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Abstract. We develop two likelihood based approaches to semiparametrically estimate 

the time-inhomogeneous diffusion process: log penalized splines (P-splines) and the local 

log-linear method. Positive volatility is naturally embedded and this positivity is not 

guaranteed in most existing diffusion models. We investigate different smoothing 

parameter selection methods. Separate bandwidths are used for drift and volatility 

estimation. In the log P-splines approach, different smoothness for different time varying 

coefficients is feasible by assigning different penalty parameters. We also provide 

accompanying theorems for both approaches. Finally, we present a case study using the 

weekly three-month Treasury bill data from 1954 to 2004. We find that the log P-splines 

approach seems to capture the volatility dips in mid-1960s and mid-1990s the best.  

 

Keywords: Bandwidth Selection; Kernel Smoothing; Local Linear; Penalized likelihood; 

Variance Estimation; Volatility. 

 

1. Introduction 
Modern asset pricing theory offers valuable guidance for pricing contingent 

claims and risk management. Continuous-time diffusion processes are important tools to 

model the stochastic behavior of a range of economic variables, such as interest rates and 

stock prices. For example, the famous option pricing model of Black and Scholes (1973), 

term structure models of Vasicek (1977), Cox, Ingersoll, and Ross (CIR, 1985), Hull and 

White (1990), Heath, Jarrow, and Morton (1992), Chan, Kayolyi, Longstaff, and Sanders 
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(CKLS, 1992), all assume that the underlying state variables follow diffusions. A nice 

overview can be found in Merton (1992) and Duffie (2001). 

All of the above mentioned diffusions are simple time-homogeneous parametric 

models taking the form: ( ) ( ); ;t t tdX X dt X dWµ θ σ θ= + t , where tX  is an economic 

state variable depending on time t ,  is the standard Brownian motion, tW θ  is a 

parameter, ( ;tX )µ θ  is the drift function, and ( );tXσ θ  is the diffusion or volatility 

function. The term volatility or diffusion in Finance is the same as the standard deviation 

in Statistics. Volatility is a key concept because it is a measure of uncertainty about future 

price movements. Volatility is directly related to the risk associated with holding 

financial securities and hence affects consumption/investment decisions and portfolio 

choice. Volatility is also the key parameter in the pricing of options and other derivative 

securities.  

Unfortunately, empirical tests of these different parametric diffusion models 

yielded mixed results (Stanton 1997). This is not too surprising since they are neither 

derived from any economic theory nor offering guidance in choosing the correct model. 

With the availability of high-quality data of many financial assets, recent researchers 

have considered nonparametric techniques for diffusion models to avoid possible model 

misspecification. For example, Ait-Sahalia (1996) estimates the time-homogeneous 

diffusion  nonparametrically using the kernel method, given a linear specification 

for the drift. Stanton (1997) estimates both the drift 

( )tXσ

( )tXµ  and diffusion ( )tXσ  

nonparametrically using the kernel method. 

 While nonparametric estimation of diffusion models is promising, mostly they 

consider only time-homogeneous diffusions. There are a variety of reasons to believe that 

the underlying process for many economic variables might change from time to time, due 

to changes in business cycles, general economic conditions, monetary policy, etc. One 

example is the volatility of interest rates at all maturities on the days of FOMC (Federal 

Open Market Committee) meeting increases. The so-called “calendar effects” on stock 

prices that the prices behave differently on different days of the week, month, and year, 

are often observed. Prices of many fixed-income securities and options change over time 

 2



as the maturities of the contracts approach (see Egorov, Li, and Xu 2003, and the 

references therein). 

 This motivates researchers to consider time-inhomogeneous diffusion models 

 ( ) ( ), ,t t tdX t X dt t X dWµ σ= + t

) )

,  

where both the drift  and diffusion, or often called volatility  depend on 

time t .  Figure 1 (a) is a plot of weekly 3-month Tresaury bill rates during the period 

from 1954 to 2004. The differenced rates are ploted in (b). Visually the differenced rates 

seem to behave randomly with small volatility around mid 1960s and mid 1990s while 

with larger volatility during late 1950s, mid 1970s and early 1980s. This visual 

observation seems to be well represented in our log P-splines fit of volatility  in 

Figure 1 (c), which catches the low volatility period around 1964. The two local fits 

(local log-linear and Fan, Jiang, Zhang, and Zhou 2003) of volatility seem dominated by 

the overall trend of the original rates and keep increasing in the 1960s. Especially in the 

period from 1961 to 1966, the contradiction is evident. A key point is that the differenced 

yield seems to exhibit time inhomogeneous variation, which is the main focus of this 

paper.   

( , tt Xµ ( , tt Xσ

( ), tt Xσ

[Insert Figure 1 here] 

In fact, some parametric time-inhomogeneous diffusion models have been 

developed in the finance literature and have been widely used in practice. For example, to 

capture the “smiles” (in contrast to the constant volatility assumption of geometric 

Brownian Motion in Black and Scholes (1973)) observed in the implied volatility from 

option prices, Rubinstein (1994) models stock return volatility as a deterministic function 

of stock price and time. Hull and White (1990) develop models where the short rate 

follows a parametric time-inhomogeneous diffusion process. A recent work by Fan, 

Jiang, Zhang, and Zhou (FJZZ, 2003) find that there is not sufficient information to 

determine the bivariate functions nonparametrically and forcing all coefficients in the 

drift and diffusion to be time-dependent may cause over-parameterization. Hence, a 

semiparametric time-inhomogeneous model is considered in this paper. 

 We focus on the following semiparametric time-inhomogeneous model 

 3



 , (1) ( ) ( )( ) ( )( )t tdX t t X dt t X dWγα β σ= + + t t

where γ  is a scalar parameter independent of time t , ( )tα  and ( )tβ  are time-dependent 

coefficients of the drift, ( )tσ  is a time-dependent coefficient of diffusion (volatility).  

