if γ = 1.

Before we move to the econometric method and the empirical analysis, some remarks

about the testability of the APT are in order. The APT is proposed as an alternative

to the well-known CAPM. However, the testability of the APT has long been debated

in the literature. The version of APT derived by Chamberlain and Rothschild (1983)

states that

a′a ≤ sσ̄ε, (4)

where σ̄ε is an upper bound of the idiosyncratic risk. Since the standard APT does not

make assumptions on investors’ preference, the theory does not involve the determination

of the maximum squared Sharpe ratio, s. If the implication of the APT is confined to the

inequality (4) with s unspecified, then, as Shanken (1992) correctly points out, testing

the APT is not very meaningful because that inequality constraint is more or less a

tautology. An approximate linear relationship between the expected excess return and

the betas is also difficult to test. However, the spirit of the APT is beyond the inequality.

For the theory to be useful, so that expected returns can be well approximated by linear

functions of factor betas, the maximum squared Sharpe ratio has to be small, despite the

notion of no asymptotic arbitrage only rules out the case in which s equals infinity. What
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data say about the existence of asymptotic arbitrage opportunities and, more generally,

about the value of the maximum squared Sharpe ratio is certainly a meaningful question

to ask. For practical purposes, a large s can be regarded as the failure of the asymptotic

APT although how large is large is quite subjective. As will be shown later, the sample

squared Sharpe ratio of the value-weighted market portfolio in the US market during

the 1965-2004 period is less than 0.01. A conservative choice for testing the maximum

squared Sharpe ratio can set, say, s ≥ 9. If such a choice is taken, then one rejects the

asymptotic APT only if there is evidence that shows s is greater than 9. A more radical

choice of s could be, say, s = 1. In that case, as long as evidence points to s ≥ 1, a

much less stringent condition than s ≥ 9, one refutes the asymptotic APT.

Not only could the implication of the asymptotic APT be tested and meaningfully

interpreted, it also should be tested before extracted “factors” are used to examine asset

pricing anomalies as if these “factors” are true factors. To illustrate the point, suppose

the beta pricing model does not hold and the excess returns are generated by

rt = a + bft + εt

where a is a systematic pricing error with a′b = 0 and ft is the return on the market

portfolio with positive variance, the only factor of the excess returns. Let x be a constant

n-vector of a firm-specific variable that is highly, cross-sectionally correlated with a.

Naturally the expected excess returns are found to be related to the market beta, b, and

the firm-specific variable, x, because x is highly correlated with a. To see whether x is

a proxy for the beta of an unobserved factor, one extracts “factors” from the returns

and obtains gt = C(1 ft)
′ without any estimation error where C is a 2 × 2 nonsingular

matrix. The n× 2 beta matrix of the extracted “factors” can be worked out as

Bg = E(rtg
′
t)[E(gtg

′
t)]
−1 = (a b)C−1,

so Bg spans the same subspace as (a b). Given Bg, x will have no additional explanatory

power for the expected excess returns. One then claims that the puzzle of dependence

8



of expected returns on x is solved and a two-factor beta-pricing model holds. That

inference, of course, is erroneous. This highly simplified example illustrates the danger

of using extracted “factors” without verifying their validity.

B. Econometric Method

Proposition 1 suggests that we can test the asymptotic APT by examining the number

of unbounded eigenvalues in Σr and Sr. However, the econometric issues involved in de-

termining the numbers from the sample version of Σr and Sr turn out to be difficult to

solve. Trzcinka (1986) find that the largest eigenvalue of the variance matrix dominates

the rest of the eigenvalues. Brown (1989), however, argues convincingly that one dom-

inant eigenvalue does not mean that there is only one systematic factor in the returns.

Connor and Korajczyk (1993) propose a method to determine the number of factors

that measures the marginal contribution of an additional factor and report findings of

one to six factors for various subperiods. Geweke and Zhou (1996) apply a Bayesian

approach and find little improvement in reducing pricing errors by having additional

factors beyond the first one. Bai and Ng (2001) design various test statistics under gen-

eral factor structures and draw the conclusion that two factors are adequate for the US

stock returns. In short, there has been no consensus in the literature on what is the best

way to determine the number of systematic factors and there has been no consensus on

the actual number of factors found in the US stock market.

In this paper, we explore a method that conditions on any empirically relevant

number of factors. The method first follows Connor and Korajczyk (1986, 1988) to

extract possibly contaminated factors and then tests if these factors contain system-

atic pricing errors. It is based on the minimum eigenvalue of the variance matrix of

the extracted “factor,” which is also related to the maximum squared Sharpe ratio.

Let R = (r1, · · · , rτ ) be the observations of rt for t = 1, · · · , τ , F = (f1, · · · , fτ ), and
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ε = (ε1, · · · , ετ ). In matrix form,

R = a1′τ + BF + ε, (5)

where 1τ is the τ -vector of ones. Let

Ω =
1

n
R′R. (6)

For a given number k∗ as a candidate of the number of unbounded factors, the Connor

and Korajczyk (1986, 1988) method is to extract (transformed) factors as the k∗ × τ

matrix of eigenvectors corresponding to the largest k∗ eigenvalues of Ω. It is shown in the

case of a = 0 that the eigenvectors converge to a nonsingular linear transformation of the

factors, F , as n goes to infinity. They do not consider the pricing errors, however. With

a systematic pricing error, a, the extracted factors are a transform of (1τ F ′)′ in the limit

as n goes to infinity, rather than just F , as we can see formally that R = (a B)(1τ F ′)′+ε.

As in the case of Σr versus Sr, the existence of a systematic pricing error will show up

in the difference between the second-moment and variance matrices of the eigenvectors.

Let τ−1/2G be the k∗×τ orthonormal matrix of the k∗ eigenvectors of Ω corresponding to

the k∗ largest eigenvalues of Ω, arranged as row vectors. Let ḡ = 1
τ
G1τ . By construction,

τ−1GG′ has k∗ eigenvalues all equal to one. To see whether all the k∗ eigenvectors are

true factors or one of them is a pricing error after transformation, we can examine the

smallest eigenvalue of τ−1(G − ḡ1′τ )(G − ḡ1′τ )
′, denoted as λk∗ . If the pricing error is

systematic, then in the limit as n goes to infinity, τ−1/2G is transformed from (1τ F ′),

which contains a constant row. As a result, τ−1(G− ḡ1′τ )(G− ḡ1′τ )
′ will be degenerate.

This can be found by testing λk∗ = 0. The conditions and the distribution of the formal

test is stated in the following proposition.

