
 
 

An Improved Estimation Method and Empirical Properties of PIN∗

 
Yuxing Yan† and Shaojun Zhang‡

 
 
 
 

Abstract 
 

The probability of information-based trading (PIN) is estimated via numerical 

maximization of a likelihood function.  The maximization solutions frequently fall on the 

boundary of the parameter space and such boundary solutions cause a systematic bias in 

PIN estimates.  We develop an algorithm to obtain PIN estimates that are free of this bias.  

We analyze the estimates for over 80,000 stock-quarter pairs and document evidence for 

temporal and seasonal variations in PIN.  These variations are related to the January 2001 

decimalization and the year-end tax-loss selling.  We also find systematic differences 

between our estimates and others. 

 

 

JEL Classification: C13, C61, G12, G14  
 
Keywords:  decimalization, market microstructure, numerical maximization, PIN, 
information-based trading, tax-loss selling  
 
 

                                                 
∗ We thank Chuan Yang Hwang for constructive and helpful comments and Stephen Brown for providing 
his PIN data.   
† Wharton Research Data Services, 216 Vance Hall, 3733 Spruce Street, Philadelphia, PA, 19104. Phone: 
(215) 8986359, Fax: (215) 5736073, Email: yxyan@wharton.upenn.edu. 
‡ Division of Banking and Finance, Nanyang Business School, Nanyang Technological University, 
S3-B1A-07 Nanyang Avenue, Singapore 639798.  Phone: (65) 6790-4240, Fax: (65) 6792-4217, Email: 
asjzhang@ntu.edu.sg. 

mailto:asjzhang@ntu.edu.sg


 
 
 
 

An Improved Estimation Method and Empirical Properties of PIN 
 
 
 
 

Abstract 
 

The probability of information-based trading (PIN) is estimated via numerical 

maximization of a likelihood function.  The maximization solutions frequently fall on the 

boundary of the parameter space and such boundary solutions cause a systematic bias in 

PIN estimates.  We develop an algorithm to obtain PIN estimates that are free of this bias.  

We analyze the estimates for over 80,000 stock-quarter pairs and document evidence for 

temporal and seasonal variations in PIN.  These variations are related to the January 2001 

decimalization and the year-end tax-loss selling.  We also find systematic differences 

between our estimates and others. 

 
 



The probability of information-based trading (PIN) is a measure of the information 

asymmetry between informed and uninformed traders in individual stocks.  It has been 

used to study various topics such as how spreads differ between frequently and 

infrequently traded stocks, how market venues influence informed trading, whether 

financial analysts have private information, how stock splits affect trading, and whether 

information risk is a determinant of stock return.1  An increasing number of recent studies, 

for example, Brown et al. (2004) and Vega (2005), use PIN to study a broader range of 

topics in corporate finance, empirical asset pricing, and so on.2   

The value of PIN is derived from the market microstructure model in Easley and 

O’Hara (1992).  Since PIN cannot be measured directly, it must be estimated by 

numerical maximization of the likelihood function specified by the underlying 

microstructure model.3  In this paper, we identify a bias that may arise from numerical 

maximization of the likelihood function.  We find that the maximization solutions are 

sensitive to initial values of the numeric procedure and frequently fall on the boundary of 

the parameter space.  Such boundary solutions can cause substantial bias in the estimate 

of PIN.  Logistic regressions show that the occurrence of boundary solutions is 

influenced by market capitalization and trading volume.  Since stocks have smaller 

market capitalization and lower trading volume in early years than in recent years, we 

                                                 
1 See Easley et al., 1996a, 1996b, 1997a, 1997b, 1998, 2001, 2002, 2004, and 2005. 
2 Brown et al. (2004) show that PIN is negatively associated with conference call activity and conclude that 
conference calls reduce information asymmetry and thus lower the cost of capital.  Vega (2005) studies the 
effect of public surprises, media coverage, and private information on the post-earnings-announcement drift 
and uses PIN to proxy for private information prior to earnings announcements.   
3 A few studies point out that using the estimate of PIN in empirical analysis may introduce the errors-in-
variable bias in regression results.  For example, Easley et al. (2002) include an instrumental variable in 
their regression to correct for the potential errors-in-PIN bias.  Vega (2005) uses bootstrapping to control 
for this bias.  Brown et al. (2004) check the robustness of their empirical findings by filtering out 
questionable PIN estimates.   
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find that boundary solutions appear more frequently and show stronger effect in early 

years.  

We develop an algorithm that can help avoid such boundary solutions.  At the 

core of the algorithm are the moment equations derived from the marginal distributions 

of the daily number of trades according to the underlying market microstructure model.  

We use the moment equations to identify proper initial values in the parameter space.  

We apply the new algorithm to obtain estimates of the model parameters and PIN for a 

large number of stocks listed on the New York Stock Exchange (NYSE) and the 

American Stock Exchange (AMEX) in every calendar quarter between 1993 and 2004.  

The number of stocks in a quarter ranges from 1,481 to 1,923.  We study these estimates 

and find several empirical properties of PIN.    

First, we observe substantial changes in PIN and other trading-related parameters 

that coincide with the January 2001 decimalization on the NYSE and AMEX. 4  

Bessembinder (2003) reports that, shortly after the decimalization, trade execution costs 

declined substantially and market quality improved on the NYSE.  Harris (1997) 

conjectures that trading volumes should respond to the reduction in trading costs, but it 

may take a long while before traders adjust to a change in trading costs.  Consistent with 

his conjecture, we find that uninformed and informed trades increased after the 

decimalization and exhibited a long upward drift.  Because uninformed trades grew more 

than informed trades, the ratio of the daily number of uninformed trades to the daily 

number of informed trades (called the uninformed-to-informed ratio) also increased.  The 

uninformed-to-informed ratio of an average stock jumped by an average of 5.2% in the 

                                                 
4 Before the decimalization, both NYSE and AMEX were trading and quoting listed stocks in fractions of a 
dollar.  On January 29 2001, both exchanges began trading and quoting listed stocks in increments of 1 cent. 
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first quarter of 2001 (denoted by 2001Q1) and increased dramatically by an additional 

49.3% from 2001Q2 to 2004Q4.  Because PIN is negatively related to the uninformed-to-

informed ratio, PIN of an average stock declined by 19.8% from 2001Q1 to 2004Q4.  

This indicates significant reduction in information asymmetry on the NYSE/AMEX after 

the decimalization.  We also find that the reduction in information asymmetry is mainly 

due to the significant increase in the uninformed-to-informed ratio.    

Second, we find a strong seasonal pattern in PIN.  Specifically, PIN tends to 

decline in the first quarter of a year relative to the previous fourth quarter.5  Empirical 

evidence shows that the decline of PIN in the first quarter is also primarily due to 

contemporaneous increase in the uninformed-to-informed ratio.   

We conduct an additional analysis to examine the relation between this seasonal 

pattern and the year-end tax-loss selling.  We calculate the cumulative 10-month return 

from February to November in each year and classify a stock as winner if its cumulative 

return is greater than 10% or loser if the return is less than -10%.  We find that, in the 

fourth quarter and the subsequent first quarter, winners and losers exhibit significant 

difference in market trading.  Specifically, in the fourth quarter, losers on average 

experience greater increase in informed trading and uninformed selling than winners, and 

both groups of stocks experience about the same amount of increase in uninformed 

buying.  In the subsequent first quarter, the majority of winners experience substantial 

increase in both informed and uninformed trading, while at least half of losers experience 

no increase in trading at all.  This evidence is consistent with the year-end tax-loss selling 

hypothesis that investors sell losers at year end to save on tax.  It also suggests that 

                                                 
5 In the twelve-year period between 1993 and 2004, the only exception is the first quarter of 2001 when the 
decimalization took place.   
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investors seem to ignore losers in the following first quarter and chase winners instead.6  

Because PIN is negatively related to the uninformed-to-informed ratio and the ratio 

increases substantially more for winners than losers in the first quarter, PIN declines 

more for winners than losers in the first quarter.   

In the end, we compare our quarterly PIN estimates with Stephen Brown’s.  

Brown provides the only publicly available source of quarterly PIN estimates.7  We find 

his PIN estimates are on average larger than ours in the years before 1999.  Since 

boundary solutions are abundant in these years, the evidence suggests that his PIN 

estimates are subject to the upward bias associated with boundary solutions.  To further 

examine the effect of boundary solutions on Brown’s PIN estimates, we compare his PIN 

estimates with ours under two scenarios, where his estimates are more likely to be 

affected by boundary solutions in one scenario than in the other.  We find that the 

differences between his PIN estimates and ours are larger in the first scenario than in the 

second.  

In addition, there is an unusual difference between our PIN estimates and 

Brown’s.  In the three-year period between 1999 and 2001, we find that Brown’s PIN 

estimates are unusually larger than ours, and that the quarterly standard deviations of his 

PIN estimates between 1999 and 2001 are twice as high as those of our PIN estimates.  

Because a regression coefficient estimate is positively related to the standard deviation of 

the dependent variable according to statistics theory, the coefficient estimates in a 

                                                 
6 It is interesting to study whether such difference in trading is related to the abnormal return at the turn of 
the year is in order.  Since it is out of the scope of this paper, we leave it for future research.   
7 Brown’s PIN estimates are available at http://userwww.service.emory.edu/~sbrow22/index.html.  Soeren 
Hvidkjaer provides another set of PIN estimates at his website, but his PIN estimate is on a yearly basis. 
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regression study may be different depending on whether our PIN estimates or Brown’s 

are used as the dependent variable. 

The remainder of this paper is organized as follows.  Section I briefly describes 

the underlying market microstructure model and how PIN is estimated.  Section II 

provides the details of our new algorithm.  Section III describes the data.  Sections IV, V, 

and VI present the empirical findings on the boundary solutions, the empirical properties 

of PIN, and the comparison between our PIN estimates and Stephen Brown’s, 

respectively.  Section VII concludes the paper.  

 

I. The Estimation of PIN 

In this section, we specify the underlying market microstructure model and 

describe how PIN is derived and estimated with actual trade data.8  The underlying model 

views trading of a financial asset as a game between a market maker and traders that 

repeats over trading days.  On any day, before trading starts, nature decides whether an 

information event occurs and reveals new information about the underlying asset value.  

The probability that an information event occurs is denoted α .  If the information event 

occurs, it can be bad news with the probability δ  or good news with the probability 1 δ− .   

Trading begins after the event occurs.  Trades arrive according to Poisson 

processes throughout the day.  Uninformed traders who are not aware of the new 

information submit buy orders at the daily arrival rate bε  and sell orders at the daily 

arrival rate sε .  On the day when an information event occurs, informed traders who 

know the new information submit orders at the daily arrival rate µ .  The informed 

                                                 
8 Please refer to Easley and O’Hara (1992) and Easley et al. (1997b, 2002) for detailed discussions about 
the motivation, structure, and interpretation of the underlying model and PIN.   
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traders buy at good news and sell at bad news.  The market maker sets prices to buy or 

sell at any time during the day and executes orders as they arrive.  The market maker 

updates his beliefs about the underlying asset value by observing the order flow and 

revises quote prices accordingly.  The process of trading and learning continues 

throughout the day.   