Model (1) includes most of the well-known diffusion models. For example, when 

( )tα , , and ( )tβ ( )tσ  are constants (time independent), (1) yields to CKLS model. 

Among CKLS framework, 1γ =  corresponds to the famous Black-Scholes model; 0γ =  

corresponds to Vasicek model; and 0.5γ =  corresponds to CIR model. A more general 

model with γ  depending on time t  has been considered by FJZZ. However, they note 

that there may be over-parameterization and unreliable estimates due to high collinearity. 

The semiparametric time-inhomogeneous model (1) is continuous but the data 

sampled in the financial markets are usually discrete. Therefore in estimation, the 

discretized version of (1) based on the Euler scheme is used as an approximation. 

Suppose the data { },  1, , 1
it

X i n= ⋅⋅⋅ +  are sampled at discrete time points, 1 1nt t +< ⋅⋅⋅ < . 

For weekly data when the time unit is a year, ( )0 52  1, ,it t i i n= + = ⋅⋅⋅ , where  is the 

initial time point. Denote y X

0t

1i i it t tX
+

= −
1i i it t t, Z W W
+

= − i, and 1i it t+∆ = − . 
it

Z  are 

independent and normally distributed with mean zero and variance  due to the 

independent increment property of Brownian motion . The discretized version of (1) 

becomes 

i∆

it
W

 ( ) ( )( ) ( )( )i i it i i t i i ty t t X t X
γ

ii tα β σ≈ + ∆ + ∆ ε , (2) 

where { }it
ε  are independent and standard normal. According to Stanton (1997) and 

further studied in Fan and Zhang (2003), the first-order discretized approximation error to 

the continuous-time diffusion model is extremely small, as long as data are sampled 

monthly or more frequently. This finding simplifies the estimation procedure 

significantly. 

 This paper contains a statistical finance application on the short term Treasury bill 

data as well as some methodological development possibly for broader interest. In 

 4



particular, we contribute to the literature of diffusion model estimation in the following 

aspects. First, we provide two practical tools to estimate the time dependent diffusion 

process semiparametrically. Two likelihood based approaches are developed: log P-

splines maximizing penalized likelihood and the local log-linear method maximizing 

kernel-weighted likelihood. The necessary feature of positive volatility is naturally 

embedded in both log P-splines and local log-linear methods and this positivity is not 

guaranteed in most existing diffusion models. In addition, compared to the local constant 

method, the local log-linear approach in general can give lower bias and variance of 

estimates with more appealing properties at the boundary (Fan and Gijbels 1996; Yu and 

Jones 2004; FJZZ 2003).  

Secondly, we investigate different smoothing parameter (bandwidth) selection 

criteria: generalized cross validation (GCV) and EBBS of Ruppert (1997) criteria for log 

P-splines and the Rule-of-thumb bandwidth (ROT) for the local log-linear method. 

Separate bandwidths are used for drift and volatility estimation. In addition, in the log P-

splines approach, different smoothness for different time varying coefficients ( )tα and 

 of drift is feasible by assigning different penalty parameters. Consistent with most 

literature (e.g. Jarrow, Ruppert, and Yu 2004; Yu and Jones 2004), small simulation 

studies (not reported) show that EBBS for log P-splines approach is more robust to 

possible autocorrelations and less prone to undersmoothing as often observed with 

generalized cross validation (GCV). Our ROT bandwidth is simple and works almost as 

well as the unavailable optimal bandwidths. The ROT local log-linear approach performs 

better than that of both the local linear and local constant approaches. The proposed 

approach is as good as or better than that of Ruppert, Wand, Holst, Hössjer (1997), even 

when the latter uses its optimal bandwidths.  

( )tβ

Thirdly, we provide asymptotic results for both approaches so that inference is 

readily available. The asymptotic result also enables the proposal of our rule of thumb 

(ROT) bandwidth estimator in the local log-linear approach. Comparing two proposed 

approaches in the time-inhomogeneous diffusion estimation, we find that the log P-

splines approach is computationally expedient and efficient, which is also often observed 

in complicated nonlinear regression context (Yu and Ruppert 2002; Jarrow, Ruppert, and 

Yu 2004). However, the theory from the local log-linear approach is more complete in 
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the sense of “truely nonparametric.” We give a large sample property based on fixed knot 

P-splines, which often serves well in application. Other spline methods could also be 

used though direct adoption might be complicated and we expect the fit would be similar. 

Finally, we present a case study using the weekly three-month Treasury bill data 

from 1954 to 2004. We find that both log P-splines and local log-linear approaches as 

well as the FJZZ kernel method catch the major trend of volatility well. Volatility is the 

highest during early 1980s (Figure 1b). This was in agreement with the economic 

situation then. During that period, the Federal Researve chairman Paul Volcker sharply 

increased the interest rate to combat the inflation crisis in U.S. Inflation decreased from 

9% in 1980 to 3.2% in 1983. The interest rate (the yield on 3-month Treasury bills) also 

dropped dramatically by 1983. The swing in the interest rate during that period is 

reflected in the volatility plot. However, similar to what we have observed in Figure 1c 

for the dip in mid 1960s, the log P-splines fit seems to catch the relative low variation 

period in mid 1990s better, whereas the local log-linear and FJZZ methods are more 

prone to the domination by the original series. We will further explore details of the case 

study in Section 4. The rest of this paper is organized as follows. Section 2 investigates 

the log P-splines approach of the time-inhomogeneous diffusion model. Section 3 

presents the local log-linear estimation.  