Proposition 3. Suppose Ω = 1
n
R′R is a τ × τ positive definite random matrix, the

k∗×τ matrix τ−1/2G is the k∗ orthonormal eigenvectors of Ω corresponding to the largest

k∗ eigenvalues, ḡ = 1
τ
G1τ and γ̄ = ḡ′ḡ. Then,
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(i) τ−1(G − ḡ1′τ )(G − ḡ1′τ )
′ has k∗ − 1 eigenvalues equal to one and one eigenvalue,

λk∗ = 1− γ̄, between zero and one, both inclusive.

(ii) Suppose F is normally distributed. Then, the asymptotic distribution of γ̄ is a

non-central Beta with density function

p(x) =
Γ( τ

2
)

Γ( τ−k∗

2
)Γ(k∗

2
)
x

k∗
2
−1(1− x)

τ−k∗
2

−1e
−τs
2 1F1

(
τ

2
,
k∗

2
,
τsx

2

)
, 0 ≤ x ≤ 1, (7)

where s = γ/(1 − γ) is the maximal squared Sharpe ratio, γ = µ′gµg, µg = Egt,

and 1F1(·, ·, ·) is the confluent hypergeometric function.

When s = 0, the distribution is the familiar central Beta distribution with the

degrees of freedom (k∗

2
, τ−k∗

2
). In typical applications, τ � k∗, so the majority of the

mass of the distribution leans toward zero. However, the case of s = 0, corresponding

to the case of risk-neutral investors, is not interesting. A non-central Beta distribution

with a non-centrality parameter, τs/2, shifts the mass of the distribution to the right

as s becomes greater. In the extreme case where s → ∞, the distribution becomes

degenerate and concentrates on one. Figure 1 below depicts three such non-central beta

density functions corresponding to s = 0.25, s = 1, and s = 9 (or γ = 0.2, 0.5, and 0.9)

with τ = 60 and k∗ = 1, 3, 5, 10. One observation from the figure is that, as k∗ becomes

greater, the distribution shifts more to the right. For k∗ = 1, the modal point of the

distribution is close to the parameter γ. For k∗ = 10, however, the modal point of the

distribution is much greater than the parameter γ.

Figure 1 here

Proposition 3 suggests the following way of testing the asymptotic APT. For a plau-

sible value of k∗, we take k∗ orthonormal eigenvectors of Ω, τ−1/2G. We then calculate

the smallest eigenvalue of τ−1(G − ḡ1′τ )(G − ḡ1′τ )
′, λ̂k∗ . If λ̂k∗ is close to zero, then we

can reject the asymptotic APT. On the other hand, if λ̂k∗ is close to one, then we do not
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reject the asymptotic APT. Equivalently, we can calculate γ̄ = 1− λ̂k∗ from ḡ directly.

we reject the asymptotic APT if γ̄ is close to one. The rejection decision can be based on

the asymptotic distribution in (7). In particular, if we set the null hypothesis to s = ∞,

i.e., the APT fails, we can test the hypothesis by calculating the left-tail p-value of the

test statistics, γ̄ or s̄, using the distribution corresponding to a large γ (or s) value, say

γ = 0.9 (or s = 9). Such a p-value is an upper bound of the true upper bound. If the

hypothesis γ ≥ 0.9 (or s ≥ 9) is rejected, the evidence is then in favor of the implication

of the asymptotic APT.

II. Empirical Results

The data used for empirical tests are the monthly stock returns at the firm level in the

US between 1965 and 2004. The data are from the Center for Research in Security Prices

at the University of Chicago. All the common stock traded on NYSE/AMEX/NASDAQ

are included except for American Deposit Receipts. More specifically, preferred stocks

are excluded, but common stocks of utility companies and financial companies are not

excluded.

Following the convention in the empirical asset pricing literature, the entire sample

period is broken into eight 60-month subperiods and tests of the asymptotic APT are

conducted within each subperiod. For each subperiod, stocks with non-missing monthly

returns are collected and the second moment matrix, Ω̃ = 1
τ
R′R, is calculated where R is

the n×τ excess returns with n being the number of stocks with non-missing returns and

τ = 60 being the number of observations for each stock. Note that Ω̃ differs from Ω by a

factor of n/τ and Ω̃ has the same eigenvalues as the second-moment matrix of the excess

returns, 1
n
RR′. From Ω, 60 eigenvalues are obtained and are arranged in descending

order. Table 1 reports for each subperiod the first ten eigenvalues, lj, j = 1, · · · , 10, the

proportion of each eigenvalue in the total, lj/L, where L =
∑60

i=1 li, the first j cumulative

eigenvalues,
∑j

i=1 li, and the proportional first j cumulative eigenvalues,
∑j

i=1 li/L.
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Table 1 here

The number of stocks in each period ranges from 1487 to 3858 and the sum of the

eigenvalues, L, ranges from 21 to 139. Early periods have relatively smaller numbers of

stocks with non-missing values. The largest sum of the eigenvalues occurs in the last

subperiod in which stock prices are very volatile. The big differences across subperiods

is one reason for testing within each subperiod. The first eigenvalue accounts for 12%

to 34% of the total sum of all the eigenvalues. The second eigenvalue is considerably

smaller than the first one. The rest of them decline gradually without showing a clear

point on the number of dominant eigenvalues. Though not reported here, the pattern

continues until j = 60. This phenomenon has been documented in the literature and

causes difficulty in determining the number of factors in the stock returns.

The Connor-Korajczyk method is then used to extract factors from the second mo-

ment matrix of the excess returns, Ω̃. For an integer k∗, let τ−1/2G = τ−1/2(g1, · · · , gτ ) be

the k∗ eigenvectors of Ω corresponding to the largest k∗ eigenvalues of Ω̃. As explained

earlier, the smallest eigenvalue of τ−1(G − ḡ1′τ )(G − ḡ1′τ )
′ is 1 − γ̄ where γ̄ = ḡ′ḡ and

ḡ is the k∗-vector mean of G. Proposition 3 establishes that γ̄ has a noncentral Beta

distribution whose non-centrality parameter is a multiple of s, where s is the asymptotic

maximum squared Sharpe ratio. Table 2 reports the statistic γ̄ for k∗ = 1, 2, · · · , 10.

Beside γ̄ is s̄ = γ̄/(1 − γ̄). For the calculated statistic γ̄, its left-tail p-values under

the hypothesis γ = 0.9, γ = 0.5, and γ = 0.2, which correspond to s = 9, s = 1, and

s = 0.25, are reported.