Mathematically, the model specifies that, on any day i , the likelihood of 

observing the number of buy trades iB  and the number of sell trades  is given by  iS

          

( )

( )

( )( | , ) (1 )
! !

( ) (1 )
! ! !

i i
b s

i i i
b s b s

B S
b s

i i
i i

B S B
b s b

i i i

L B S e e
B S

e e e e
!

iS
s

iB S B

µ ε ε

ε µ ε ε ε

µ ε εθ α δ

S
ε µ ε ε εαδ α

− + −

− − + − −

+
= −

+
+ + −

, (1) 

where ( , , , ,b s )θ α δ µ ε ε=  represents the five structural parameters in the model.  

Assuming days are independent, the joint likelihood of observing a series of daily buys 

and sells over trading days  is the product of the daily likelihoods,  1, ,i = … I
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based trading (PIN) is defined as  
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Intuitively, PIN measures the fraction of trades in a day that arise from informed traders.   

Maximizing the joint likelihood in equation (2) over the parameters in θ  provides 

estimates of these structural parameters.  However, there is no closed form solution to the 

maximization problem.  A numerical maximization technique must be used to obtain a 
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solution.  Easley et al. (2003, 2005) recommend the following factorization of the joint 

likelihood function to facilitate numerical maximization  
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advantage of using this factorization is to increase computing efficiency and reduce 

truncation error.  It is particularly important for stocks that have a large number of buys 

and sells because, without factorization, we would need to take the trading frequency 

parameters (i.e., µ , bε , or sε ) to large powers that equal the actual number of trades (i.e., 

iB  or ).  This frequently causes underflow or overflow problems in most computing 

environments. 

iS

Several numerical methods have been used for solving the maximization problem.  

Easley et al. (1996b, 1998, 2001) apply a logit transformation to restrict the probability 

parameters α  and δ  to (0, 1) and a logarithmic transformation to restrict the arrival rate 

parameters ε  and µ  to (0, ).  They use the quadratic hill-climbing algorithm GRADX 

from the GQOPT package to maximize the likelihood function.  Easley et al. (2003) 

factorize the likelihood function and maximize it by using the simplex search method 

implemented in the MATLAB fminsearch function.  Brown et al. (2004) use the modified 

Newton-Raphson method implemented in the STATA ml procedure to maximize the 

likelihood function.  In our study, we use the SAS NLP procedure to maximize the 

factorized likelihood function in equation (4).  The SAS NLP procedure allows seven 

∞
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optimization methods.  We chose the modified Newton-Raphson method because it is 

suitable for our problem and is widely used.  It also makes our PIN estimate comparable 

with the PIN estimate used by Brown et al. (2004).   

The Newton-Raphson method is an iterative search process that starts from 

certain initial values of the parameters and moves along a mathematically specified path 

in the parameter space in search of the largest value of the objective function.  The 

process stops until certain convergence criteria are satisfied.  Depending on the initial 

values, the process may or may not stop at the global optimum of the objective function.   

In the following, we use one numerical example to illustrate the impact of initial 

values.  We examine the numerical maximization results for the stock with the symbol 

MNR in the Trade and Quotes (TAQ) database in the first quarter of 1995.  We use the 

SAS NLP procedure to maximize the factorized likelihood function conditional on the 

number of buy trades and sell trades in each day.9  Since there are 63 trading days in this 

quarter, the data set consists of the number of buy trades iB  and the number of sell trades 

 for i = 1, …., 63.  The average of the daily number of buy trades is 29.7 and the 

average of the daily number of sell trades is 25.6.  We choose 80 different sets of the 

initial values for the five parameters 

iS

( ), , , ,b sθ α δ µ ε ε=  and run the SAS NLP procedure 

80 times, each time with one different set of initial values.  We will discuss the procedure 

of choosing these initial values in the next section.  The maximization results from the 80 

runs are given in Appendix A.  We find that in 34 of the 80 runs, the maximization 

procedure produces a boundary solution for α , where α  is equal to 0 or 1.  More 

specifically, the solution of α  is 0 for 22 of these runs and is 1 for the other 12 runs.  

                                                 
9 We use the Lee and Ready (1991) algorithm to classify each trade into a buy or sell transaction.  
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In addition, we find that these boundary solutions have a large influence on the 

estimate of PIN.  We calculate PIN with the estimated structural parameters according to 

equation (1).  Table A.I in Appendix A reports the PIN estimates.  When the solution of 

α  is neither 0 nor 1, the PIN estimate is equal to either 0.131 or 0.157.  To decide which 

one of these two values is the best PIN estimate, we examine the associated value of the 

log likelihood function.  Because the maximum value of the log likelihood function is 

8128.0, the best estimate of PIN ought to be 0.131.  However, when the solution of α  

equals 0, the PIN estimate becomes 0, much smaller than 0.131.  On the other hand, when 

the solution of α  equals 1, the PIN estimate falls between 0.429 and 0.801, several times 

larger than 0.131.  

The example demonstrates that the boundary solutions of α  can influence the 

estimate of PIN substantially.  The worst part is that it is unrealistic for α  to have a 

boundary solution.  Recall that α  is the probability of an information event.  When α  

equals 0, it means that information events never occur during the quarter.  This is 

unlikely because many events can influence a firm’s value, such as the publication of a 

quarterly report and announcements of new products or personnel changes by the firm 

and its competitors, suppliers, customers, and regulators.  When α  equals 1, it means 

that information events happen every day.  Although we cannot rule out the possibility 

that this may happen in certain quarters for individual firms, it is rare.   

Now the question is how can we avoid these problematic boundary solutions?  

The widely used approach is to run the maximization routine starting from different 

initial values and choose the solution that is realistic and at the same time maximizes the 

likelihood function.  Easley et al. (2001) explicitly states, “To insure that we, in fact, find 
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a global maximum for each stock, we run the optimization routine starting from many 

different points in the parameter space.”  However, the success of this approach depends 

on how representative the chosen initial values are of the parameter space.  The initial 

values should be properly chosen so that the parameter space is explored thoroughly and 

efficiently.  In the following section, we develop an algorithm that can set proper initial 

values.   

 

II. A New Algorithm 

The parameter space of the likelihood function in equation (4) is not simple, and it 

is a challenge to set initial values that are representative of this space.  The probability 

parameters α  and δ  lie in the closed interval between 0 and 1, while the arrival rates µ , 

bε , and sε  are unbounded, ranging from 0 to the positive infinity.  For the bounded 

parameters, we can divide the closed interval equally and choose equal-distanced values 

within the interval.  However, picking initial values for the unbounded parameters is not 

straightforward.  What makes things more difficult is how to make sure that the chosen 

values of the five parameters together form a coherent set of reasonable initial values.  

The following algorithm accomplishes this purpose.   

We use the moment conditions for the probability distributions of daily buys and 

sells to solve for the initial parameter estimates.  The joint probability distribution of B 

and S is actually the same as the likelihood function in equation (1), from which we 

derive the marginal expected values of B and S as follows:   

                                                    ( ) ( ) bBE εµδα +−= 1 ,   (5) 

                                                        ( ) sSE εαδµ += .   (6) 
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Appendix B provides the details of the mathematical derivation.  We now use these two 

equations to set the initial values of the five parameters.  We first divide the interval [0, 1] 

equally and choose equal-distanced values in the interval for α  and δ .  We then use the 

sample average B and S  to replace E(B) and E(S) in the above two equations.  Since the 

first part on the right-hand side of equation (5) is always positive (i.e., ( ) 01 >−δα ) , bε  

must be less than B .  This suggests that we choose the initial values of bε  to be fractions 

of B .  At last, we solve equations (5) and (6) simultaneously for the initial values of sε  

and µ .  Therefore, a whole set of initial values can be specified as follows   

        , , iαα =0
jδδ =0 Bkb ⋅= γε 0 , ( )00

0
0

1 δα
ε

µ
−⋅

−
= bB

, and 0000 µδαε ⋅⋅−= Ss , (7) 

where the three variables iα , jδ , and kγ  represent fractions of one.  More specifically, 

each variable equals one of the five fractions (0.1, 0.3, 0.5, 0.7, 0.9).  The combinations 

of iα , jδ , and kγ  yield 125 sets of initial values.10  Some of them are unacceptable 

because  has a negative value.  In the above example for the stock MNR, 45 of the 125 

sets are unacceptable, the remaining 80 sets are used to start the numerical maximization 

process, but 34 of them lead to boundary solutions.   

0
sε

We implement the following algorithm to obtain the estimate of PIN for any 

given stock.  In the first step, we first construct the 125 sets of initial values with the data 

of daily buys and sells of the stock.  In the second step, we run the maximization 

procedure for all acceptable sets and record the corresponding solutions.  In the third step, 
                                                 
10 We have tried to let iα , jδ , and kγ  each take one of the nine fractions (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9).  The combination produces 729 sets of initial values, which substantially increases computation 
time.  We used the 729 sets of initial vales for the first quarter of 2001 and did not find any systematic 
difference in the results between the 125 sets and the 729 sets.  All results reported in this paper are 
obtained by using 125 sets of initial values. 

 11



we exclude all boundary solutions and choose the set of parameters that produces the 

highest value of the objective function among the nonboundary solutions.  If all solutions 

are on the boundary, we interpret it as evidence that the optimum must occur on the 

boundary and thus choose the one that has the highest value of the objective function 

among all solutions.  At last, we calculate the PIN estimate with the estimated parameters. 

 

III. The Data and Preliminary Analysis 

The estimation of PIN requires the number of buy trades and the number of sell 

trades in each day.  The TAQ database includes bid quotes, ask quotes and trade prices, 

but does not tell whether a trade is buyer initiated or seller initiated.  We classify each 

trade as buyer- or seller-initiated using the standard Lee and Ready (1991) algorithm.  

The algorithm classifies any trade that takes place above (below) the midpoint of the 

current bid-ask quotes as a buy (sell) because trades originating from buyers (sellers) are 

most likely to be executed at or near the ask (bid).  For trades taking place at the midpoint, 

the most recent trade price is used to classify the trade.  We follow Lee and Ready’s 

(1991) suggestion to use the five-second lag of reported quote times to adjust for 

differences in reporting times between quotes and trades.   