 

2. Log Penalized Splines Diffusion Estimation 
 We develop a log penalized splines method for diffusion estimation. Log is 

necessary to guarantee that volatility is positive. P-splines are described in Eilers and 

Marx (1996), Ruppert and Carroll (1997), and Ruppert, Wand, and Carroll (2003). P-

splines estimate fewer parameters than smoothing splines. The location of the knots in P-

splines is considered not as crucial as that in regression splines such as MARS (Friedman 

1991).  Smoothness is achieved through a roughness penalty measure. In Eilers and Marx 

(1996), quadratic penalties are placed on finite differences of adjacent B-splines 

coefficients.  An appealing feature of Ruppert and Carroll (1997) is to allow multiple 

smoothing parameters and also a variety of penalties, quadratic or nonquadratic, on the 

spline coefficients.  

2.1 Maximum Penalized Likelihood Estimation 
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 We model time dependent functions ( )itα , ( )itβ  of drift and of 

volatility in model (2) by splines: 

2log ( )itσ

 ( ) ( )i it tα αα = B δ ; ( ) ( )i it tβ ββ = B δ , 

 2log ( ) 2 ( )i it tσ σσ = B δ , (3) 

where  is a vector of spline basis functions and δ  are vectors of spline coefficients. 

Different basis functions can be used for different coefficient functions and basis using 

truncated power function, B-splines, or natural cubic splines can also be adopted. Our 

experience shows that they yield similar fits. This is not surprising since the critical 

tuning parameter in P-splines is the penalty parameter. Hence, for notational simplicity, 

we will present P-splines using a truncated power basis function 

where  is the spline polynomial degree, 

, 

( )itB

( ) ( )1( ) 1,  ,   , ,  , ,pp
i i i i i kt t t t tκ κ

+
⎡= − −⎣B p

+
⎤
⎦

max 0,i k kt tκ κ
+

− = − 1 2

p

( ) ( ) Kκ κ κ< < ⋅⋅⋅ <

κ

 are spline knots often located at equal-

spaced sample quantiles for simplicity.  Then we can write  

 ( ) ( )0 1 1 1log ( ) ( ) .p pp
i i i p i p i p k i kt t t t t tσ σ σ σ σ

σσ δ δ δ δ κ δ+ ++ +
= = + + + + − + + −B δ  

The log likelihood function, excluding constants, is negative 

( ){ } ( ){ }2 2 21 ( ) ( ) exp 2 ( ) log 2 ( ) log
i i i it i i t i i t i

i

y t t X t X t Xα α β β σ σ σ σγ γ
⎛ ⎞

− + ∆ − + + +⎜ ⎟∆⎝ ⎠
∑ B δ B δ B δ B δ t

)

. 

For notational consistency, we will reserve the subscript 1 for drift and 2 for volatility. 

Denote parameter vectors for drift and (1 , 
TT T

α β=δ δ δ ( )2 , 
TT

σ γ=δ δ for volatility. Denote 

the extended design matrix for drift 1( ) ( ),   ( )
ii i it t tα β tX⎡ ⎤= ⎣ ⎦B B B  and the extended design 

matrix for volatility . Further denote the parameter vector 2 ( ) ( ),   log
ii it tσ⎡= ⎣B B tX ⎤⎦

) ( ) (1 2, , , ,
T TT T T T T

α β σ γ= =θ δ δ δ δ δ . Let the smoothing parameter vector 

( )2, , 
T

α βλ λ λ=λ and , where (1 , 
T

α βλ λ=λ ) αλ , βλ , and 2λ  are three smoothing 

parameters for ( )tα , , and ( )tβ ( )2log tσ  respectively.  

The penalized likelihood estimator of θ  maximizes the following penalized log 

likelihood function 
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 ( ) ( ), 2
T

n n
nQ Lλ = −θ θ λθ Dθ , (4) 

Where  

 ( ) { } { }
2

1 1 2 2 2 2
1( ) : , ( ) exp 2 ( ) 2 ( )

in n i t i i i i
i

L l t y t t t
⎛ ⎞

= = − − ∆ − +⎜ ⎟∆⎝ ⎠
∑ ∑θ θ B δ B δ B δ . (5) 

Here  is an appropriate positive semi-definite symmetric matrix. A common choice of 

 is given by Ruppert, Wand, and Carroll (2003) that penalizes jumps at the knots in the 

pth derivative of the spline. We will use this penalty. Other common penalties, for 

example, as in smoothing spline, are the quadratic penalty on the (second) derivatives of 

functions. Like the choice of basis functions, we found the choice of D  is relatively 

unimportant that different D  gives similar fits. 

D

D

Now squared volatility estimate, using notation , suppressing ( )iV t
it

X , can be 

obtained by 

 ( ) ( ) ( )2 ˆ2 2
2 2

ˆˆ ˆ ˆ( ) : , exp 2 ( )
i ii i t i t iV t t X t X tγσ σ= = = B δ . (6) 

And the volatility estimate is 

 ( ) ( ) ( )2 ˆ2
2 2

ˆˆ ˆ, exp
i ii t i t it X t X tγσ σ= = B δ( ) . (7) 

2.2 Asymptotic Properties and Inference 

         As is virtually always the case, theoretical results for the P-splines approach are not 

as readily obtainable as for local methods. Indeed, it is still an open question for a simple 

univariate P-splines regression (Hall and Opsomer 2005). Nevertheless, we give the 

results for the log P-splines estimator using a fixed number of knots, which is basically 

from a flexible but parametric model. We find that the fixed-knot P-splines analysis is 
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useful for developing a practical methodology, which is also noted in the literature, e.g. 

Gray (1994), Carroll, Maca, and Ruppert (1999). 

 Theorem 1. Under mild regularity conditions, if the smoothing parameter vector 

( 1 2
n nο −=λ ) , then a sequence of penalized likelihood estimators  exists, is consistent, 

and is asymptotically normally distributed. That is, 

θ̂

 ( ) ( )( )1 2 1ˆ 0,Dn −− → Νθ θ I θ , (8) 

where  is the usual Fisher information matrix. ( )I θ

The proof of Theorem 1 is standard with ordinary (no penalty) maximum 

likelihood estimates (Lehmann 1983); and is similar to Fan and Li (2001) and Yu (2005) 

with penalty function. 