Table 2 here

The test statistic γ̄ ranges from zero to 0.20, depending on the subperiod and k∗s.

The left-tail p-values at γ = 0.9 and γ = 0.5 are virtually zero and the left-tail p-value at

γ = 0.2 is also very low and only occasionally goes above 0.10. A low value of γ means

that there does not appear to be any unconditional portfolio strategy that can generate

13



a high enough Sharpe ratio to be termed as an asymptotic arbitrage opportunity under

any reasonable subjective definition of an arbitrage opportunity. As far as the number

of possible factors considered here, evidence is strong to uphold the implication of the

asymptotic APT. For k∗ greater than 10, although γ̄ and s̄ increase, the left-tail p-values

do not necessarily increase, as we see from the pattern in p0.2 for k∗ ≤ 10 in the table.

This is so because the asymptotic distribution of γ̄ becomes more skewed as k∗ becomes

larger, as we see in Figure 1.

The Connor-Korajczyk method to extract factors is based on the homoskedasticity

assumption that the aggregate idiosyncratic volatilities, 1
n
ε′tεt, where εt is the n-vector

of idiosyncratic risk, have the same limit for all t within each subperiod. Jones (2001)

argues that such an assumption might be violated by more recent data from the US and

develops a methodology that relaxes the homoskedasticity assumption. To examine the

robustness of the results presented in Table 2, the Jones method is adopted. The same

test statistics are calculated as those in Table 2 with the only difference being the way

the factors are extracted. The results are reported in Table 3.

Table 3 here

The results from Table 3 show that the conclusion from Table 2 based on the Connor-

Korajczyk method is still supported by the results using the Jones method. Generally

speaking, the estimated γ and s are even smaller than those in Table 2. One observation

from Table 3 is that the statistic γ̄ is no longer increasing in k∗. This is because, strictly

speaking, the Jones method is valid only for the “true” k∗. This lack of monotonicity

does not concern us here because one of the γ̄ is correct (so long as the true k∗ is less than

10). As long as no γ̄ using the Jones method provides evidence against the no-arbitrage

implication, the conclusion still holds.

To put the estimated values of the maximum squared Sharpe ratio for each subperiod

in perspective, let’s look at the sample squared Sharpe ratio of the value-weighted and
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equally weighted market portfolio of all the NYSE/AMEX/NASDAQ stocks, as reported

in Table 4. Over the eight subperiods from 1965 to 2004, the sample Sharpe ratios vary

considerably. For the majority of the subperiods, the squared Sharpe ratio of the value-

weighted market portfolio is smaller than that of the equally weighted market portfolio,

which, in turn, is close to s̄ for k∗ = 1 in Table 2. In a few subperiods, however, this is

reversed.1

Table 4 here

III. Simulation Results

Since the test conducted in the last section is based on asymptotic distributions, issues

about the difference between finite sample distributions and asymptotic distributions

and issues regarding the power of the tests naturally arise. To determine whether we

find no violation of the implication of the asymptotic APT because the APT holds well

or because the test is not powerful enough, we resort to simulation.

The simulation procedure is explained as follows. The parameters used for the simu-

lation are taken from actual data for their relevance. We take the return data, R, from

the subperiod 2000-2004, with n = 3708 stocks and τ = 60 months with non-missing

values. The variance matrix of the returns is calculated as (R− R̄1τ )(R− R̄1τ )
′/τ where

R̄ is the n-vector of mean returns. To generate returns, we take the five eigenvectors of

the Ω̃ = (R − R̄1τ )
′(R − R̄1τ )/n corresponding to the largest five eigenvalues as real-

izations of three demeaned factors, F . We then regress R on [1τ , F ] to obtain the the

pricing error and the beta matrix, [af , BF ]. The residuals of the regression are used

to calculate its variance matrix, Σe. The sample variance matrix of F is denoted as

1s̄ for k∗ = 1 is the maximum squared Sharpe ratio, so it should not be exceeded by that of any
fixed-weight portfolios. There are two reasons for s̄ for k∗ = 1 to be occasionally smaller than the
squared Sharpe ratio of the market portfolios. One is that the stocks used for calculating s̄ are those
with complete observations in the 60-month subperiods, not all the stocks. The other is that market
portfolios do not have fixed-weights as the value of stocks changes month to month.
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ΣF and µF is defined as µF = (B′
F BF )−1B′

F R̄. The vector aF is discarded. Instead,

a cross-sectionally normally distributed n-vector, is generated and regressed on BF to

obtain the residual. The pricing error, a, is the residual multiplied by a constant to

achieve certain magnitude of mis-pricing. The choice of the constant will be explained

below. An n× τ return matrix is generated by

R = a1τ + BF (µF 1τ + Σ
1/2
F η) + Σ1/2

e ξ, (8)

where η is a 3 × τ matrix of simulated independent standard normal variables, ξ is

an n × τ matrix of simulated independent standard normal variables, and η and ξ are

independent of each other.

The reason the factor structure is obtained from the sample variance matrix of the

actual returns, rather than from the second moment matrix, is to ensure the potential

pricing error does not enter the factor construction. It should be obvious that the five-

factor structure does not play any important role in generating returns. The variance

matrix of the simulated returns is the same as the sample matrix of the actual data from

the 2000-2004 subperiod. The only purpose of singling out five factors is to have a BF

matrix to which the pricing error is orthogonal, so that the magnitude of the pricing

error can be more meaningful.

In the simulation, we consider three choices of the magnitude of the pricing error.

More specifically, we choose the pricing error, a, such that the pricing error per stock,√
a′a/n, equals 0.02, 0.01 or 0.002. As a very crude estimate, 0.02 is the cross-sectional

standard deviation of average monthly excess returns. The choice of
√

a′a/n = 0.02

is interpreted as a large pricing error, the choice of
√

a′a/n = 0.01 can be regarded

as a medium-size pricing error, and the choice of
√

a′a/n = 0.002 corresponds to a

small pricing error. For each choice of a, one thousand replications are generated. In

each replication, i, an n × τ matrix of excess returns is generated according to (8),

and the statistic γ̄(i) is calculated, for a given k = 1, 2, · · · , 10, using the CK method.

Correspondingly, the s̄(i) and the left-tail p-values, p
(i)
0.9, p

(i)
0.5 and p

(i)
0.2, are calculated.
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The average value of these statistics are then reported in Table 5. Since the returns are

generated from homoskedastic distributions, the Jones method is not used here.