We estimate PIN for NYSE/AMEX listed stocks that have data in the TAQ 

database between January 1, 1993 and December 31, 2004.  We focus on the 

NYSE/AMEX stocks because the underlying structural model conforms the most to the 

trading environment of the NYSE/AMEX.  Stocks in the TAQ database are matched with 

those in the CRSP database by the historical eight-digit CUSIP.  Since the TAQ database 

may reuse one symbol for different stocks whereas the CRSP database assigns a unique 
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permanent number to every stock, this matching prevents us from mixing the trade data 

of two firms that are different but share the same TAQ symbol.  It also lets us screen 

stocks based on the stock-specific information in the CRSP database.  We keep only 

stocks with the CRSP share code 10 or 11, which means that the closed-end funds, real 

estate investment trusts, American depository receipts and foreign stocks are excluded.  

We also collect the closing price and the number of shares outstanding at the end of each 

calendar quarter from the CRSP database. 

We calculate PIN for each stock on a quarterly basis and require that the stock 

have the trades and quotes data for at least 50 trading days in one quarter.  A large 

number of daily observations help to reduce the estimation errors.11  In total, 80,306 firm-

quarters meet our requirements.  Table I reports the number of stocks that obtain the PIN 

estimates and the number of stocks that do not obtain PIN estimates.  For example, in the 

first quarter of 1993 (i.e. 1993Q1), we obtain PIN for 1,486 stocks and cannot obtain PIN 

for one stock, whereas in 2004Q4 the respective numbers are 1,625 and 65.  Overall, we 

have PIN for 79,512 stock-quarters, accounting for 99% of the total number.  By 

comparison, Easley et al. (2005) have a sample of nearly 40,000 stock-years between 

1983 and 2001 and are able to obtain PIN estimates for all but 475.  Our success rate is 

about the same as theirs.   

[Insert Table I about here] 

Consistent with Easley et al. (2005), we observe in Table I that the stocks that do 

not obtain PIN estimates account for a significant portion of the total market 

capitalization.  A stock’s market capitalization at the end of each calendar quarter is the 

product of the quarter-end closing price and the number of shares outstanding from the 
                                                 
11 By comparison, Easley et al. (2005) requires a minimum of 60 trading days in one year.   
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CRSP database.  In early years, the stocks that do not have PIN estimates account for a 

small percentage, mostly below 2%, of the total market capitalization of our sample 

stocks, yet their shares increased sharply in recent years.  In 2004Q4, the number of 

stocks without PIN estimates is 65 out of a total of 1,690 stocks, but they account for 

41.8% of the total market capitalization.  Easley et al. (2005) point out that the main 

cause responsible for the failure to obtain PIN estimates is the large number of trades per 

day.  Large numbers of buy or sell trades can produce a numerical value that exceeds the 

largest number a computer software program allows (i.e., overflow) or a numerical value 

that is smaller than the smallest number a computer software program can handle (i.e., 

underflow).  Both overflow and underflow can cause the computer software to stop 

running.   

 

IV. The Boundary Solutions 

As described in Section II, the new algorithm we propose identifies 125 sets of 

initial values and run the numerical maximization procedure 125 times for each stock, 

each time with a different set of initial values.  In the process of running our SAS 

program for the maximization, we kept a record of how many times the maximization 

produces a boundary solution.  In this section, we study how frequently and when 

boundary solutions occur.  

In Table II, we report the quarterly number of stocks that obtain PIN estimates 

and the mean and median of the number of times that each stock has a boundary solution 

out of the 125 runs.  The mean and median are calculated over all stocks that obtain PIN 

estimates in each quarter.  The means are larger than the medians, indicating that the 
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number of boundary solutions has a right-skewed distribution.  The mean and median 

remained almost the same in the quarters before 1999, but started declining from 1999Q1.  

The median was eight in 1999Q1 but became zero after 2002Q2, and the mean reduced 

from 15.8 in 1999Q1 to 3.5 in 2004Q4.   

[Insert Table II about here] 

The evidence shows that the occurrence frequency of boundary solutions varies 

greatly among stocks.  It is interesting to know which stocks are likely to have boundary 

solutions.  We study this question by comparing the characteristics of stocks that fall into 

two extreme categories: Stocks in the first category have no boundary solutions, whereas 

those in the second category have more than 15 boundary solutions.  In Table II, we 

report, for each quarter, the number of stocks in each category, the proportion of each 

category accounting for the total number of stocks in the quarter, the average market 

capitalization and the average number of daily trades over all stocks in each category.  

The market capitalization in billions of dollar is calculated at the end of each quarter as 

the product of the quarter-end closing price and the number of shares outstanding.  The 

number of daily trades is the sum of buyer-initiated and seller-initiated trades.  We find 

that the number of stocks having no boundary solutions increases substantially from 243 

(or 16.4% of stocks in the same quarter) in 1993Q1 to 1,001 (or 61.60%) in 2004Q4, 

whereas the number of stocks having more than 15 boundary solutions decreased from 

431 (or 29.0%) to 70 (or 4.3%) over the same period.   

We also observe that stocks with zero boundary solutions have larger market 

capitalization and more trades per day than those with more than 15 boundary solutions.  

It seems to suggest that the chance of having boundary solutions is negatively related to 
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these two variables.  However, it is widely known that stocks of large market 

capitalization are more actively traded.  The influence of the two variables may be 

confounded.  We thus conduct a logistic regression analysis to study the effect of the two 

variables jointly.  Three logistic regression models are estimated.  The dependent variable 

of all three models equals 1 for stocks having more than 15 boundary solutions, and 0 for 

stocks having zero boundary solutions.  The three models have different explanatory 

variables.  Model 1 has the logarithm of the market capitalization as the only explanatory 

variable.  Similarly, the only explanatory variable in Model 2 is the logarithm of the 

number of trades per day.  Model 3 includes both variables.  Table III reports the 

estimation results of the three models.  We omit the intercepts of the three models from 

Table III because they have no meaningful implications for our current analysis.  The 

results show that both the market capitalization and the number of trades per day have 

negative coefficients in the single variable logistic regressions, i.e., Models 1 and 2.  But 

in the joint model, market capitalization has a positive coefficient while the number of 

trades per day has a negative one.  It means that, of any two stocks that have the same 

number of daily trades but differ in market capitalization, the one with larger market 

capitalization is more likely to have boundary solutions than the other.   

The coefficient estimates in Table III show that the number of trades per day has a 

stronger effect than market capitalization.  In addition, Table III reports the residual 

deviance of these logistic regressions and the associated chi-square tests.  An 

insignificant residual deviance indicates a good fit of the logistic regression to the data.  

We find the residual deviance of the model with both variables is insignificant in most 

cases.  
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[Insert Table III about here] 

The above evidence from the logistic regression analysis shows that the 

appearance of boundary solutions is related to the market capitalization of the stock and 

the level of trading.  It has implications on how boundary solutions should be handled in 

empirical analysis.  Brown et al. (2004) observed boundary solutions in the parameter 

estimates they obtained and, being concerned of the potential effect the boundary 

solutions might have, chose to filter out stocks with boundary solutions.  They report, 

“We eliminate observations with extreme EKO parameter estimates using the following 

filters: (1) if 50ε  > µ  or 50µ  > ε ; where sb εεε += ; (2) if 02.0<α  or 98.0>α ; (3) 

if 02.0<δ  or 98.0>δ ; and (4) if ( ) 1,min <µε .  These filters result in the elimination 

of 5,393 firm-quarter observations in the pooled, cross-sectional sample (representing 

14% of the initial sample) and 1,981 observations in the time-series sample (19% of the 

initial sample)” (Brown et al., 2004, p. 350).  The practice of filtering the observed 

boundary solutions is likely to impose a sample selection bias because stocks with low 

trading volume and low market capitalization are more likely to have boundary solutions.   

 

V. Empirical Properties of PIN 

Our estimates of PIN and other trading-related parameters cover a large number 

of stocks in the 48 calendar quarters between 1993 and 2004.  The number of stocks in 

each quarter ranges from 1,481 to 1,923 (Table I).  In the following, we study these 

estimates to explore temporal and cross-sectional pattern in PIN and other parameters.   

 

A.  PIN and the January 2001 Decimalization 
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Figure 1 displays the time series plots of the cross-sectional percentiles of PIN, α  

and δ  in each quarter between 1993 and 2004.  We examine five percentiles: the 5th, 

25th, 50th (i.e., median), 75th, and 95th.  The percentiles of the PIN estimate except the 

95th follow a clear downward trend over time.  The median PIN decreased from 0.169 in 

1993Q1 to 0.115 in 2004Q4.  The 95th PIN percentile has been relatively stable, 

suggesting that some stocks in the market consistently have high information asymmetry.   

[Insert Figure 1 about here] 

We observe a sharp difference between before and after 2001Q1 in the time series 

plots of the percentiles of α  in Figure 1.  The median of α  jumped by 12.6% in 2001Q1 

(relative to 2000Q4), and continued to rise by an additional 10.1% from 2001Q2 to 

2004Q4.  The increase in α  is likely the consequence of the decimalization that took 

place on the NYSE and AMEX in January 2001.  On January 29, 2001, the NYSE and 

AMEX began trading and quoting all listed stocks in increments of 1 cent.  Before that, 

both exchanges were trading and quoting its listed stocks in fractions of a dollar. 

Bessembinder (2003) reports that, shortly after the decimalization, trade execution costs 

declined substantially.  Lower trading costs enable investors to trade on private 

information that has a small value effect.  For example, suppose an investor receives a 

piece of private information before trading begins and knows that the price will jump by 

50 basis points over the opening price when the information becomes public during the 

trading session.  The investor will buy at the opening price and sell after the price jumps 

only if his trading cost, as a percentage of the opening price, is below 50 basis points.  

Bessembinder (2003) reports in his Table 3 that the simple average effective spread as a 

percentage of price on the NYSE was 65 basis points before decimalization and 39 basis 

 18



points after the decimalization.  In this case, the informed investor would not trade before 

the decimalization but would trade after that.  As a result, we observe more information-

based trading after the decimalization, and this explains why the probability of an 

information event increased after 2001Q1.  

In addition, we observe structural changes around 2001Q1 for the daily arrival 

rate of informed tradesµ  and the daily arrival rate of uninformed buy and sell trades bε  

and sε , as well.  Figure 2 displays the time series plots of the quarterly cross-sectional 

percentiles of the three trading frequency parameters between 1993 and 2004.  All three 

arrival rates increased slowly before 2001Q1 and exploded after 2001Q1.  The annual 

compounded growth rates of the medians of µ , bε  and sε  were 7.8%, 11.2% and 12.1% 

for the period between 1993Q1 and 2000Q4.  In contrast, the growth rates were 29.7%, 

42.6% and 38.0% between 2001Q1 and 2004Q4.  The long drift after the decimalization 

in the trading frequency parameters, µ , bε  and sε , is consistent with Harris’s (1997) 

conjecture that it takes a long while before investors recognize the effect of tick size 

changes on trading costs and adjust to it.   