The result given in (8) does not involve penalty parameter, which is assumed to 

vanish sufficiently fast as n  tends to infinity. For finite sample inference, this tends to 

overestimate the variance of  and one would prefer the following asymptotic 

distribution with fixed penalty parameter derived from the estimating equation approach 

using the “sandwich formula.” (For details see Carroll, Ruppert, Stefanski 1995; Yu and 

Ruppert 2002.) 

θ̂

 ( ) ( ) ( ) ( ){ }1 2 1ˆ( ) ( ) 0, ( ) ( ) ( )T
Dn − −− → Νθ λ θ λ H θ λ G θ λ H θ λ , (9) 

where ( ) ( ) ( ) ( ) ( );
i i ti

T
t tT

∂
= =

∂∑ ∑H θ ψ θ G θ ψ θ ψ
θ

( )θ , ( );
it n iT l t n∂

= − +
∂

ψ θ θ λDθ
θ

. 

A standard error of the estimated volatility function ( ) ( )2 2
ˆˆ , exp ( )

ii t it X tσ = B δ  

can be easily derived from a delta method calculation 

 ( ){ } ( )2 2 2 2
ˆˆˆ , ( ) ( ) ( ) exp (

i

T
i t i i isd t X t Var t tσ = B δ B B δ2

ˆ)  (10) 

where is given by (9), recommended for finite sample with fixed penalty 

parameter. Note that as  goes to zero,  in (9) converges to the corresponding 

matrix of inverse of Fisher information given in (8). 

2
ˆˆ ( )Var δ

λ 2
ˆˆ ( ( ))Var δ λ
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2.3 An Algorithm 

           One could do one-step maximization on the penalized likelihood function (4). 

However, in our P-splines approach, the number of parameters could be large and this 

estimation algorithm may not be efficient. We then implemented an iterative algorithm 

by reweighting drift estimation using the inverse of the estimated volatility with several 

iterations as suggested by Carroll, Wu, and Ruppert (1988). We find in our simulation 

and case studies that two or three iterations are sufficient. Moreover, volatility estimation 

is our primary focus of interest. Hence, we advocate two-step estimation in practice. 

Step 1: Drift Estimation.  

            The time-inhomogeneous drift ( ) ( ) ( )( ),
ii t i i tt X t t Xµ α β= +

i
 is estimated by 

minimizing 

 
2

1 1 1 1 1 1
1

( )
2

i
n

t T
i

i i

y nt
=

⎧ ⎫
− +⎨ ⎬∆⎩ ⎭

∑ B δ λ δ D δ . (11) 

This can be achieved by a simple ridge regression ( ) 1

1 1 1 1 1 1
ˆ T Tn

−
= +δ B B λ D B Y , where 

vector Y has the ith element
it

y i∆ .  The smoothing parameter can be chosen by GCV or 

EBBS etc., which we will discuss in more detail in Section 2.4. 

Step 2:  Log P-splines Volatility Estimation.  

Denote the residual from the previous drift estimation 

 (1 ˆ( , )
i i it t i t

i

e y t Xµ )i= −
∆

∆

it

. (12) 

Then we have ( )( )i it i te t X
γ

σ ε≈ .    

Remark: Stanton (1997) pointed out that this approximation holds even if ˆ ( , ) 0
ii tt Xµ =  

is assumed, though the approximation error using (12) is of smaller order. This 

observation further confirms the validity of our two-step approach with primary focus on 

the volatility estimation. 

We estimate the parameter  for volatility by minimizing the negative penalized 2δ
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likelihood  

 { }( )2
2 2 2 2 2 2 2exp 2 ( ) 2 ( )

2i

T
t i i

ne t t− + +∑ B δ B δ λ δ D δ2

T

. (13) 

The usual Newton-Raphson procedure can be applied. We used the nonlinear 

optimization routine lsqnonlin() from Matlab’s optimization toolbox. A preliminary 

parameter estimate  for volatility can be obtained by a simple ridge regression 

, where vector E has the ith element 

2,
ˆ

preδ

( ) 1

2, 2 2 2 2 2
ˆ T

pre nλ
−

= +δ B B D B E log
it

e .  The 

volatility estimate is calculated by 

 ( ) ( ) ( )2 ˆ2
2 2

ˆˆ ˆ, exp
i ii t i t it X t X tγσ σ= = B δ( ) . 

Remark: We have also implemented a generalized least squares variance estimation 

algorithm as outlined in Ruppert and Carroll (1997) for our diffusion model, where the 

main step of iteration involves minimizing 
( )

( )

2
2

2 2
2 2 2 2

1 2 2,

exp 2 ( )
ˆ 2exp 2 ( )

i
n

t i T

i i old

e t n
t

λ
=

⎧ ⎫−⎪ ⎪ +⎨ ⎬
⎪ ⎪⎩ ⎭

∑
B δ

δ D δ
B δ

. The 

fit is also promising in our case study. 

2.4 Selection of Smoothing Parameter 

2.4.1 GCV 

Generalized cross validation (GCV) is a common smoothing parameter selection 

criterion in spline literature. In step 1 of drift estimation, the GCV smoothing parameter 

 minimizes 1λ

 ( ) ( )

( ){ }
1

1 21

1 1 1 1 1 11 T T

ASR
GCV

trace n n
−

=
⎡ ⎤− +⎢ ⎥⎣ ⎦

λ
λ

B B B λ D B
, (14) 

where { 2

1 1
1

ˆ( ) ( ) ( )
i

n

t i i
i

ASR y t
=

= ∆ −∑λ B δ λ }1 1 is the usual average squared residuals from 

linear ridge regression. 
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The GCV smoothing parameter 2λ  for step 2 of volatility estimates minimizes 

 ( ) ( )

( ){ }
2

2 21

2 2 2 2 2 21 T T

Deviance
GCV

trace n n

λ
λ

λ
−

=
⎡ ⎤− +⎢ ⎥⎣ ⎦

B B B D B
, (15) 

where the numerator is the deviance (McCullagh and Nelder 1989) of the model for a 

fixed value of the smoothing parameter 2λ .  