Table 5 here

The results in Table 5 show how the magnitude of the test statistics and the left-

tail p-values decrease with the magnitude of the pricing error. For the pricing error a

with
√

a′a/n = 0.02, the test statistics γ̄ and s̄ appear much greater than the numbers

reported in Tables 2 and 3 with actual data. The hypothesis γ ≥ 0.9, however, is rejected

for all ks. The left-tail p-values for the hypothesis γ ≥ 0.5 is greater than 1% for k ≥ 7

and the left-tail p-values for γ ≥ 0.2 are greater than 10% for all k ≥ 3.

For the pricing error, a, with
√

a′a/n = 0.01, the hypotheses γ ≥ 0.9 and γ ≥ 0.5 are

rejected for all ks. The hypothesis γ ≥ 0.2 is not rejected for all ks at the 1% significance

level. For the pricing error a with
√

a′a/n = 0.002, the hypotheses γ ≥ 0.9 and γ ≥ 0.5

are rejected, but the hypothesis γ ≥ 0.2 has p-values greater than 1%. Given that the

test statistics and the left-tail p-values reported in Tables 2 and 3 are smaller than those

in the simulation for the case
√

a′a/n = 0.002, the empirical results in Tables 2 and 3

can be interpreted as the evidence that the actual pricing error is smaller than 0.002 per

month on average.

Simulations based on parameters that give a more clear-cut factor structure than

that in the US return data are also conducted. The quantitative results are not re-

ported, but the qualitative aspects of the results are described here. In the situation

where the number of dominant eigenvalues of the second moment matrix can be more

easily determined, the eigenvalues that represent factor variances are large, while the

eigenvalues that represent idiosyncratic risk are small. Any pricing error whose squared

norm is distinctively greater than those small eigenvalues can be easily detected. Re-

search in international financial markets has found that stock markets in most countries
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have more clear-cut factor structures than that in the US.2 The method of testing the

asymptotic APT can be more effective when applied to such markets.

IV. Conclusions

The existing studies on beta-pricing models either test the beta-pricing restriction with

pre-specified systematic factors or extract factors from returns without testing the va-

lidity of the beta-pricing restriction. Both have shortcomings. Tests with pre-specified

factors can be, and in many cases are, inconclusive for the general beta-pricing princi-

ple. On the other hand, inferences based on extracted, but contaminated, factors could

lead to erroneous conclusions in asset pricing applications. This paper fills the void by

developing a test of the beta-pricing restriction using factors extracted from returns.

Based on the asymptotic arbitrage pricing theory advanced by Ross (1976) and

Chamberlain and Rothschild (1983), the test proposed in this paper avoids mis-specification

of systematic factors by extracting factors from returns using the method proposed by

Connor and Korajczyk (1986,1988). The idea is that, if returns are driven by a number

of systematic factors and a systematic pricing error, then the number of unbounded

eigenvalues in the second-moment matrix of the excess returns will equal the number of

unbounded eigenvalues of the variance matrix of the excess returns plus one. In order

to be less reliant on identifying the number of factors, an unsettled issue in the liter-

ature, the test begins with an arbitrary, but reasonable, number of eigenvectors of the

second-moment matrix of returns corresponding to the largest eigenvalues. The smallest

eigenvalue of the sample variance matrix of these eigenvectors converges to zero if the

asymptotic APT fails. It follows a non-central beta distribution asymptotically, with

the non-centrality parameter proportional to the theoretical maximum squared Sharpe

ratio of all portfolios of the returns.

The testing method is applied to individual stock returns in the US market during

2See, for example, Morck et al. (2000).
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eight 60-month subperiods from 1965 to 2004. The empirical evidence supports the

implication of the asymptotic APT. The results are robust to the heteroskedastic idio-

syncratic risk as the modified test using Jones’ (2001) method produces similar results.

Simulation experiments show that the test has power to detect large pricing errors, so the

results based on actual US return data are indeed evidence of negligible unconditional

deviation from the beta pricing principle.

Factors extracted from stock returns are often used to examine asset pricing anom-

alies associated with firm-specific variables. With the exception of Stambaugh (1983),

however, all the literature on APT is cast in the framework of unconditional factor betas.

Extending the unconditional APT to a conditional framework and developing tests of

the conditional APT remain important tasks for future work.
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Appendix

Proof of Proposition 1. Under the assumption of an approximate k-factor structure,

rt = a + Bfft + εt, where the variance matrix of Bfft, BfΣfB
′
f , has k unbounded

eigenvalues while the variance matrix of εt, Σε, has bounded eigenvalues. Let gt =

S
−1/2
f ft and Bg = BfS

1/2
f where Sf = Eftf

′
t is the second-moment matrix of ft. By

construction, Egtg
′
t = Ik. Consider the second moment of a + Bggt, denoted S.

S = E[(a + Bggt)(a + Bggt)
′] = aa′ + BgB

′
g = (a Bg)(a Bg)

′.

The positive eigenvalues of S are the same as those of Q ≡ (a Bg)
′(a Bg). From

a′Bg = a′BfS
1/2
f = 0′k, it follows that

Q =

(
a′a 0′k
0k B′

gBg

)
.

The characteristic function of Q equals

|Q− λIk+1| = |a′a− λ| · |B′
gBg − λIk|.

The eigenvalues of Q are therefore a′a and the eigenvalues of B′
gBg. The eigenvalues

of B′
gBg are the same as the positive eigenvalues of BgB

′
g = BfSfB

′
f > BfΣfB

′
f .

3

Therefore, S has k unbounded eigenvalues if a′a is bounded and S has k + 1 unbounded

eigenvalues if a′a is unbounded. The same is true to the second moment matrix of r,

Sr. Q.E.D.

Proof of Proposition 2. (i) It is obvious that µ′gµg ≥ 0. Expanding the determinant

below in two ways gives ∣∣∣∣∣ Ik∗ µg

µ′g 1

∣∣∣∣∣ = |Ik∗ − µgµ
′
g| = 1− µ′gµg.

Since Ik∗ − µgµ
′
g is the variance matrix of g, its determinant is non-negative. This

establishes that µ′gµg ≤ 1.

3For two n × n symmetric matrices, A1 and A2, A1 > A2 means that A1 − A2 is positive definite.
This implies that the ith largest eigenvalue of A1 is greater than that of A2, for i = 1, · · · , n.
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(ii) (⇒) When there is a systematic pricing error, gt = C(1 f ′t)
′. Let c′ be the first

row of C−1. Then c′gt = 1. Since Egtg
′
t = Ik∗ , it follows that c′c = 1. On the other

hand, c = Ik∗c = (Egtg
′
t)c = E[gt(g

′
tc)] = Egt = µg. Therefore, µ′gµg = c′c = 1. (⇐)

If µ′gµg = 1, then obviously µg 6= 0k∗ . Since Var(µ′ggt) = µ′g(Ik∗ − µgµ
′
g)µg = 0, µ′ggt is

a constant, and, therefore, the original f ∗t contains a constant, which corresponds to a

systematic pricing error.