Figure 2 shows a few other patterns that have some implications on market 

trading activities.  First, the cross-sectional distributions of µ , bε  and sε  are highly 

skewed to the right.  For all three trade arrival rates, the difference between the 95th 

percentile and the median is much larger than the difference between the median and the 

5th percentile.  This implies that market trading concentrates in a relatively small number 

of active stocks.  Second, the 95th percentile behaves very differently from the 5th 

percentile.  While the 95th percentiles of all three arrival rates have gone up significantly 

between 1993 and 2004, the 5th percentiles have had little change.  This suggests that 
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stocks that were actively traded attracted more trading during this period, while those 

with low trading volume continue to be neglected.  Third and last, there is a difference in 

the growth pattern between the informed and uninformed trades.  The 75th and 95th 

percentiles of µ  have maintained at a stable level after 2002Q3, but these two percentiles 

of bε  and sε  continue to grow at a fast pace.  This seems to suggest that uninformed 

trading has been driving the growth in market trading activities and may continue to do 

so in near future.  

[Insert Figure 2 about here] 

 

B. Seasonal Variation in PIN 

One subtle pattern in Figure 1 reveals that PIN almost always decreases in the 

first quarter of a year.  We now study the quarterly pattern in the variation of PIN and 

other related parameters more closely.  The mathematical formula of PIN can be 

rewritten as follows   

                               1
11 b sb s

PIN αµ
ε εαµ ε ε

α µ

= =
++ + + ⋅

.  (8) 

The formula shows that PIN is related to the probability of an information event α  and 

the ratio of the daily arrival rate of uninformed trades to the daily arrival rate of informed 

trades (i.e., ( )b sε ε+ µ ).  We study the quarterly percentage change of PIN, α  and 

( )b sε ε+ µ .  The quarterly percentage change of a variable V is defined as ∆Vt = (Vt-Vt-

1)/Vt-1, where t indexes calendar quarters.  Figure 3 presents the bar plots for the median 

percentage changes of PIN, α , and ( )b sε ε+ µ  in every quarter between 1993Q2 and 
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2004Q4.  The height of each bar equals the median of the quarterly percentage changes 

across all sample stocks in the quarter.  It is clear in Figure 3 that the percentage change 

of PIN is negative in all first quarters except 2001Q1.  The percentage change of α  is 

either negative or positive in the first quarter, yet the percentage change of ( )b sε ε µ+  is 

always positive in all first quarters.  The evidence suggests that the decrease in the 

probability of informed trading in the first quarter is mainly due to the increase in the 

uninformed-to-informed ratio.   

 [Insert Figure 3 about here] 

Table IV reports, for each of the four calendar quarters, the mean and median of 

the quarterly percentage changes of the six variables: PIN, α , µ , bε , sε , and 

( )b sε ε+ µ .  The mean and median are calculated after removing the extreme 1% 

observations at both tails.  The means are much larger than the medians, indicating that 

the sample distributions of these variables are right skewed.  This is consistent with the 

time series plots of the percentiles in Figure 1.  Table IV confirms the seasonal pattern 

that, in the first quarter, PIN decreases and the uninformed-to-informed ratio increases.  

In addition, Table IV shows that all three arrival rates of trades, µ , bε  and sε , increase 

in the first quarter, but the arrival rates of uninformed trades bε  and sε  increase more 

than the arrival rate of informed trades µ .  This explains the increase of the uninformed-

to-informed ratio.  

Moreover, Table IV shows that the change in the arrival rates of both informed 

trades and uninformed trades exhibits a U-shape seasonal pattern across the four quarters 

in a year.  That is, the arrival rates increase significantly more in the first and fourth 
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quarter than in the second and third quarter.  In addition, the increase in informed trades 

is almost the same in the first and the fourth quarters, whereas the increase in uninformed 

trades is much larger in the first quarter than in the fourth.  As a result, the uninformed-

to-informed ratio increases more in the first quarter than in the fourth.  

 [Insert Table IV about here] 

The evidence in both Figure 3 and Table IV supports a strong seasonal pattern 

that PIN always declines in the first quarter of a year.  In an attempt to explain this 

phenomenon, we hypothesize that the seasonal pattern may be related to tax-loss selling 

at year end.12  Table V reports relevant empirical evidence.  We calculate the cumulative 

10-month return from February to November in each year and classify a stock as winner 

if its cumulative return is greater than 10% or loser if the return is less than -10%.  We 

study the quarterly changes of PIN and other parameters in the fourth quarter and the first 

quarter of the following year.  Table V reports the mean and median of these quarterly 

changes by quarter and type of stock.  The mean and median are calculated after 

removing the most extreme 1% observations at both tails.   

We find that, in the fourth quarter and the subsequent first quarter, winners and 

losers exhibit significant difference in market trading.  Specifically, in the fourth quarter, 

losers on average experience greater increase in informed trading and uninformed selling 

than winners, while both groups of stocks experience about the same amount of increase 

in uninformed buying.  In the subsequent first quarter, the majority of winners experience 

substantial increase in both informed and uninformed trading, while at least half of losers 

experience no increase in trading at all.  This evidence is consistent with the year-end tax-

                                                 
12 The year-end tax-loss selling is extensively studied in literature and is found to contribute to the January 
effect.  Please refer to recent related studies including Grinblatt and Moskowitz (2004), Ginblatt and 
Keloharju (2003), Poterba and Weisbenner (2001), and references therein. 
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loss selling hypothesis that investors sell loser stocks at year end to save on tax.  It also 

indicates that investors seem to ignore loser stocks in the following first quarter and chase 

winners instead.  Furthermore, because PIN is negatively related to the ratio of 

uninformed trades to informed trades and the ratio increases substantially more for 

winners than losers in the first quarter, PIN declines more for winners than losers in the 

first quarter.     

 [Insert Table V about here] 

 

VI. Comparison with Stephen Brown’s PIN Estimates 

The numerical example in Section I demonstrates that if boundary solutions are 

mistakenly accepted as the maximum likelihood estimates, the resulting PIN estimate can 

be seriously biased.  In other words, if the maximization solution of α  is equal to 0, PIN 

will be 0 and thus biased downward; if the maximization solution of α  is equal to 1, PIN 

will be biased upward.  The evidence in Section IV shows that boundary solutions 

occurred with high frequency in the years before 1999.  More specifically, the average 

occurrence frequency of boundary solutions is about 15 out of 125 times before 1999.  

Therefore, if boundary solutions were not handled properly, PIN estimates would show 

an upward bias before 1999.  Our PIN estimates are largely free of this bias because we 

use the new algorithm described in Section II to avoid boundary solutions.   

We now compare our PIN estimates with another set of PIN estimates provided 

by Stephen Brown.  Brown made his quarterly PIN estimates publicly available on his 

website.  If Brown’s PIN estimates contain the bias associated with boundary solutions, 

there should be systematic differences between his estimates and ours.   
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Table VI reports summary statistics of the two sets of PIN estimates in every 

quarter between 1993Q1 and 2003Q4.13  It also reports summary statistics for the same-

stock difference between our and Brown’s PIN estimates.  We match stocks in our 

sample with those in Brown’s by their eight-digit CUSIP.  We find the mean and median 

of the same-stock differences between our and Brown’s PIN estimates are negative and 

declining in magnitude before 1998Q4.  However, between 1999Q1 and 2002Q4, the 

quarterly mean differences are negative but have unusually large magnitude.  For 

example, the mean difference is -0.004 in 1998Q4, but changes dramatically to -0.029 in 

1999Q1.  It is even more puzzling that, between 1999Q1 and 2001Q4, the quarterly 

standard deviations of the PIN differences are almost twice as large as the standard 

deviations in the years both before and after the three-year period.  This relates to the 

unusually large standard deviations of Brown’s PIN estimates in this three-year period.  

Our PIN estimates have almost the same standard deviations in these three years as in 

other years.  Brown et al. (2004) analyze the effect of conference calls on information 

asymmetry using a regression that includes PIN as the dependent variable and the number 

of conference calls in the prior quarter as an independent variable.  The estimated 

coefficient of the conference call variable indicates that PIN is 0.59 percentage point 

lower for each conference call held during the prior quarter.  If the same regression were 

estimated using our PIN estimates, there might be a smaller impact of conference calls on 

PIN because statistics theory suggests that a regression coefficient estimate is positively 

related to the standard deviation of the dependent variable.  

[Insert Table VI about here] 

                                                 
13 Since Brown’s data are available only between 1993 and 2003, we cannot compare our PIN estimates in 
2004.   
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The observation that Brown’s PIN estimates are larger than ours before 1999 is 

consistent with our conjecture that Brown’s PIN estimates may contain an upward bias 

due to boundary solutions.  We conduct another analysis to further examine this issue.  

We compare our and Brown’s PIN estimates for two groups of stocks.  Stocks in the first 

group have no boundary solutions out of 125 maximizations, whereas stocks in the 

second group have more than 15 boundary solutions.  Since stocks in the second group 

are more likely to have boundary solutions, Brown’s PIN estimates for these stocks are 

more likely to be biased.  Thus we expect a larger difference between our and Brown’s 

PIN estimates in the second group than in the first.  The evidence reported in Table VII 

confirms our expectation well, especially in the years before 1999Q1 when boundary 

solutions are abundant.  

[Insert Table VII about here] 

 

VII. Conclusion 

In this paper, we propose an improved method of estimating PIN and study 

empirical properties of PIN.  Because PIN cannot be measured directly, it must be 

estimated by numerical maximization of the likelihood function derived from an 

underlying market microstructure model.  We find that the maximization solutions 

frequently fall on the boundary of the parameter space and such boundary solutions cause 

a systematic bias in the estimate of PIN.  Our estimation method overcomes this bias by 

exploring the parameter space thoroughly and effectively so as to avoid boundary 

solutions.  We compare our PIN estimates with Stephen Brown’s, and find systematic 

differences that are associated with boundary solutions.   
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We obtain the estimates of PIN and other parameters for about 80,000 stock-

quarters of the NYSE/AMEX listed firms between 1993 and 2004.  Analysis of this large 

set of estimates reveals two interesting empirical regularities about PIN.  First, PIN has 

been consistently declining since the decimalization that took place in January 2001 on 

the NYSE and AMEX.  In fact, PIN of an average stock decreased by about 20% between 

2001 and 2004.  During the same period, the probability of having new information event 

in a trading day, one of the two components of PIN, increased by about 24% for an 

average stock.  A possible explanation is that the decimalization lowers transaction costs 

and makes it more convenient for informed traders to trade on their private information.  

On the other hand, lower transaction costs attract a lot more uninformed trades than 

informed trades.  In consequence, the ratio of the arrival rate of uninformed trades to the 

arrival rate of informed trades, which is the other component of PIN, increased 

dramatically by about 57% for an average stock during the same period.  Since PIN is 

negatively related to the uninformed-to-informed ratio and positively related to the 

probability of new information event, the post-decimalization decline in the probability of 

informed trading is thus due to the significant increase in the ratio.   