2.4.2 EBBS 

EBBS (empirical bias bandwidth selection) has been proposed for local 

polynomial variance function estimation with a number of advantages (Ruppert et al. 

1997). Jarrow, Ruppert, and Yu (2004) also observe that in interest rate term structure 

estimation EBBS seems more robust to autocorrelations and smoothing on derivatives, 

whereas GCV is more prone to undersmoothing even with an artificial hyperparameter 

introduced. We extend EBBS for use with log P-splines diffusion estimation.   

EBBS minimizes the average MSE (mean squared error) of the estimated values, 

which is a function of smoothing parameter λ . In log P-splines volatility estimation, the 

variance of the volatility fit ( ) ( )2 2
ˆˆ , exp ( )

ii t it X tσ = B δ  can be estimated by (10). EBBS 

models the bias of the volatility fit as a function of the penalty parameter λ  at any fixed 

. The estimated MSE of  at  and it (ˆ ,
ii tt Xσ ) it λ , ( )ˆ; ;iMSE tσ λ , is then calculated as the 

estimated squared bias plus the estimated variance. ( )ˆ; ;iMSE tσ λ  is averaged over  and 

then minimized over 

it

λ . The bias at any fixed  is obtained by a fit at  for a range of 

values of the smoothing parameter 

it it

λ  and a curve is then fitted to model bias. Our 

implementation is similar to Jarrow, Ruppert, and Yu (2004). Also see Ruppert (1997) 

and Ruppert et al. (1997) for details. 

We need to point out that we by no means recommend against GCV choice of 

smoothing parameters in general. Indeed, we prefer the GCV criterion when in most 

cases GCV and EBBS perform similarly and GCV is usually simpler to compute. If a 

relatively small number of knots are used, then GCV and EBBS give virtually the same 
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fit unsurprisingly. The number of knots for α , β , and ( ),
ii tt Xσ  in our simulation and 

case studies found to give the most stable results is only around 10. GCV tends to 

undersmooth and EBBS seems to be more appropriate in the applications when 

autocorrelations are evident, or when derivative function is of interest, or when local 

smoothing parameter is preferred. As discussed in Section 4, autocorrelations of the 

residuals are very mild in the data we used. Therefore, GCV is the preferred method in 

our case.   

2.4.3 Multiple Smoothing Parameter for Drift Estimation 

Different levels of smoothness are sometimes desired for different coefficient 

functions. A particular nice feature for the P-splines approach is that different smoothing 

parameters can be easily adopted. For example, in the drift estimation different 

smoothing parameters αλ  and βλ  can be readily implemented for coefficient functions 

( )itα  and ( )itβ  respectively. It is not obvious to us how to incorporate multiple 

bandwidths for drift optimally in local approaches. Computationally, one could use a two-

dimensional grid search. We suggest a simple calculation as in Ruppert and Carroll 

(2000). First obtain a common smoothing parameter λ  by GCV or EBBS, which is 

chosen from a trial sequence of grid values. Starting with this common smoothing 

parameter with βλ  fixed, we select αλ  by GCV or EBBS. We then fix the selected αλ , 

select βλ  by GCV or EBBS. 

2.5 Discussion 

One computational advantage in the above log P-splines approach for diffusion 

models is that the power term γ  is naturally embedded in the spline estimation with the 

extended spline basis for volatility. γ  has interesting implications. For example, as 

discussed in Section 1, model (1) with the usual linear drift and 1γ =  gives the Black-

Scholes model. As we will see in Section 3 next, the estimation of γ  in the local method 

is not trivial in that some complicated iterative algorithm is involved. Our experience 

from the case study and a limited simulation study suggests that the log P-splines 

approach is more stable and efficient in practice, though asymptotic theorems of local 
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methods may be more complete. 

Another appealing feature for P-splines is that the nonquadratic penalty function 

can be readily implemented. A general penalty can take the form 
q∑ δ  with 2q = , 

corresponding to the usual quadratic penalty. Using absolute deviation penalty  as in 

LASSO (Tibshrani 1996) or 

1q =

0q = , for example, the fitted splines can take changes, 

accommodating possible jumps. Accurate estimation of volatility with jumps is an 

ongoing research topic of rising interest in finance. We wish to further explore it in the 

future. 

 

3. Local Log-Linear Diffusion Estimation 
 We also consider local log-linear volatility estimation for the time-inhomogeneous 

diffusion model (2) based on a kernel-weighted likelihood method. Some other kernel-

based variance function estimation methods (e.g., Ruppert et al. 1997, Fan and Yao 1998) 

could also be used for the aim here. However, these methods are based on residuals and 

do not take advantage of information from the likelihood function. Also, these methods 

do not always give non-negative estimators due to possible negativity of the local linear 

weight function. The local log-linear approach may give smaller bias than kernel-

weighted residuals estimation for a class of variance function (Yu and Jones 2004). 

Usually, local linear can achieve both lower bias and variance of estimates with nicer 

properties at the boundary than local constant in FJZZ (2003). 