(iii) Now consider the maximum squared Sharpe ratio in the limit when n goes to infinity.

Since Ert = a + EBft and Varrt = Var(Bft) + Var(εt) > Var(Bft), it follows that we

only need to consider the linear combinations of the factors. It is the solution to the

following problem

s = max
u

[E(u′gt)]
2

Var(u′gt)
=

u′µgµ
′
gu

u′(Ik∗ − µgµ′g)u
.

Here we used the fact that Vargt = Egtg
′
t − (Egt)(Egt)

′ = Ik∗ − µgµ
′
g. According to a

corollary of the Rayleigh-Ritz principle, the maximum squared Sharpe ratio equals the

maximum eigenvalue of µgµ
′
g relative to Ik∗ − µgµ

′
g, which is the maximum solution, s,

to

det(µgµ
′
g − s(Ik∗ − µgµ

′
g)) = det((1 + s)µgµ

′
g − sIk∗) = 0.

The only positive solution is s/(1 + s) = µ′gµg ≡ γ, or

s =
γ

1− γ
.

This completes the proof. Q.E.D.

Proof of Proposition 3. (i) From the factor structure, with B̃ = (a B) and F̃ =

(1τ F ′)′,

Ω = F̃ ′(
1

n
B̃′B̃)F̃ +

1

n
ε′ε +

1

n
F̃ ′B̃′ε +

1

n
ε′B̃F̃

A
= H ′H + D

where H = (plimn→∞
1
n
B̃′B̃)1/2F̃ is a (k + 1) × τ matrix if a′a is unbounded, or H =

(plimn→∞
1
n
B′B)1/2F is a k × τ matrix if a′a is bounded, D = plimn→∞

1
n
ε′ε = σεIτ is
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a scalar matrix, and
A
= means asymptotic equivalence. The last two terms in the first

line above are zero because ε is uncorrelated with F̃ . H = (h1, h2, · · · , hτ ) is unique

up to a pre-multiplier of an orthogonal matrix. Let τ−1/2G′ be the k∗ orthonormal

eigenvectors of Ω corresponding to the k∗ largest eigenvalues of Ω, which is also the

eigenvectors of H ′H. The components of G = (g1, · · · , gτ ) have their sample second-

moment matrix equal to Ik∗ because, by construction, τ−1G′G = Ik∗ . Without loss

of generality, τ−1/2G = (HH ′)−1/2H. Otherwise, there exists an H̃ = PH, where P

is orthogonal, such that τ−1/2G = (H̃H̃ ′)−1/2H̃ and we can proceed with H̃. This is

inconsequential because H is unique up to an orthogonal multiplier anyway. Note that

τ−1(G− ḡ1′τ )(G− ḡ1′τ )
′ = (τ−1/2G)[Iτ − 1τ (1

′
τ1τ )

−11′τ ](τ
−1/2G)′,

where Iτ − 1τ (1
′
τ1τ )

−11′τ is a symmetric idempotent matrix with τ − 1 eigenvalues equal

to one and one eigenvalue equal to zero. Since τ−1/2G′ comprises orthonormal vectors, it

follows from the Poincare separation (interlacing) theorem (see, for example, Horn and

Johnson (1985), page 190) that τ−1(G− ḡ1′τ )(G− ḡ1′τ )
′ has k∗ − 1 eigenvalues equal to

one and one eigenvalue between zero and one. The smallest eigenvalue equals

min
u′u=1

τ−1u′(G− ḡ1′τ )(G− ḡ1′τ )
′u = 1− max

u′u=1
u′ḡḡ′u = 1− (ḡ′ḡ),

which is obtained at u = ḡ/
√

ḡ′ḡ.

(ii) Write

γ̄ ≡ (ḡ′ḡ) = τ−21′τG
′G1τ = τ−11′τH(HH ′)−1H ′1τ = h̄′

(
1

τ

τ∑
t=1

hth
′
t

)−1

h̄

= h̄′
(
Σ̂h + h̄h̄′

)−1
h̄ =

h̄′Σ̂−1
h h̄

1 + h̄′Σ̂−1
h h̄

,

where h̄ = 1
τ

∑τ
t=1 ht, Σ̂h = 1

τ

∑τ
t=1(ht− h̄)(ht− h̄)′ and the last equality is obtained using

a matrix inversion formula. It is well known that, under the assumption of normality,

h̄′Σ̂−1
h h̄ is the so-called noncentral Hotelling’s T 2 variate, and η ≡ τ−k∗

k∗
h̄′Σ̂−1

h h̄ has a

non-central F (τs) distribution where s = µhΣ
−1
h µh = µf∗Σ

−1
f∗ µf∗ because h is just a
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nonsingular transformation of f ∗. See, for example, Muirhead (1982, p.98). The density

function of η is

pη(y) =
Γ( τ

2
)

Γ( τ−k∗

2
)Γ(k∗

2
)

yk∗/2
(

k∗

τ−k∗

)k∗/2

(
1 + k∗

τ−k∗
y
)τ/2

e−τs
1F1

(
τ

2
,
k∗

2
,

k∗sy

2(τ − k∗ + k∗y)

)
, y ≥ 0.

The change of variable y = (τ − k∗)x/[k∗(1 − x)] with the Jacobian equal to dy/dx =

(τ − k∗)/[k∗(1− x)2] leads to the density function of γ̄ as

pγ̄(x) =
Γ( τ

2
)

Γ( τ−k∗

2
)Γ(k∗

2
)
xk∗/2−1(1− x)(τ−k∗)/2−1e−τs/2

1F1

(
τ

2
,
k∗

2
,
τsx

2

)
, 0 ≤ x ≤ 1.

This completes the proof. Q.E.D.
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Table 1
Eigenvalue decomposition of the second-moment matrix of individual stocks

This table reports the second moment decomposition of individual stocks in eight 60-month periods. n
is the number of stocks. lj is the jth largest eigenvalue of the second moment matrix of excess returns.
L =

∑60
i=1 li.