Second, we find a strong seasonal pattern in PIN, that is, PIN tends to decline in 

the first quarter of a year.  The decline is more prominent for winning stocks than for 

losing stocks.  We investigate the relation between this seasonal pattern and year-end tax-

loss selling, and find that investors sell losing stocks at year end for tax benefits but chase 

winning stocks at the beginning of next year.  This behavior drives the difference in the 

buy and sell transactions between winning and losing stocks, and provides a sound 

explanation of the seasonal pattern in PIN.   

 26



Our empirical findings have important implications on the use of PIN in future 

research.  First, the temporal and seasonal patterns in PIN may have confounding effects 

on the intended research hypotheses.  Careful thoughts and proper research design may 

be required to account for the unwanted effects.  Second, PIN is a composite variable 

consisting of a few components.  The variation in PIN must be related to the variation in 

individual components to certain extent.  Therefore studies that investigate or make use 

of the variation in PIN may gain additional insights by examining the variation of 

individual components.  Last but not least, the systematic differences between our PIN 

estimates and Stephen Brown’s highlight not only the impact of boundary solutions but 

also the importance of studying the quality of PIN estimates.  
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Appendix A 
Effect of initial values on numerical maximization solutions 

 
This appendix reports a numerical example that illustrates the effect of initial values on 
numerical maximization solutions.  This example also illustrates that numerical 
maximization solutions can fall on the boundary of the parameter space frequently.  The 
example uses data for the stock with the TAQ symbol MNR.  The data is for the first 
quarter of 1995.  The number of trading days is 63.  The average numbers of daily buyer-
initiated and seller-initiated trades are 29.7 and 25.6, respectively.  Classification of 
buyer-initiated and seller-initiated trades is based on Lee and Ready (1991) methodology.  
We choose 80 different sets of the initial values for the five parameters 

( , , , ,b s )θ α δ µ ε ε=  according to the algorithm described in Section II.  Table A.I reports 
the maximization results for each of the 80 sets, where PIN is the probability of informed 
trading, α  is the probability of an information event, δ  is the probability of the 
information event being bad news, µ  is the arrival rate of informed trades, bε  and sε  are 
the arrival rates of uninformed buy and sell trades, and Loglik is the logarithm of the 
maximum value of the likelihood function. 
 

Table A.I  
Numerical maximization solutions for the stock MNR 

 Initial Values Maximization solutions 
No. α  δ  µ  

bε  sε  Loglik α  δ  µ  
bε  sε  PIN 

1 0.1 0.1 297.14 2.97 22.63 8094.6 0.000 0.100 297.14 29.71 25.60 0.000 
2 0.1 0.1 231.11 8.91 23.29 8094.6 0.000 0.100 231.11 29.71 25.60 0.000 
3 0.1 0.1 165.08 14.86 23.95 8094.6 0.000 0.100 165.08 29.71 25.60 0.000 
4 0.1 0.1 99.05 20.80 24.61 8094.6 0.000 1.000 100.22 29.71 25.60 0.000 
5 0.1 0.1 33.02 26.74 25.27 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
6 0.3 0.1 99.05 2.97 22.63 8094.6 0.000 0.000 98.62 29.71 25.60 0.000 
7 0.3 0.1 77.04 8.91 23.29 8094.6 0.000 0.000 66.20 29.71 25.60 0.000 
8 0.3 0.1 55.03 14.86 23.95 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
9 0.3 0.1 33.02 20.80 24.61 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
10 0.3 0.1 11.01 26.74 25.27 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
11 0.5 0.1 59.43 2.97 22.63 7777.4 1.000 0.000 50.12 0.01 22.83 0.687 
12 0.5 0.1 46.22 8.91 23.29 8094.6 1.000 0.000 23.75 5.96 25.60 0.429 
13 0.5 0.1 33.02 14.86 23.95 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
14 0.5 0.1 19.81 20.80 24.61 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
15 0.5 0.1 6.60 26.74 25.27 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
16 0.7 0.1 42.45 2.97 22.63 8010.5 1.000 0.000 39.06 0.00 23.26 0.627 
17 0.7 0.1 33.02 8.91 23.29 8094.6 1.000 0.000 25.41 4.31 25.60 0.459 
18 0.7 0.1 23.58 14.86 23.95 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
19 0.7 0.1 14.15 20.80 24.61 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
20 0.7 0.1 4.72 26.74 25.27 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
21 0.9 0.1 33.02 2.97 22.63 8092.8 1.000 0.000 30.77 0.00 24.86 0.553 
22 0.9 0.1 25.68 8.91 23.29 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
23 0.9 0.1 18.34 14.86 23.95 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
24 0.9 0.1 11.01 20.80 24.61 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
25 0.9 0.1 3.67 26.74 25.27 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
26 0.1 0.3 382.04 2.97 14.14 8094.6 0.000 0.300 382.04 29.71 25.60 0.000 
27 0.1 0.3 297.14 8.91 16.69 8094.6 0.000 0.300 297.14 29.71 25.60 0.000 
28 0.1 0.3 212.24 14.86 19.24 8094.6 0.000 0.300 212.25 29.71 25.60 0.000 
29 0.1 0.3 127.35 20.80 21.78 8094.6 0.000 0.301 127.35 29.71 25.60 0.000 
30 0.1 0.3 42.45 26.74 24.33 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
31 0.3 0.3 127.35 2.97 14.14 7328.8 1.000 0.000 58.72 0.01 14.59 0.801 
32 0.3 0.3 99.05 8.91 16.69 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
33 0.3 0.3 70.75 14.86 19.24 8094.6 0.000 0.000 90.48 29.71 25.60 0.000 
34 0.3 0.3 42.45 20.80 21.78 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
35 0.3 0.3 14.15 26.74 24.33 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
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Table A.I (continued) 
Numerical maximization solutions for the stock MNR 

 
 

 Initial Values Maximization outcomes 
No. α  δ  µ  

bε  sε  Loglik α  δ  µ  
bε  sε  PIN 

36 0.5 0.3 76.41 2.97 14.14 7322.9 1.000 0.000 60.05 0.01 15.39 0.796 
37 0.5 0.3 59.43 8.91 16.69 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
38 0.5 0.3 42.45 14.86 19.24 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
39 0.5 0.3 25.47 20.80 21.78 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
40 0.5 0.3 8.49 26.74 24.33 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
41 0.7 0.3 54.58 2.97 14.14 7476.1 1.000 0.099 53.22 0.01 14.41 0.787 
42 0.7 0.3 42.45 8.91 16.69 8003.6 1.000 0.000 35.89 0.00 19.46 0.648 
43 0.7 0.3 30.32 14.86 19.24 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
44 0.7 0.3 18.19 20.80 21.78 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
45 0.7 0.3 6.06 26.74 24.33 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
46 0.9 0.3 42.45 2.97 14.14 7816.8 1.000 0.000 41.53 0.01 15.83 0.724 
47 0.9 0.3 33.02 8.91 16.69 8094.6 1.000 0.000 29.41 0.31 25.60 0.532 
48 0.9 0.3 23.58 14.86 19.24 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
49 0.9 0.3 14.15 20.80 21.78 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
50 0.9 0.3 4.72 26.74 24.33 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
51 0.1 0.5 416.00 8.91 4.80 8094.6 0.000 0.500 416.00 29.71 25.60 0.000 
52 0.1 0.5 297.14 14.86 10.75 8094.6 0.000 0.500 297.14 29.71 25.60 0.000 
53 0.1 0.5 178.29 20.80 16.69 8094.6 0.000 0.500 178.29 29.71 25.60 0.000 
54 0.1 0.5 59.43 26.74 22.63 8094.6 0.000 0.000 66.60 29.71 25.60 0.000 
55 0.3 0.5 138.67 8.91 4.80 8094.6 0.000 0.003 95.54 29.71 25.60 0.000 
56 0.3 0.5 99.05 14.86 10.75 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
57 0.3 0.5 59.43 20.80 16.69 8094.6 0.000 0.997 66.06 29.71 25.60 0.000 
58 0.3 0.5 19.81 26.74 22.63 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
59 0.5 0.5 83.20 8.91 4.80 8094.6 0.000 0.000 87.65 29.71 25.60 0.000 
60 0.5 0.5 59.43 14.86 10.75 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
61 0.5 0.5 35.66 20.80 16.69 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
62 0.5 0.5 11.89 26.74 22.63 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
63 0.7 0.5 59.43 8.91 4.80 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
64 0.7 0.5 42.45 14.86 10.75 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
65 0.7 0.5 25.47 20.80 16.69 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
66 0.7 0.5 8.49 26.74 22.63 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
67 0.9 0.5 46.22 8.91 4.80 8122.4 0.710 0.774 12.24 27.75 18.88 0.157 
68 0.9 0.5 33.02 14.86 10.75 8122.4 0.710 0.774 12.24 27.75 18.87 0.157 
69 0.9 0.5 19.81 20.80 16.69 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
70 0.9 0.5 6.60 26.74 22.63 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
71 0.1 0.7 297.14 20.80 4.80 8094.6 0.000 0.700 297.14 29.71 25.60 0.000 
72 0.1 0.7 99.05 26.74 18.67 8094.6 0.000 0.738 99.06 29.71 25.60 0.000 
73 0.3 0.7 99.05 20.80 4.80 8094.6 0.000 0.098 101.56 29.71 25.60 0.000 
74 0.3 0.7 33.02 26.74 18.67 8128.0 0.487 0.090 14.83 23.12 24.97 0.131 
75 0.5 0.7 59.43 20.80 4.80 8094.6 0.000 1.000 192.81 29.71 25.60 0.000 
76 0.5 0.7 19.81 26.74 18.67 8122.4 0.710 0.774 12.24 27.75 18.87 0.157 
77 0.7 0.7 42.45 20.80 4.80 8026.4 1.000 1.000 30.30 23.73 0.00 0.561 
78 0.7 0.7 14.15 26.74 18.67 8122.4 0.710 0.774 12.24 27.75 18.87 0.157 
79 0.9 0.7 33.02 20.80 4.80 8122.4 0.710 0.774 12.24 27.75 18.88 0.157 
80 0.9 0.7 11.01 26.74 18.67 8122.4 0.710 0.774 12.24 27.75 18.88 0.157 
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Appendix B 
Derivation of the marginal expected values of B and S in Equations (5) and (6) 

 
The structural market microstructure model specifies the joint probability distribution of 
the daily number of buy and sell trades, i.e. B and S, as follows 
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The marginal distribution of B is obtained by summing the above probabilities over all 
possible values of S, i.e., 
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The last step in the above derivation uses the Taylor series expansion 
0 !

nx
n

xe n
∞

=
=∑ .  