3.1 Maximum Kernel-Weighted Likelihood Estimation 

 An appropriate localized normal log-likelihood for model (2) is given by minus  

( ){ } ( ) ( )( )2 2 2

1

1 1 , , log
i i i

n
i

t i t i i t i t
i i

t tK Y t X t X t X
h h

µ σ σ
=

⎛ ⎞−⎛ ⎞ − ∆ +⎜ ⎟⎜ ⎟ ∆⎝ ⎠⎝ ⎠
∑ ,

i
, 

where , ( ) ( ) ( ), t tt X t t Xµ α β= + ( ) ( )2 2, t tt X t X 2γσ σ= , and ( )tα ,  of drift and 

 of volatility are functions to be fitted locally. Similar to the log P-splines 

approach and that of Yu and Jones (2004), we find the natural shortcut of the two-step 

procedure gives very good fits. Hence, we focus on volatility estimation and advocate a 

two-step procedure in practice. Different bandwidths  and are desirable for drift and 

( )tβ

2log ( )tσ

1h 2h
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volatility estimation respectively. The same bandwidth  for 1h ( )tα  and  is used. ( )tβ

 In Step 1, a standard local approach of the least-square routine of regression mean 

function estimation can be adopted. Let ( )( )1 1
i iK h K h t t− −= −  be the short-hand kernel 

function. We note that under kernel (local constant) smooth, we can minimize 

( 2

1it i t i
i

Y Xα β∆ − −∑ )i
K  with respect to α  and β . This gives  

( ) ( ) ( ) ( )2 2
0 2 1 1 0 2 1 1 0 0 1 0 2 1

ˆˆ ,  A B A B B B B A B A B B B Bα β= − − = − − , 

where ( )( ) 1i i

j

j t i t
i

iA Y X= ∆∑ K and ( ) 1i

j

j t i
i

B X K=∑ 0,  1,  2j, = . Then α̂  (same for 

β̂ ) can also be written as ( ) ( )2
2 1 0 2ˆ

i ii t ti
K B X B Y B B Bα = − −∑ 1

)

, a same formula as to 

the local linear regression mean function estimation (Wand and Jones 1995). This 

indicates that those existing bandwidth selection rules for kernel smoothing mean could 

be modified and adapted for use in drift estimation.  

 Let  be the time-inhomogeneous drift estimator from Step 1. As in (12), 

denote 

(ˆ , tt Xµ

( )( ˆ1 ( ,
i it i t i te y t Xµ= ∆ − ∆ ))

i i .  We then model ( )2log tσ  as a local linear 

function. This leads to the following local kernel weighted likelihood estimation equation 

in Step 2 volatility estimation:  

 , (16) ( )( ){ } ( )( )2 2
2 0 1 0 1

1

exp log
i i

n

i t i t i t
i

K e t t X t t Xγυ υ υ υ γ−

=

− + − + + − +∑ 2
i

where 0υ  and 1υ  are local linear parameter functions. The scale parameter γ  is estimated 

via global minimization of the following equation 

 . (17) ( )( 2 2
0

1

ˆexp ( ) log
i i

n

t i t
i

e t X γυ γ−

=

− +∑ )2
it

X

Once we have estimates for 0υ  and γ , which are denoted as ( )0ˆ tυ  and γ̂  respectively, 

we can estimate the volatility by  

 ( ) ( )
ˆ

0ˆ ˆ, exp ( ) 2t tt X t X
γ

σ υ= . 
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Note that given γ , (16) is similar to the estimating equation in Yu and Jones 

(2004). We outline an algorithm via setting the partial derivatives of localized normal 

log-likelihood function to zero. Take derivatives of (16) with respect to 0υ  and 1υ , we 

obtain 

 ( )( )2 2
0 2 1

1 1
exp( ) exp

i i

n n

i t i t i
i i

2K e t t X γυ υ −

= =

= − −∑ K∑ , (18) 

 ( ) ( )( ) (2 2
0 2 1 2

1 1

exp( ) exp
i i

n n

i t i i t i i
i i

K e t t t t X K t tγυ υ −

= =

= − − −∑ ∑ )− . (19) 

Equating equation (18) to (19) provides a single equation to solve a single function 1υ . 

Once we obtain 1υ , we can get 0υ  via equation (18) or (19). Alternatively, an iterative 

algorithm via equation (18) and (19) can be used.  

3.2 Rule-of-Thumb (ROT) Bandwidth Selection 

 Two independent data-based bandwidths are used for estimating drift and 

volatility respectively. Basically, bandwidths could be selected based on minimization of 

the integrated version of asymptotic mean squared errors or the residual squares criterion. 

Typically, the bandwidth for estimating drift could use many existing rules for smoothing 

regression mean functions. An example is the RSW rule (Ruppert et al. 1995).  

For volatility estimation, we suggest a simple rule of thumb (ROT) bandwidth 

selection  similar as in Yu and Jones (2004).  It is based on minimizing the asymptotic 

mean integrated squared errors (MISE) using the results from Theorems in Section 3.3. In 

particular, a simple rule-of-thumb bandwidth selector is: 

2h

( )
( )

1 5

1
2 2

2

2R K V
h

a K Bn
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

, 

where  

( ) ( )
 1 2

2  1
a K z K z dz

−
= ∫ , ( ) ( )

 1 2

 1
R K K z

−
= ∫ dz

( ) ( ) ( )( )2 2 2
2 3 0 1 2 31

ˆ ˆ ˆ ˆ ˆ ˆ4 3 exp 2n
i i ii iB n c c t c c t c t c t

=
= + + + +∑ , 

( )( ) 2 3
1 0 1 2 3 

ˆ ˆ ˆ ˆexp 2
b

a
V c c t c t c t= + + +∫ dt , 
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and the latter being obtained numerically.  îc ( )1,2,3i =  are obtained via fitting a cubic 

function globally to the logged squared residuals arising from an initial fitting of drift 

(see Yu and Jones 2004 for details).  

3.3 Asymptotic Properties 

 The asymptotic properties of estimating squared volatility , 

volatility , and power 

( ) ( )2 , tV t t Xσ=

( , tt Xσ ) γ  are given by Theorems 2, 3, and 4 respectively under 

the following conditions: 

 (1) drift (  and volatility ), tt Xµ ( ), tt Xσ  are second-differentiable functions. 