Period n L j lj
∑j

i=1 li lj/L
∑j

i=1 li/L

1965–1969 1487 21.0684 1 6.077 6.077 0.288 0.288
2 0.851 6.928 0.040 0.329
3 0.656 7.584 0.031 0.360
4 0.585 8.169 0.028 0.388
5 0.529 8.698 0.025 0.413
6 0.469 9.167 0.022 0.435
7 0.455 9.621 0.022 0.457
8 0.447 10.068 0.021 0.478
9 0.414 10.483 0.020 0.498
10 0.394 10.876 0.019 0.516

1970–1974 1824 29.4620 1 10.027 10.027 0.340 0.340
2 1.613 11.640 0.055 0.395
3 0.960 12.600 0.033 0.428
4 0.836 13.436 0.028 0.456
5 0.628 14.064 0.021 0.477
6 0.563 14.627 0.019 0.496
7 0.538 15.165 0.018 0.515
8 0.514 15.679 0.017 0.532
9 0.490 16.169 0.017 0.549
10 0.477 16.646 0.016 0.565

1975–1979 3045 57.8047 1 17.380 17.380 0.301 0.301
2 2.642 20.022 0.046 0.346
3 1.761 21.784 0.030 0.377
4 1.715 23.498 0.030 0.407
5 1.476 24.974 0.026 0.432
6 1.362 26.337 0.024 0.456
7 1.264 27.601 0.022 0.477
8 1.173 28.774 0.020 0.498
9 1.100 29.874 0.019 0.517
10 1.032 30.906 0.018 0.535

1980–1984 3063 55.1144 1 11.400 11.400 0.207 0.207
2 2.531 13.931 0.046 0.253
3 1.753 15.684 0.032 0.285
4 1.566 17.251 0.028 0.313
5 1.393 18.643 0.025 0.338
6 1.336 19.980 0.024 0.363
7 1.266 21.246 0.023 0.385
8 1.209 22.455 0.022 0.407
9 1.109 23.564 0.020 0.428
10 1.059 24.623 0.019 0.447
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Table 1 (cont’d)

Period n L j lj
∑j

i=1 li lj/L
∑j

i=1 li/L

1985–1989 3352 73.6322 1 12.176 12.176 0.165 0.165
2 2.284 14.460 0.031 0.196
3 2.061 16.521 0.028 0.224
4 2.003 18.524 0.027 0.252
5 1.888 20.412 0.026 0.277
6 1.836 22.248 0.025 0.302
7 1.731 23.979 0.024 0.326
8 1.668 25.647 0.023 0.348
9 1.602 27.249 0.022 0.370
10 1.473 28.722 0.020 0.390

1990–1994 3812 115.4322 1 18.010 18.010 0.156 0.156
2 8.233 26.243 0.071 0.227
3 3.829 30.072 0.033 0.261
4 3.460 33.532 0.030 0.290
5 3.190 36.722 0.028 0.318
6 2.909 39.631 0.025 0.343
7 2.807 42.438 0.024 0.368
8 2.741 45.179 0.024 0.391
9 2.458 47.638 0.021 0.413
10 2.437 50.075 0.021 0.434

1995–1999 3858 116.1262 1 14.115 14.115 0.122 0.122
2 5.995 20.109 0.052 0.173
3 5.689 25.798 0.049 0.222
4 5.098 30.896 0.044 0.266
5 4.386 35.282 0.038 0.304
6 3.019 38.301 0.026 0.330
7 2.895 41.195 0.025 0.355
8 2.788 43.983 0.024 0.379
9 2.605 46.588 0.022 0.401
10 2.438 49.026 0.021 0.422

2000–2004 3708 139.2781 1 30.214 30.214 0.217 0.217
2 9.830 40.044 0.071 0.288
3 6.695 46.739 0.048 0.336
4 4.246 50.985 0.030 0.366
5 3.908 54.893 0.028 0.394
6 3.229 58.122 0.023 0.417
7 3.098 61.220 0.022 0.440
8 2.880 64.101 0.021 0.460
9 2.789 66.889 0.020 0.480
10 2.640 69.530 0.019 0.499
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Table 2
Test of asymptotic APT with the CK factors

This table reports the results of testing the asymptotic APT using τ observations of k∗ factors τ−1/2G =
τ−1/2(g1, · · · , gτ ) extracted with the Connor-Korajczyk method from the second moment matrix of the
excess returns. γ̄ = ḡ′ḡ = 1 − λmin where ḡ is the k∗-vector mean of G, and λmin is the smallest
eigenvalue of τ−1(G− ḡ1′τ )(G− ḡ1′τ ). s̄ = γ̄/(1− γ̄) is the estimate of the asymptotic maximum squared
Sharpe ratio, s = γ/(1 − γ). p0.9, p0.5 and p0.2 are the left-tail p-values of γ̄ under the hypothesis
γ = 0.9, γ = 0.5, and γ = 0.2 which correspond to s = 9, s = 1 and s = 0.25 respectively.

Period k∗ γ̄ s̄ p0.9 p0.5 p0.2

1965–1969 1 0.052 0.055 0.000 0.000 0.020
2 0.052 0.055 0.000 0.000 0.012
3 0.079 0.086 0.000 0.000 0.024
4 0.088 0.097 0.000 0.000 0.022
5 0.091 0.100 0.000 0.000 0.016
6 0.092 0.102 0.000 0.000 0.010
7 0.162 0.193 0.000 0.000 0.071
8 0.163 0.194 0.000 0.000 0.053
9 0.166 0.198 0.000 0.000 0.041
10 0.172 0.208 0.000 0.000 0.034

1970–1974 1 0.026 0.027 0.000 0.000 0.005
2 0.058 0.062 0.000 0.000 0.016
3 0.087 0.096 0.000 0.000 0.033
4 0.090 0.099 0.000 0.000 0.024
5 0.091 0.101 0.000 0.000 0.016
6 0.096 0.106 0.000 0.000 0.012
7 0.097 0.108 0.000 0.000 0.008
8 0.099 0.110 0.000 0.000 0.005
9 0.107 0.120 0.000 0.000 0.005
10 0.129 0.148 0.000 0.000 0.007

1975–1979 1 0.109 0.123 0.000 0.000 0.122
2 0.129 0.149 0.000 0.000 0.143
3 0.131 0.151 0.000 0.000 0.114
4 0.131 0.151 0.000 0.000 0.084
5 0.138 0.160 0.000 0.000 0.073
6 0.149 0.175 0.000 0.000 0.071
7 0.153 0.181 0.000 0.000 0.057
8 0.153 0.181 0.000 0.000 0.040
9 0.154 0.182 0.000 0.000 0.028
10 0.166 0.199 0.000 0.000 0.028