Consequently, the marginal expected value of B is given by 
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Similarly, we can derive the marginal distribution and the expected value of the daily 
number of sell trades, S, as follows. 
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Table I 
Number and Market Share of Stocks with/without PIN Estimates 

 
We estimate PIN for NYSE/AMEX listed stocks that have data in the TAQ database 
between January 1, 1993 and December 31, 2004.  Stocks in the TAQ database are 
matched with those in the CRSP database by the historical eight-digit CUSIP.  We keep 
only stocks with the CRSP share code 10 or 11, which means that the closed-end funds, 
real estate investment trusts, American depository receipts and foreign stocks are 
excluded.  Stock are required to have the trades and quotes data for at least 50 trading 
days in one quarter.  This table reports the number and market share of stocks that obtain 
or do not obtain the PIN estimates in every calendar quarter between 1993 and 2004.  
YYYYQ represents year and quarter.  N represents the number of stocks and SHARE 
represent the market share.  Market share is calculated as the percentage of the total 
market capitalization of our sample stocks at quarter end.   
 

 Stocks with 
PIN obtained 

Stocks with 
PIN missing  Stocks with 

PIN obtained 
Stocks with 
PIN missing 

YYYYQ N SHARE N SHARE YYYYQ N SHARE N SHARE 
19931 1486 98.0% 1 2.0% 19991 1826 90.2% 11 9.8% 
19932 1481 97.1% 2 2.9% 19992 1824 86.5% 11 13.5% 
19933 1516 99.1% 1 0.9% 19993 1778 89.9% 9 10.1% 
19934 1592 100.0% 0 - 19994 1823 77.5% 16 22.5% 
19941 1610 100.0% 0 - 20001 1824 71.2% 22 28.8% 
19942 1490 100.0% 0 - 20002 1706 76.5% 19 23.5% 
19943 1483 100.0% 0 - 20003 1615 75.5% 19 24.5% 
19944 1542 100.0% 0 - 20004 1644 80.2% 20 19.8% 
19951 1557 99.2% 1 0.8% 20011 1571 81.0% 14 19.0% 
19952 1596 100.0% 0 - 20012 1565 82.3% 15 17.7% 
19953 1635 100.0% 0 - 20013 1525 78.4% 17 21.6% 
19954 1637 99.1% 3 0.9% 20014 1535 76.1% 22 23.9% 
19961 1694 99.3% 2 0.7% 20021 1525 80.2% 21 19.8% 
19962 1733 97.8% 1 2.2% 20022 1568 75.7% 22 24.3% 
19963 1689 97.7% 4 2.3% 20023 1526 69.5% 34 30.5% 
19964 1777 99.4% 1 0.6% 20024 1534 69.6% 39 30.4% 
19971 1800 99.2% 1 0.8% 20031 1505 59.9% 42 40.1% 
19972 1820 94.8% 3 5.2% 20032 1554 56.9% 54 43.1% 
19973 1915 94.5% 5 5.5% 20033 1583 61.8% 43 38.2% 
19974 1923 94.6% 4 5.4% 20034 1608 61.9% 47 38.1% 
19981 1901 99.0% 2 1.0% 20041 1638 63.1% 52 36.9% 
19982 1905 95.3% 6 4.7% 20042 1569 61.3% 83 38.7% 
19983 1876 91.3% 11 8.7% 20043 1507 66.6% 40 33.4% 
19984 1876 91.9% 9 8.1% 20044 1625 58.2% 65 41.8% 
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Table II 
Occurrence Frequency of Boundary Solutions 

 
This table reports summary statistics on the occurrence frequency of boundary solutions 
in every quarter between 1993 and 2004.  YYYYQ represents year and quarter.  For all 
stocks with PIN estimates, we report the number of stocks (N), the mean (Mean) and 
median (Median) of the number of boundary solutions.  N0 (N15) represents the number 
of stocks that have no (more than 15) boundary solutions out of the 125 runs.  For stocks 
in these two categories, we report the proportion of each category accounting for the total 
number of stocks (%), the average market capitalization in billions of dollar (Market Cap) 
and the average number of daily trades (# Trades).        

 
All stocks with PIN 

estimates 
Stocks with no boundary 

solutions 
Stocks with more than 15 

boundary solutions YYYYQ 
N Mean  Median  N0 % Market 

Cap # Trades N15 % Market 
Cap # Trades

19931 1486 15.9 8 243 16.4% 4.97 213 431 29.0% 2.01 66 
19932 1481 17.5 9 212 14.3% 4.01 165 481 32.5% 2.33 66 
19933 1516 19.9 9 200 13.2% 4.94 181 538 35.5% 2.17 60 
19934 1592 17.9 9 185 11.6% 5.54 206 493 31.0% 2.16 61 
19941 1610 18.4 10 206 12.8% 6.02 230 577 35.8% 1.74 66 
19942 1490 20.3 11 152 10.2% 6.90 240 578 38.8% 1.91 63 
19943 1483 21.7 12 153 10.3% 6.17 202 618 41.7% 1.95 60 
19944 1542 17.1 10 197 12.8% 6.31 226 491 31.8% 1.75 61 
19951 1557 22.2 12 175 11.2% 6.02 214 637 40.9% 1.92 61 
19952 1596 20.5 9 204 12.8% 7.53 261 561 35.2% 1.72 58 
19953 1635 17.3 8 239 14.6% 7.09 224 480 29.4% 1.84 59 
19954 1637 17.2 8 259 15.8% 7.72 229 515 31.5% 2.10 61 
19961 1694 18.7 9 259 15.3% 9.21 286 547 32.3% 1.69 63 
19962 1733 17.8 9 260 15.0% 8.31 253 574 33.1% 2.34 71 
19963 1689 15.6 8 248 14.7% 8.45 224 472 27.9% 2.09 64 
19964 1777 17.2 8 275 15.5% 9.30 284 530 29.8% 2.08 65 
19971 1800 20.0 10 250 13.9% 11.37 348 672 37.3% 1.99 76 
19972 1820 19.1 9 271 14.9% 10.97 326 589 32.4% 2.18 79 
19973 1915 19.3 9 257 13.4% 11.36 397 668 34.9% 2.27 86 
19974 1923 14.1 7 326 17.0% 11.59 388 481 25.0% 1.85 74 
19981 1901 18.1 10 296 15.6% 14.59 433 691 36.3% 2.30 88 
19982 1905 17.8 9 277 14.5% 15.49 444 658 34.5% 2.53 96 
19983 1876 13.5 8 348 18.6% 12.25 457 516 27.5% 1.47 84 
19984 1876 13.3 6 382 20.4% 12.08 441 445 23.7% 1.76 92 
19991 1826 15.8 8 347 19.0% 14.24 542 564 30.9% 1.27 92 
19992 1824 12.9 5 439 24.1% 12.61 452 401 22.0% 1.48 90 
19993 1778 12.5 6 403 22.7% 12.34 439 419 23.6% 1.47 84 
19994 1823 12.6 5 417 22.9% 11.15 499 403 22.1% 1.16 87 
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Table II (continued) 

Occurrence Frequency of Boundary Solutions 
 

All stocks with PIN 
estimates 

Stocks with no boundary 
solutions 

Stocks with more than 15 
boundary solutions YYYYQ 

N Mean  Median  N1 % Market 
Cap # Trades N2 % Market 

Cap # Trades

20001 1824 13.8 5 491 26.9% 10.04 551 439 24.1% 1.25 102 
20002 1706 11.6 4 451 26.4% 11.97 534 351 20.6% 1.49 113 
20003 1615 13.0 5 422 26.1% 12.36 527 388 24.0% 1.91 113 
20004 1644 10.8 3 498 30.3% 12.49 564 294 17.9% 1.68 129 
20011 1571 7.3 2 600 38.2% 10.55 654 207 13.2% 0.84 93 
20012 1565 5.4 1 722 46.1% 9.53 640 113 7.2% 0.70 97 
20013 1525 5.3 1 679 44.5% 7.82 648 118 7.7% 0.70 108 
20014 1535 5.3 1 734 47.8% 8.02 694 94 6.1% 0.93 132 
20021 1525 5.5 1 722 47.3% 8.64 773 119 7.8% 0.93 117 
20022 1568 3.6 0 847 54.0% 6.69 768 66 4.2% 0.52 105 
20023 1526 3.0 0 932 61.1% 4.46 815 43 2.8% 0.44 76 
20024 1534 3.4 0 852 55.5% 4.79 860 60 3.9% 0.57 96 
20031 1505 3.3 0 887 58.9% 4.16 911 65 4.3% 0.46 136 
20032 1554 3.4 0 982 63.2% 4.20 891 58 3.7% 0.48 107 
20033 1583 2.6 0 1034 65.3% 4.20 854 48 3.0% 0.36 108 
20034 1608 2.5 0 1045 65.0% 4.72 851 41 2.6% 0.38 100 
20041 1638 3.1 0 1047 63.9% 4.51 913 64 3.9% 0.46 123 
20042 1569 2.5 0 1027 65.5% 4.69 950 49 3.1% 2.87 205 
20043 1507 2.6 0 942 62.5% 4.89 958 45 3.0% 2.97 154 
20044 1625 3.5 0 1001 61.6% 4.58 981 70 4.3% 0.76 184 
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 Table III 
Logistic Regression Models 

 
We study three logistic regression models.  The dependent variables of all three models 
equals 1 for stocks having more than 15 boundary solutions and 0 for stocks having zero 
boundary solutions.  The three models have different explanatory variables; Model 1 has 
a single variable equal to the logarithm of the market capitalization (i.e. log(mktcap)), 
Model 2 has a single variable equal to the logarithm of the number of trades in a day (i.e. 
log(trade)), and Model 3 include both variables.  We report the coefficient estimates and 
the residual deviation.  We omit the intercepts of the three models because they have no 
meaningful implications for our current analysis.  YYYYQ represents year and quarter.  
N0 is the number of stocks that have no boundary solutions.  N15 is the number of stocks 
that have more that 15 boundary solutions.  RD stands for residual deviance.  The 
superscripts indicate the results from the t-test for the coefficient estimate and the chi-
square test for the residual deviance.  The superscripts, a, b, and c, represent statistical 
significance at 1%, 5%, and 10%, respectively. 
 