 (2) kernel function K  is a Lipschitz continuous symmetric density on [ ] . 1,1−

 (3) bandwidths  and  for some ( ) 0j jh h n= → 2
jnh δ+ →∞ 0δ > , . 1,  2j =

 Let ( )g t  be the density function of time, which is usually a uniform distribution 

on time interval [ . Then we have the following theorems. ],a b

 Theorem 2. Under the foregoing regularity conditions, as n , the estimator →∞

( )V̂ t  from (16) satisfies  

( )( ) ( ) ( ) ( ) ( ) ( ){ } ( )2
2 2 2 2

1ˆ 1 0
2 Dnh s V t V t V t a K b t h h⎛ ⎞× − − +Ο → Ν⎜ ⎟

⎝ ⎠
,1 , 

where , ( ) ( )
 1 2

2  1
a K z K z dz

−
= ∫ ( ) ( )

 1 2

 1
R K K z

−
= ∫ dz , , and ( ) ( )( ) ( )logb t V t V t′′=

( )( ) ( ) ( ) ( )2 2
22s V t V t nh g t R K⎡ ⎤= ⎣ ⎦ . 

 The proof is a combination of Taylor series expansion of normalized function of 

(16) and Gramer-Wold rule. The proof is long and is included in a working paper version 

downloadable from http://statqa.cba.uc.edu/~yuy/YYWL2.pdf.  

 In terms of estimating volatility by (16) via ( )ˆ , tt Xσ , we may derive the 

asymptotic property of ( ) ( )ˆ , ,t tt X t Xσ σ−  by Taylor expansion 

( ) ( ) ( ) ( ) ( )( )ˆ ˆ~ 1 2 , tV t V t t X V t V tσ− −⎡ ⎤⎣ ⎦ . 

 Theorem 3. Under the same conditions of Theorem 2, 
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( ) ( ) ( ) ( ) ( ) ( ){ } ( )* 2
2 2 2 2

1ˆ , , 1
2t t Dnh s t t X t X a K b t h hσ σ⎛ ⎞× − − +Ο → Ν⎜ ⎟

⎝ ⎠
0,1  

where ( ) ( ) ( ) ( )2* 2
2, 2ts t t X nh g t R Kσ⎡ ⎤= ⎣ ⎦ . 

 By applying the likelihood estimation property to the log-likelihood equation (17) 

over parameter γ , we have another theorem. 

 Theorem 4. When (17) is a second continuous differentiable function on ( )0,∞  

over γ  and , the estimator n →∞ γ̂  from (20) is consistent and satisfies  

( ) ( ) (1 2 ˆ 0,1DnI γ γ γ− → Ν ) , 

where the Fisher information 

( )
( ){ }

( ) ( )

2
2

2
12 2

1 ,
log

i i

i

i

t i i t
i

t
i i t

Y t X
I X

t X
γ

µ
γ γ

σ
+

⎛ ⎞⎛ ⎞∆ −⎜ ⎟⎜ ⎟∆⎜ ⎟⎜ ⎟= Ε − +
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ . 

 Remark: From the asymptotic analysis, the optimal bandwidth is of the usual ( )1 5O n−  

size and the optimal mean integrated squared errors are of the order ( 4 5O n− ) . An 

analogous theorem near the boundary can be easily obtained, which verifies the 

theoretical advantage of local linear (and local log-linear) approach over local constant 

(kernel) method at the boundary.  

 

4. Treasury Bill Case Study 

4.1 Data 

We compare log P-splines, local log-linear, and FJZZ, in a case study with the 

weekly 3-month Treasury bill secondary market rate (weekly averages of business days) 

obtained from Federal Reserve Bank of St. Louis. The data set contains 2,638 

observations from January 8, 1954 to July 23, 2004. The yields and their changes are 

plotted in Figure 1 (a) and (b). The volatility of changes in yield is clearly time-

inhomogeneous. High volatility (Figure 1b) corresponds to high levels of interest rates 

(Figure 1a). During the high interest rate period from 1979 to 1982, the volatility was 

also large. These are confirmed by the descriptive statistics in Table 1. It displays the 
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mean and standard deviation of both the weekly yields 
it

X  and their changes  

(

it
y

1it ti
X X

−
− ) during three periods: 1954 to 1978, 1979 to 1982, 1983 to 2004. Both the 

level of the yields (mean 11.52445) and the volatility of the yield changes (standard 

deviation 0.556564) were particularly high from 1979 to 1982.  

Table 1. Descriptive statistics of yields and their Changes, 

artificially divided into three periods for illustration purpose. 
Mean

Variables Sample Size 1954-1978 1979-1982 1983-2004
Yield 2638 4.259% 11.524% 5.243%

Change 2637 0.006% -0.006% -0.006%  
Standard Deviation

Variables Sample Size 1954-1978 1979-1982 1983-2004
Yield 2638 1.892% 2.559% 2.269%

Change 2637 0.157% 0.557% 0.111%  
In the next section, we report the estimation results from the three methods. 

4.2 Estimation Results 

For the log P-splines method, we focus on the two-step estimation method 

outlined in Section 2.3. A combination of degree of 1 and around 10 equally spaced 

quantile knots in the power basis for ( )itα , ( )itβ , and ( )log itσ  is found to give stable 

results. In log P-splines, the choice of smoothing parameter, as discussed in Section 2.4, 

is more critical than the degree or the number of knots. The smoothing parameter can be 

chosen using either GCV or EBBS but the results are similar. As shown in Figure 6, the 

autocorrelation in the residuals is mild and thus EBBS may not be necessary. GCV is 

certainly simpler to compute and the results reported here are from using GCV. Both the 

local log linear method and FJZZ’s local constant method also estimate the drift and the 

volatility in an iterative fashion as in log P-splines. However, the parameter γ  is not 

naturally embedded in volatility estimation as in log P-splines. In the local log linear 

method as described in Section 3.1, γ  is estimated by minimizing equation (17). FJZZ 

maximizes a profile pseudo likelihood of γ  to obtain an estimate. The local log linear 

method selects the bandwidth using the rule of thumb (ROT) while FJZZ minimizes the 

average prediction error (a function of the bandwidth) to choose the bandwidth. 