1980–1984 1 0.021 0.022 0.000 0.000 0.003
2 0.064 0.068 0.000 0.000 0.021
3 0.068 0.073 0.000 0.000 0.015
4 0.074 0.080 0.000 0.000 0.012
5 0.085 0.093 0.000 0.000 0.012
6 0.090 0.098 0.000 0.000 0.010
7 0.101 0.113 0.000 0.000 0.010
8 0.103 0.115 0.000 0.000 0.006
9 0.105 0.117 0.000 0.000 0.004
10 0.105 0.117 0.000 0.000 0.002
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Table 2 (cont’d)

Period k∗ γ̄ s̄ p0.9 p0.5 p0.2

1985–1989 1 0.016 0.016 0.000 0.000 0.002
2 0.019 0.019 0.000 0.000 0.001
3 0.042 0.044 0.000 0.000 0.004
4 0.056 0.059 0.000 0.000 0.005
5 0.084 0.092 0.000 0.000 0.012
6 0.084 0.092 0.000 0.000 0.007
7 0.092 0.101 0.000 0.000 0.006
8 0.095 0.105 0.000 0.000 0.004
9 0.096 0.107 0.000 0.000 0.003
10 0.143 0.167 0.000 0.000 0.013

1990–1994 1 0.032 0.033 0.000 0.000 0.007
2 0.052 0.055 0.000 0.000 0.012
3 0.070 0.076 0.000 0.000 0.017
4 0.070 0.076 0.000 0.000 0.010
5 0.070 0.076 0.000 0.000 0.006
6 0.089 0.097 0.000 0.000 0.009
7 0.114 0.128 0.000 0.000 0.016
8 0.114 0.129 0.000 0.000 0.010
9 0.114 0.129 0.000 0.000 0.006
10 0.116 0.131 0.000 0.000 0.004

1995–1999 1 0.096 0.107 0.000 0.000 0.089
2 0.097 0.107 0.000 0.000 0.066
3 0.098 0.108 0.000 0.000 0.047
4 0.099 0.110 0.000 0.000 0.033
5 0.099 0.110 0.000 0.000 0.022
6 0.101 0.113 0.000 0.000 0.015
7 0.102 0.114 0.000 0.000 0.010
8 0.103 0.114 0.000 0.000 0.006
9 0.162 0.194 0.000 0.000 0.036
10 0.172 0.208 0.000 0.000 0.034

2000–2004 1 0.029 0.030 0.000 0.000 0.006
2 0.033 0.034 0.000 0.000 0.004
3 0.033 0.034 0.000 0.000 0.002
4 0.040 0.041 0.000 0.000 0.002
5 0.127 0.145 0.000 0.000 0.055
6 0.172 0.208 0.000 0.000 0.120
7 0.174 0.210 0.000 0.000 0.095
8 0.175 0.213 0.000 0.000 0.072
9 0.178 0.217 0.000 0.000 0.057
10 0.188 0.231 0.000 0.000 0.053
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Table 3
Test of asymptotic APT with the Jones factors

This table reports the results of testing the asymptotic APT using τ observations of k∗ factors τ−1/2G =
τ−1/2(g1, · · · , gτ ) extracted with the Jones method from the second moment matrix of the excess returns.
γ̄ = ḡ′ḡ = 1 − λmin where ḡ is the k∗-vector mean of G, and λmin is the smallest eigenvalue of
τ−1(G− ḡ1′τ )(G− ḡ1′τ ). s̄ = γ̄/(1− γ̄) is the estimate of the asymptotic maximum squared Sharpe ratio,
s = γ/(1 − γ). p0.9, p0.5 and p0.2 are the left-tail p-values of γ̄ under the hypothesis γ = 0.9, γ = 0.5,
and γ = 0.2 which correspond to s = 9, s = 1 and s = 0.25, respectively.

Period k∗ γ̄ s̄ p0.9 p0.5 p0.2

1965–1969 1 0.048 0.051 0.000 0.000 0.017
2 0.052 0.055 0.000 0.000 0.012
3 0.053 0.056 0.000 0.000 0.007
4 0.071 0.076 0.000 0.000 0.011
5 0.112 0.126 0.000 0.000 0.035
6 0.117 0.132 0.000 0.000 0.027
7 0.120 0.136 0.000 0.000 0.020
8 0.147 0.172 0.000 0.000 0.033
9 0.152 0.179 0.000 0.000 0.027
10 0.175 0.212 0.000 0.000 0.037

1970–1974 1 0.028 0.029 0.000 0.000 0.005
2 0.048 0.050 0.000 0.000 0.010
3 0.043 0.045 0.000 0.000 0.004
4 0.073 0.079 0.000 0.000 0.012
5 0.093 0.102 0.000 0.000 0.017
6 0.089 0.098 0.000 0.000 0.009
7 0.110 0.123 0.000 0.000 0.014
8 0.106 0.119 0.000 0.000 0.007
9 0.123 0.140 0.000 0.000 0.009
10 0.166 0.199 0.000 0.000 0.028

1975–1979 1 0.113 0.128 0.000 0.000 0.134
2 0.125 0.143 0.000 0.000 0.132
3 0.159 0.189 0.000 0.000 0.198
4 0.144 0.168 0.000 0.000 0.114
5 0.144 0.168 0.000 0.000 0.085
6 0.147 0.172 0.000 0.000 0.067
7 0.150 0.177 0.000 0.000 0.052
8 0.152 0.179 0.000 0.000 0.039
9 0.182 0.223 0.000 0.000 0.063
10 0.182 0.223 0.000 0.000 0.045

1980–1984 1 0.018 0.018 0.000 0.000 0.002
2 0.093 0.103 0.000 0.000 0.058
3 0.096 0.106 0.000 0.000 0.044
4 0.110 0.124 0.000 0.000 0.047
5 0.112 0.126 0.000 0.000 0.035
6 0.115 0.130 0.000 0.000 0.026
7 0.124 0.142 0.000 0.000 0.023
8 0.127 0.146 0.000 0.000 0.017
9 0.128 0.147 0.000 0.000 0.011
10 0.148 0.173 0.000 0.000 0.016
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Table 3 (cont’d)

Period k∗ γ̄ s̄ p0.9 p0.5 p0.2

1985–1989 1 0.014 0.014 0.000 0.000 0.002
2 0.021 0.022 0.000 0.000 0.001
3 0.082 0.090 0.000 0.000 0.027
4 0.130 0.149 0.000 0.000 0.082
5 0.112 0.126 0.000 0.000 0.035
6 0.114 0.129 0.000 0.000 0.025
7 0.134 0.154 0.000 0.000 0.032
8 0.157 0.187 0.000 0.000 0.045
9 0.187 0.229 0.000 0.000 0.071
10 0.194 0.240 0.000 0.000 0.062