   Model 1 Model 2 Model 3 
YYYYQ N0 N15 log(mktcap) RD log(trade) RD log(mktcap) log(trade) RD 
19931 243 431 0.137a 872.0a -0.341a 857.0a 1.103a -1.794a 702.8
19932 211 481 0.207a 832.2a -0.263a 838.7a 1.107a -1.748a 686.7
19933 199 537 0.065 857.3a -0.380a 832.9a 0.771a -1.368a 749.8
19934 185 493 -0.007 794.7a -0.486a 752.6b 0.696a -1.380a 683.7
19941 206 577 -0.049 901.4a -0.475a 858.6b 0.719a -1.406a 793.7
19942 152 578 -0.150a 739.9 -0.677a 677.9 0.843a -1.729a 616.8
19943 152 618 -0.042 764.5 -0.554a 721.2 0.864a -1.651a 651.6
19944 196 491 -0.051 820.5a -0.612a 759.4b 0.888a -1.762a 672.0
19951 175 634 0.032 844.5 -0.477a 807.3 0.843a -1.575a 719.3
19952 204 561 -0.135a 879.5a -0.683a 796.1 0.753a -1.622a 723.3
19953 239 479 -0.104a 908.5a -0.601a 839.7a 0.574a -1.299a 786.2b

19954 259 514 -0.076c 983.0a -0.624a 903.9a 0.782a -1.620a 814.8
19961 259 546 -0.190a 991.9a -0.691a 896.6a 0.764a -1.685a 820.0
19962 260 574 -0.031 1034.5a -0.534a 969.0a 0.727a -1.472a 877.9
19963 247 472 -0.068 923.0a -0.552a 862.2a 0.750a -1.503a 787.4b

19964 274 529 -0.141a 1019.7a -0.699a 915.4a 0.762a -1.684a 826.7
19971 250 671 -0.199a 1056.1a -0.651a 969.8 0.654a -1.480a 909.7
19972 270 586 -0.164a 1052.8a -0.526a 993.9a 0.641a -1.332a 942.9b

19973 254 668 -0.212a 1061.7a -0.644a 975.6c 0.709a -1.542a 912.0
19974 325 476 -0.179a 1061.1a -0.735a 931.4a 0.852a -1.853a 824.6
19981 295 690 -0.195a 1180.1a -0.657a 1081.0b 0.733a -1.587a 1003.6
19982 276 654 -0.281a 1087.2a -0.766a 981.7 0.610a -1.550a 931.7
19983 347 513 -0.386a 1074.7a -1.056a 894.4 0.687a -1.916a 834.2
19984 382 445 -0.230a 1104.6a -0.804a 949.7a 0.710a -1.703a 865.2
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Table III (Continued) 
Logistic Regression Models 

 
YYYYQ N0 N15 log(mktcap) RD log(trade) RD log(mktcap) log(trade) RD 
19991 344 563 -0.361a 1122.8a -0.983a 945.1 0.763a -1.968a 871.5
19992 436 400 -0.347a 1076.1a -0.864a 943.5a 0.639a -1.696a 891.6c

19993 400 418 -0.311a 1073.6a -0.832a 935.7a 0.797a -1.833a 861.3
19994 414 402 -0.411a 1023.6a -0.910a 889.5b 0.537a -1.579a 853.3
20001 488 437 -0.329a 1193.6a -0.848a 1037.2a 0.632a -1.664a 975.1
20002 448 348 -0.360a 1009.5a -0.776a 912.9a 0.480a -1.378a 884.5a

20003 421 388 -0.366a 1038.0a -0.755a 952.1a 0.367a -1.215a 934.5a

20004 496 292 -0.256a 987.7a -0.639a 908.2a 0.373a -1.133a 883.5a

20011 597 207 -0.457a 806.2 -0.986a 688.1 0.646a -1.824a 652.2
20012 720 113 -0.478a 582.5 -0.855a 528.8 0.401a -1.333a 519.3
20013 679 118 -0.560a 574.2 -1.004a 507.6 0.340a -1.398a 500.6
20014 732 93 -0.409a 529.6 -0.800a 474.5 0.419a -1.272a 462.5
20021 719 119 -0.547a 583.8 -0.974a 504.3 0.580a -1.650a 485.5
20022 846 66 -0.552a 407.4 -0.869a 372.5 0.076 -0.946a 372.2
20023 932 43 -0.656a 295.8 -1.058a 257.6 0.218 -1.273a 256.0
20024 850 60 -0.589a 374.2 -1.008a 313.3 0.297a -1.295a 308.5
20031 883 65 -0.649a 398.9 -1.016a 350.7 0.226 -1.243a 348.5
20032 982 58 -0.729a 364.2 -1.116a 309.0 0.429a -1.543a 303.1
20033 1030 48 -0.722a 320.0 -1.001a 288.4 0.007 -1.007a 288.4
20034 1042 41 -0.588a 300.3 -0.985a 267.9 0.221 -1.216a 266.1
20041 1046 62 -0.689a 394.1 -1.044a 342.3 0.159 -1.196a 341.1
20042 1025 49 -0.493a 363.0 -0.769a 337.4 0.117 -0.880a 336.7
20043 941 45 -0.623a 318.2 -0.944a 276.8 0.310c -1.231a 273.2
20044 998 69 -0.588a 443.7 -0.869a 400.2 0.212 -1.073a 397.9

 
 
 
 
 
 



39

Table IV 
Seasonal Variation of PIN  

 
This table reports the mean and median of quarterly percentage changes of six variables: the probability of informed trading (PIN), the 
probability of an information event α , the daily arrival rate of informed trades µ , the daily arrival rates of uninformed buy trades bε , 
the daily arrival rates of uninformed sell trades sε , and the ratio of the uninformed trades to the informed trades ( )b sε ε µ .  The 
quarterly percentage change of a variable V is defined as ∆Vt = (Vt-Vt-1)/Vt-1, where t indexes calendar quarters.  We group quarterly 
percentage changes under the four quarters of a year.  The mean and median are calculated after removing the most extreme 1% 
observations at both tails.  N represents the number of observations.  The time period extends from 1993Q2 to 2004Q4.  The t-statistic 
and the sign statistic are reported in parentheses.  The superscripts, a, b, and c, represent statistical significance at 1%, 5%, and 10%, 
respectively. 

+

 
 Mean quarterly change % 

(t-statistic) 
Median quarterly change % 

(sign statistic) 
Quarter       Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

N         16957 18277 18075 18280 16957 18277 18075 18280
14.8        13.2 7.8 15.2 4.8 3.2 -0.7 5.1∆µ  

(37.8)a       (34.6)a (22.4)a (41.7)a (892.5)a (653.0)a (-143.5)a (1088.0)a 
18.4        6.8 5.0 13.1 13.0 0.9 -0.4 7.8∆ bε  

(62.5)a      (25.0)a (19.4)a (52.2)a (2846.5)a (284.5)a (-124.0)c (2192.5)a 
16.7        4.9 4.5 13.7 12.5 -0.6 -0.4 8.6∆ sε  

(63.4)a       (20.3)a (19.8)a (60.2)a (2891.5)a (-171.5)b (-115.5)c (2616.5)a 
12.1        2.7 6.0 7.7 7.2 -2.2 1.2 2.8

∆
( )b sε ε

µ
+

 
(44.4)a       (10.9)a (24.4)a (30.9)a (1578.5)a (-574.0)a (284.5)a (720.5)a 

-1.6        4.9 4.2 4.3 -5.9 0.3 0.1 -0.1
∆PIN 

(-7.2)a        (21.6)a (18.7)a (19.3)a (-1380.5)a (90.5) (17.5) (-25.0)
9.5        8.1 10.8 12.4 0.0 -1.2 1.3 2.9∆α  

(24.6)a       (22.2)a (28.8)a (33.6)a (-8.5) (-262.0)a (253.0)a (630.5)a 
 

 



Table V 
Year-End Tax-Loss Selling and Seasonal Variation of PIN 

 
We calculate the cumulative 10-month return from February to November in each year 
and classify a stock as winner if its cumulative return is greater than 10% or loser if the 
return is less than -10%.  We study the quarterly percentage changes of PIN and other 
trading-related parameters in the fourth quarter and the first quarter of the following year.  
The quarterly percentage change of a variable V is defined as ∆Vt = (Vt-Vt-1)/Vt-1, where t 
indexes calendar quarters.  This table reports the mean and median of the quarterly 
percentage changes by quarter and type of stock.  The mean and median are calculated 
after removing the most extreme 1% observations at both tails.  N represents the number 
of observations.  The t-statistic and sign statistic are reported in parentheses.  The two-
sample t-test and Wilcoxon rank sum test are reported in parentheses under the column 
“L vs W”.  The superscripts, a, b, and c, represent statistical significance at 1%, 5%, and 
10%, respectively. 

  Fourth Quarter Subsequent First Quarter 
  Losers Winners L vs W Losers Winners L vs W 

N  5117 8349  4763 7331  
Mean % 19.4 14.5 (5.24)a 9.4 16.5 (-7.72)a 
(t-stat) (26.1)a (27.5)a  (12.7)a (29.3)a  

Median % 8.0 5.0 (3.62)a -1.1 7.4 (-10.94)a 
∆µ  

(sign) (431.0)a (505.5)a  (-67.0)b (651.0)a  
Mean % 18.6 12.6 (10.12)a 4.0 24.3 (-30.89)a 
(t-stat) (40.0)a (37.4)a  (8.7)a (60.2)a  

Median % 12.7 7.4 (10.24)a -0.2 19.5 (-33.43)a 
∆ sε  

(sign) (995.0)a (1030.0)a  (-10.5) (1963.0)a  
Mean % 14.9 14.1 (1.15) 6.9 25.8 (-25.00)a 
(t-stat) (30.3)a (36.4)a  (13.2)a (56.0)a  

Median % 9.2 8.4 (1.21) 1.6 19.5 (-27.72)a 
∆ bε  

(sign) (664.0)a (1092.0)a  (89.5)a (1843.0)a  
Mean % 7.8 7.9 (-0.61) 6.3 16.3 (-13.88)a 
(t-stat) (15.8)a (21.5)a  (12.8)a (39.7)a  

Median % 2.2 3.0 (-1.36) 2.1 10.9 (-14.92)a 
∆
( )b sε ε

µ
+

 

(sign) (166.5)a (347.0)a  (117.0)a (1060.5)a  
Mean % 6.2 3.1 (5.73)a 0.2 -3.7 (7.09)a 
(t-stat) (14.5)a (9.5)a  (0.5) (-11.6)a  

Median % 1.9 -1.2 (5.65)a -3.9 -7.7 (6.86)a 
∆PIN 

(sign) (146.5)a (-150.5)a  (-253.5)a (-810.5)a  
Mean % 14.9 10.7 (4.24)a 6.9 10.5 (-2.64)a 
(t-stat) (20.4)a (20.5)a  (9.3)a (18.5)a  

Median % 5.0 1.6 (3.74)a -2.4 1.0 (-4.70)a 
∆α  

(sign) (267.5)a (178.0)a  (4763)a (83.0)b  
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Table VI 
Comparison between our and Brown’s PIN Estimates 

 
This table reports the mean, median and standard deviation of Brown’s PIN estimates and 
ours in every quarter between 1993 and 2003.  It also reports the mean, median and 
standard deviation of the same-stock difference between ours and Brown’s PIN estimates.  
The statistics are calculated over all stocks that have PIN estimates in both our and 
Brown’s sets.  We match stocks in our sample with those in Brown’s by eight-digit 
CUSIP.  N equals the number of stocks.  YYYYQ represents year and quarter.   