 Figure 1(b) clearly indicates that the volatility is much lower during the mid-
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1960s than other periods. This means a drop of the fitted volatility during that period. 

Figure 1(c) shows the volatility estimates from the three methods. The volatility plot from 

log P-splines shows the decrease clearly while the other two methods show instead an 

increase of volatility. Log P-splines appear to model the volatility better than the other 

two methods. We further explore this issue with a small simulation study next, focusing 

on comparison of log P-splines and FJZZ.  

 The drift in the semiparametric inhomogeneous diffusion model (2) is set to 0 and 

the (true) inhomogeneous volatility ( )tσ  follows the nonlinear trend in Figure 2(c). 

1,000 simulations of sample size 2,000 are generated and estimated. A typical sample 

path and its difference are shown in Figures 2(a) and 2(b). Figure 2(c) shows that the log 

P-splines estimate of ( )tσ  is very close to the true ( )tσ . The estimate from FJZZ is very 

different from the true ( )tσ . However, the volatility estimates ( ) ˆˆ tt X γσ  from both log P-

splines and FJZZ are close to the true volatility (see Figure 3). It appears that tX γ  plays a 

significant role in the FJZZ estimate. Table 1 reports the median of both MSE (Mean 

Squared Error) and MAD (Mean Absolute Deviation) from the two methods. Figure 4 

displays the boxplots of MSE and MAD from 1,000 simulations. Both the boxplots and 

Table 2 clearly indicate that the log P-splines method gives smaller MSE and MAD for 

( )tσ , γ , and the volatility.  

Table 2. MSE and MAD Comparison: Median of 1,000 simulations. 
SIGMA LOG P-SPLINES FJZZ
MSE 2.40E-03 2.28E-02
MAD 3.53E-02 1.28E-01

GAMMA LOG P-SPLINES FJZZ
MSE 6.25E-04 1.30E-03
MAD 1.69E-02 2.37E-02

VOLATILITY LOG P-SPLINES FJZZ
MSE 4.95E-04 3.59E-03
MAD 1.55E-02 3.96E-02  

 [Insert Figure 2 here] 

[Insert Figure 3 here] 

[Insert Figure 4 here] 

We now go back to the case study. To assess the accuracy of the estimators, 

confidence intervals can be constructed. There are two ways to do this. When the 
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assumption of independent  holds, confidence intervals based on the asymptotic 

theorems in Sections 2 and 3 can be computed. When  are dependent, the regression 

bootstrap (see Franke, Kreiss, and Mammen 2002) can be adopted. The basic idea is to 

generate the bootstrap samples  in (2) using the estimates of 

it
Y

it
Y

*
it

Y ( )itα , , , ( )itβ ( )itσ γ , 

and normal errors 
it

ε . Then estimate the drift, volatility and other estimators of interest. 

Repeat this process a number of times to generate samples and find the confidence 

intervals. Figure 5 displays the estimate and bootstrap confidence band for volatility 

based on 1,000 bootstrap samples from the log P-splines method. Volatility is highest in 

early 1980s. During that period, the bootstrap confidence band is widest and the volatility 

is the most inhomogeneous. This is in agreement with the economic situation then, as 

described in Section 1. Asymptotic theorems in Sections 2 and 3 can also be applied to 

construct the confidence bands and the results are similar. 

[Insert Figure 5 here] 

4.3 Diagnostics 

 Diagnostics are performed to check the adequacy of the three methods. Figure 6 

plots the autocorrelation functions of the standardized residuals from the three methods. 

There was mild autocorrelation at lag 1 for all three methods. We observe that two 

smoothing parameter selection criteria EBBS and GCV give similar results for the log P-

splines approach. This is not surprising when the autocorrelation is mild. Since GCV is 

computationally more efficient, we recommend GCV for this case study. In other 

situations when autocorrelation is severe, EBBS might be more desirable. 

 The predictive power for the drift and volatility is compared using the correlation 

coefficient. The following correlation coefficients 1ρ  and 2ρ  are computed: 1ρ  is the 

correlation coefficient between the yield change and the estimated drift from the three 

methods. 2ρ  is the correlation coefficient between the squared yield change and the 

estimated volatility. The local log-linear method gives the highest 1ρ  and thus has the 

highest predictive power for the drift. The log P-splines method gives the highest 2ρ  and 

models the volatility best.  

 [Insert Figure 6 here] 
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Table 3. Correlation Coefficients. 

Models Log P-splines Local Log-linear FJZZ 

1ρ  0.1329 0.2347 0.0353 

2ρ  0.4071 0.3964 0.3099 

 

4.4 Discussion 

 From this case study of the weekly three-month Treasury bill data and some 

limited simulation study, we find that the proposed log P-spline and local log-linear 

approaches can be successfully applied to time-inhomogeneous diffusion models. Our 

experience shows that log P-splines seem to be able to model the volatility best in our 

case study data. Log P-splines are also computationally efficient, and thus are 

recommended in practice. Both approaches guarantee that the volatility to be positive, an 

important appealing feature in practice. Inference is also readily available via either 

asymptotic theorems presented or regression bootstrap. 
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Figure 1. Weekly Treasury bill yields from 1954 to 2004. The yields, their changes, 
squared residuals from the drift estimation, and estimated squared volatility are plotted. 
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Figure 2. Simulated data and the estimated Sigma. 
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Figure 3. True and the estimated volatility (median) from 1,000 simulations. 
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Figure 4. Boxplots of MSE and MAD from 1,000 simulations. 
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Figure 5. Time-inhomogeneous log P-splines diffusion estimates with the regression 
bootstrap confidence interval. 
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Figure 6. Diagnostic check: residual autocorrelation functions and normal QQ-plots using 
three model, log P-splines, local log-linear, FJZZ. 
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