1990–1994 1 0.045 0.048 0.000 0.000 0.014
2 0.058 0.061 0.000 0.000 0.016
3 0.067 0.071 0.000 0.000 0.015
4 0.075 0.081 0.000 0.000 0.013
5 0.088 0.097 0.000 0.000 0.014
6 0.091 0.100 0.000 0.000 0.010
7 0.121 0.137 0.000 0.000 0.021
8 0.123 0.141 0.000 0.000 0.015
9 0.139 0.161 0.000 0.000 0.017
10 0.152 0.180 0.000 0.000 0.018

1995–1999 1 0.084 0.092 0.000 0.000 0.064
2 0.107 0.120 0.000 0.000 0.086
3 0.109 0.123 0.000 0.000 0.065
4 0.118 0.133 0.000 0.000 0.060
5 0.132 0.152 0.000 0.000 0.063
6 0.142 0.166 0.000 0.000 0.059
7 0.154 0.182 0.000 0.000 0.058
8 0.158 0.187 0.000 0.000 0.046
9 0.140 0.163 0.000 0.000 0.018
10 0.179 0.218 0.000 0.000 0.041

2000–2004 1 0.027 0.028 0.000 0.000 0.005
2 0.030 0.031 0.000 0.000 0.003
3 0.036 0.037 0.000 0.000 0.002
4 0.126 0.145 0.000 0.000 0.074
5 0.147 0.173 0.000 0.000 0.092
6 0.166 0.199 0.000 0.000 0.106
7 0.176 0.214 0.000 0.000 0.099
8 0.193 0.240 0.000 0.000 0.109
9 0.182 0.222 0.000 0.000 0.063
10 0.215 0.274 0.000 0.000 0.100
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Table 4
Sharpe ratio of the market portfolios

This table reports the squared Sharpe ratio of market portfolios during the eight
subperiods from 1965 to 2004 and the entire sample period. VW is the value-
weighted portfolio of NYSE/AMEX/NASDAQ. EW is the equally weighted portfolio
of NYSE/AMEX/NASDAQ. Mean and St.dev. are the time-series mean and standard
deviation of the market portfolios. Sharpe and Sq-Sharpe are the Sharpe ratio and
squared Sharpe ratio, respectively.

Period Portfolio Mean St.dev. Sharpe Sq-Sharpe

1965–1969 VW 0.0018 0.0366 0.0506 0.0026
EW 0.0121 0.0575 0.2114 0.0447

1970–1974 VW -0.0072 0.0522 -0.1386 0.0192
EW -0.0128 0.0685 -0.1863 0.0347

1975–1979 VW 0.0094 0.0443 0.2117 0.0448
EW 0.0250 0.0634 0.3945 0.1557

1980–1984 VW 0.0035 0.0470 0.0745 0.0055
EW 0.0058 0.0565 0.1023 0.0105

1985–1989 VW 0.0101 0.0504 0.1996 0.0398
EW 0.0044 0.0532 0.0820 0.0067

1990–1994 VW 0.0037 0.0361 0.1034 0.0107
EW 0.0071 0.0450 0.1576 0.0249

1995–1999 VW 0.0167 0.0413 0.4044 0.1636
EW 0.0117 0.0484 0.2416 0.0584

2000–2004 VW -0.0020 0.0493 -0.0410 0.0017
EW 0.0118 0.0676 0.1751 0.0306

1965-2004 VW 0.0045 0.0452 0.0994 0.0099
EW 0.0081 0.0585 0.1393 0.0194
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Table 5
Simulation results

This table reports the results of simulation with 1000 replications. In each replication, excess
returns are generated from the parameters calibrated from the excess returns in the 2000-
2004 subperiod, plus a normally distributed pricing error, a, with

√
a′a/n = 0.02, 0.01, or

0.002, where n = 3708 is the number of stocks. γ̄ is the test statistics based on CK factors.
s̄ = γ̄/(1− γ̄) is the estimated asymptotic maximum squared Sharpe ratio. p0.9, p0.5 and p0.2

are the left-tail p-values of γ̄ under the hypothesis γ = 0.9, γ = 0.5, and γ = 0.2. The numbers
reported in the table are the average across 1000 replications.

A.
√

a′a/n = 0.02
k∗ γ̄ s̄ p0.9 p0.5 p0.2

1 0.046 0.051 0.000 0.000 0.045
2 0.071 0.081 0.000 0.000 0.069
3 0.100 0.118 0.000 0.000 0.107
4 0.146 0.183 0.000 0.001 0.190
5 0.187 0.247 0.000 0.003 0.270
6 0.224 0.311 0.000 0.007 0.341
7 0.260 0.380 0.000 0.013 0.407
8 0.297 0.457 0.000 0.022 0.477
9 0.336 0.546 0.000 0.036 0.553
10 0.374 0.649 0.000 0.059 0.622

B.
√

a′a/n = 0.01
k∗ γ̄ s̄ p0.9 p0.5 p0.2

1 0.043 0.048 0.000 0.000 0.043
2 0.066 0.074 0.000 0.000 0.062
3 0.087 0.100 0.000 0.000 0.080
4 0.113 0.134 0.000 0.000 0.109
5 0.136 0.166 0.000 0.000 0.130
6 0.159 0.199 0.000 0.001 0.154
7 0.180 0.231 0.000 0.001 0.175
8 0.200 0.264 0.000 0.002 0.196
9 0.221 0.299 0.000 0.002 0.215
10 0.241 0.335 0.000 0.002 0.236

C.
√

a′a/n = 0.002
k∗ γ̄ s̄ p0.9 p0.5 p0.2

1 0.044 0.049 0.000 0.000 0.043
2 0.062 0.070 0.000 0.000 0.054
3 0.081 0.093 0.000 0.000 0.066
4 0.103 0.120 0.000 0.000 0.084
5 0.123 0.146 0.000 0.000 0.099
6 0.140 0.170 0.000 0.000 0.108
7 0.159 0.197 0.000 0.000 0.123
8 0.177 0.224 0.000 0.001 0.134
9 0.194 0.252 0.000 0.001 0.146
10 0.211 0.280 0.000 0.001 0.157
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Figure 1. Density functions of noncentral beta distributions.

This figure plots the density functions of noncentral beta distributions in (7) with τ = 60,

k∗ = 1, 3, 5, 10 and γ = 0.2, 0.5, 0.9.

34