 
  Our PIN Brown’s PIN Ours – Brown’s 

YYYYQ N Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.
19931 1408 0.173 0.169 0.060 0.186 0.180 0.065 -0.013 -0.012 0.052 
19932 1402 0.169 0.165 0.061 0.185 0.178 0.068 -0.016 -0.014 0.056 
19933 1436 0.166 0.161 0.060 0.181 0.173 0.065 -0.015 -0.011 0.055 
19934 1520 0.170 0.168 0.061 0.186 0.180 0.065 -0.016 -0.015 0.056 
19941 1535 0.167 0.159 0.063 0.180 0.175 0.065 -0.014 -0.012 0.054 
19942 1428 0.164 0.157 0.060 0.181 0.170 0.066 -0.017 -0.014 0.055 
19943 1404 0.165 0.159 0.064 0.184 0.175 0.069 -0.019 -0.015 0.057 
19944 1453 0.167 0.163 0.052 0.185 0.177 0.062 -0.018 -0.017 0.051 
19951 1456 0.161 0.156 0.061 0.188 0.179 0.067 -0.027 -0.023 0.060 
19952 1478 0.162 0.156 0.059 0.186 0.177 0.066 -0.025 -0.021 0.055 
19953 1500 0.166 0.160 0.057 0.188 0.179 0.068 -0.023 -0.017 0.054 
19954 1520 0.168 0.163 0.062 0.190 0.182 0.067 -0.022 -0.016 0.058 
19961 1601 0.166 0.159 0.060 0.180 0.170 0.068 -0.014 -0.012 0.056 
19962 1641 0.164 0.157 0.062 0.178 0.168 0.066 -0.014 -0.012 0.053 
19963 1605 0.171 0.166 0.059 0.186 0.179 0.065 -0.015 -0.012 0.048 
19964 1690 0.169 0.163 0.060 0.185 0.176 0.064 -0.016 -.013 0.059 
19971 1718 0.159 0.152 0.061 0.176 0.168 0.067 -0.018 -0.013 0.052 
19972 1740 0.163 0.153 0.065 0.177 0.168 0.068 -0.015 -0.010 0.057 
19973 1828 0.152 0.146 0.061 0.159 0.148 0.063 -0.006 -0.002 0.046 
19974 1838 0.158 0.153 0.059 0.165 0.157 0.065 -0.007 -0.003 0.045 
19981 1809 0.147 0.139 0.059 0.152 0.141 0.063 -0.005 -0.002 0.042 
19982 1829 0.150 0.144 0.058 0.158 0.150 0.063 -0.008 -0.004 0.045 
19983 1799 0.154 0.149 0.058 0.160 0.153 0.064 -0.006 -0.002 0.046 
19984 1790 0.155 0.152 0.057 0.160 0.151 0.065 -0.004 0.000 0.045 
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Table VI (Continued) 
Comparison between our and Brown’s PIN Estimates  

 
 

  Our PIN Brown’s PIN Ours – Brown’s 
YYYYQ N Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.

19991 1621 0.143 0.136 0.057 0.172 0.146 0.101 -0.029 -0.005 0.100 
19992 1596 0.154 0.148 0.055 0.172 0.153 0.090 -0.017 -0.002 0.090 
19993 1553 0.152 0.146 0.056 0.174 0.150 0.097 -0.022 -0.004 0.098 
19994 1599 0.159 0.151 0.060 0.179 0.158 0.092 -0.020 -0.004 0.089 
20001 1564 0.143 0.132 0.063 0.169 0.142 0.103 -0.026 -0.005 0.103 
20002 1509 0.145 0.135 0.061 0.181 0.151 0.107 -0.036 -0.008 0.112 
20003 1437 0.147 0.138 0.061 0.180 0.154 0.100 -0.032 -0.011 0.103 
20004 1482 0.150 0.143 0.060 0.181 0.156 0.102 -0.031 -0.006 0.103 
20011 1445 0.153 0.141 0.062 0.161 0.140 0.085 -0.008 0.006 0.077 
20012 1459 0.159 0.146 0.064 0.165 0.144 0.086 -0.006 0.006 0.069 
20013 1441 0.152 0.142 0.061 0.160 0.139 0.083 -0.008 0.004 0.069 
20014 1439 0.153 0.139 0.066 0.164 0.142 0.089 -0.011 0.003 0.074 
20021 1460 0.148 0.134 0.066 0.147 0.127 0.076 0.002 0.007 0.038 
20022 1504 0.145 0.132 0.065 0.142 0.124 0.073 0.003 0.006 0.035 
20023 1478 0.145 0.134 0.065 0.139 0.122 0.075 0.006 0.011 0.036 
20024 1448 0.141 0.126 0.065 0.137 0.118 0.073 0.004 0.008 0.039 
20031 1419 0.134 0.120 0.063 0.128 0.110 0.067 0.006 0.009 0.032 
20032 1441 0.139 0.122 0.068 0.134 0.114 0.074 0.005 0.009 0.039 
20033 1470 0.139 0.125 0.066 0.132 0.111 0.069 0.007 0.009 0.036 
20034 1497 0.137 0.127 0.064 0.134 0.117 0.072 0.002 0.008 0.039 
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Table VII 

PIN Difference for Two Special Groups of Stocks 
 
This table reports the mean, median and standard deviation of the same-stock difference 
between our and Brown’s PIN estimates for two special groups of stocks, in every quarter 
between 1993 and 2003.  Stocks in the first group have no boundary solutions in the 125 
maximizations we ran for each of them, whereas stocks in the second group have 
boundary solutions for more than 15 of the 125 maximizations.  The statistics are 
calculated over all stocks that have PIN estimates in both our and Brown’s sets.  We 
match stocks in our sample with those in Brown’s by eight-digit CUSIP.  N equals the 
number of stocks.  YYYYQ represents year and quarter. 

 

 
Stocks with no boundary 

solutions 
Stocks with more than 15 

boundary solutions 
YYYYQ N Mean Median Std. Dev. N Mean Median Std. Dev. 

19931 225 -0.013 -0.013 0.042 412 -0.018 -0.016 0.060 
19932 199 -0.013 -0.013 0.043 459 -0.023 -0.018 0.066 
19933 189 -0.008 -0.008 0.045 514 -0.020 -0.015 0.063 
19934 172 -0.006 -0.007 0.048 477 -0.022 -0.020 0.065 
19941 188 -0.011 -0.010 0.037 553 -0.018 -0.015 0.066 
19942 146 -0.023 -0.017 0.048 555 -0.018 -0.016 0.064 
19943 143 -0.017 -0.013 0.050 586 -0.021 -0.017 0.064 
19944 179 -0.017 -0.015 0.043 465 -0.021 -0.017 0.052 
19951 156 -0.030 -0.016 0.062 605 -0.028 -0.025 0.069 
19952 173 -0.012 -0.009 0.046 529 -0.031 -0.026 0.064 
19953 208 -0.012 -0.007 0.038 440 -0.030 -0.025 0.064 
19954 247 -0.014 -0.010 0.052 466 -0.025 -0.018 0.075 
19961 243 -0.009 -0.010 0.040 518 -0.017 -0.016 0.070 
19962 243 -0.012 -0.010 0.043 545 -0.019 -0.014 0.065 
19963 236 -0.019 -0.012 0.045 451 -0.018 -0.014 0.056 
19964 256 -0.021 -0.018 0.042 510 -0.019 -0.014 0.085 
19971 232 -0.008 -0.007 0.043 654 -0.021 -0.016 0.065 
19972 256 -0.010 -0.003 0.048 573 -0.014 -0.011 0.071 
19973 245 0.000 0.002 0.041 641 -0.010 -0.007 0.056 
19974 306 0.002 0.004 0.037 458 -0.012 -0.005 0.055 
19981 280 -0.001 0.001 0.043 663 -0.008 -0.005 0.040 
19982 263 -0.003 0.003 0.038 637 -0.008 -0.004 0.051 
19983 333 -0.001 0.002 0.036 502 -0.007 -0.006 0.054 
19984 355 0.002 0.007 0.039 429 -0.009 -0.002 0.054 
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Table VII (continued) 

PIN Difference for Two Special Groups of Stocks 
 

 
Stocks with no boundary 

solutions 
Stocks with more than 15 

boundary solutions 
YYYYQ N Mean Median Std. Dev. N Mean Median Std. Dev. 

19991 292 -0.034 -0.005 0.104 518 -0.038 -0.006 0.113 
19992 363 -0.022 -0.005 0.096 358 -0.022 -0.002 0.096 
19993 332 -0.036 -0.008 0.104 383 -0.023 -0.002 0.115 
19994 353 -0.033 -0.005 0.107 366 -0.019 -0.002 0.095 
20001 399 -0.037 -0.003 0.112 392 -0.029 -0.006 0.110 
20002 386 -0.054 -0.006 0.131 319 -0.031 -0.005 0.117 
20003 361 -0.060 -0.010 0.135 357 -0.032 -0.013 0.097 
20004 445 -0.057 -0.005 0.135 273 -0.025 -0.010 0.085 
20011 549 -0.009 0.010 0.084 197 -0.015 0.000 0.095 
20012 668 -0.005 0.008 0.073 104 -0.022 -0.006 0.083 
20013 647 -0.009 0.007 0.078 112 -0.001 0.000 0.045 
20014 685 -0.014 0.006 0.087 89 -0.015 0.003 0.074 
20021 699 0.008 0.011 0.035 108 -0.002 -0.003 0.051 
20022 822 0.006 0.008 0.031 62 -0.001 0.004 0.045 
20023 908 0.010 0.014 0.033 37 -0.003 0.002 0.038 
20024 820 0.007 0.010 0.036 51 -0.008 0.005 0.080 
20031 846 0.007 0.010 0.029 61 0.014 0.013 0.035 
20032 928 0.008 0.011 0.031 51 -0.015 -0.002 0.086 
20033 975 0.008 0.010 0.032 41 0.002 0.003 0.073 
20034 979 0.004 0.009 0.036 37 0.008 0.014 0.061 
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Figure 1. Time-series plots in every quarter between 1993Q1 and 2004Q4 for the 5th, 

25th, 50th (i.e., median), 75th, and 95th percentiles of the probability of informed trading 

(PIN), the probability of an information event α , and the probability of an information 

event being bad news δ . 
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Figure 2. Time-series plots in every quarter between 1993Q1 and 2004Q4 for the 5th, 

25th, 50th (i.e., median), 75th, and 95th percentiles of the arrival rate of informed trades 

per day µ , and the arrival rates of uninformed buy and sell trades per day bε  and sε .  
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Figure 3.  Bar plots in every quarter between 1993Q2 and 2004Q4 for the median 

quarterly percentage changes of the probability of informed trading (PIN), the probability 

of an information event α , and the ratio of the daily arrival rate of uninformed trades 

over the daily arrival rate of informed trades ( )b sε ε+ µ .  The quarterly percentage 

change of a variable V is defined as ∆Vt = (Vt-Vt-1)/Vt-1, where t indexes calendar quarters. 
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