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Abstract

We study the relationship between return uncertainty and behavioral finance by aggregat-

ing multiple return forecasts for a single asset into an estimate of its unknown expected return.

The combination of forecasts which minimizes the uncertainty of the estimated expected return

is determined by the optimal information portfolio. This minimization provides an alternative

explanation for biases in expected returns that have previously been attributed to psychology.

Specifically, biases which appear similar to overconfidence, biased self-attribution, representative-

ness, conservatism and limited attention arise from the information portfolio weights assigned to

return forecasts. Higher dispersion across the return forecasts increases return predictability and

the magnitude of these biases. However, our optimal information portfolio yields testable impli-

cations distinct from psychology, which we verify empirically using revisions in analyst earnings

forecasts.
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1 Introduction

The empirical asset pricing literature defines expected returns ex-post. For example, the Fama-French

(1993) three factor model computes market, SMB and HML sensitivities from historical returns. How-

ever, a consensus regarding the correct formulation of expected returns remains elusive since the

number of factors required to generate expected returns is controversial. Indeed, dispersion in the

ex-ante return forecasts of market participants parallels academic disagreements surrounding the ex-

post calibration of expected returns. Moreover, randomness in the dynamics of the underlying factors

as well as uncertainty regarding an asset’s factor loadings next period imply expected returns are

unknown.

Our framework has a combination of return forecasts determining an individual asset’s unknown

expected return. Return forecasts are issued by information sources after interpreting a state variable

such as a firm’s projected earnings or industry conditions. Public information sources include analysts

and the firm itself, while the investor generates private return forecasts. The historical accuracy of

an information source is measured according to its prior forecast errors, defined as the difference

between realized and forecasted returns. Historical covariances between the forecast errors of different

information sources are also analyzed.

The information portfolio combines the return forecasts for an individual asset into an estimate of

its expected return. This is accomplished by assigning each information source a portfolio weight. In

contrast to existing portfolio theory for multiple assets with known expected returns, our information

portfolio applies to multiple return forecasts for a single asset whose expected return is unknown.

Specifically, by invoking a mathematical formulation similar to standard portfolio theory, our optimal

information portfolio minimizes the aggregate uncertainty of a single asset’s estimated return by as-

signing higher portfolio weights to information sources with greater historical accuracy.1 The most

accurate estimate of an asset’s expected return follows directly from the information portfolio, and is

labeled the investor’s perceived return. Consequently, the influence of a return forecast on the investor’s

perceived return is determined by its information portfolio weight, which depends on the historical

1After imposing a common distributional assumption on the set of return forecasts, this minimization is equivalent

to solving for the best linear unbiased estimate (BLUE) of an asset’s true expected return. However, since our optimal

information portfolio is independent of any distributional assumptions, we refrain from referring to the information

portfolio weights as linear regression coefficients.

2



accuracy of the information source issuing the return forecast.

With regards to behavioral finance, the optimal information portfolio aggregates return forecasts in

a manner which mimics psychological biases. In particular, when information sources have heteroge-

nous beliefs regarding an asset’s expected return, the perceived return exhibits biases that appear

similar to overconfidence and biased self-attribution as well as representativeness and conservatism.

These two pairs of biases have been previously incorporated into the finance literature by Daniel, Hir-

shleifer and Subrahmanyam (1998) and Barberis, Shleifer and Vishny (1998) respectively. However,

information portfolio theory explains the appearance of these biases in an asset’s perceived return using

optimal information portfolio weights rather than psychology. For example, the optimal information

portfolio emphasizes the investor’s private return forecasts which are accurate, while downplaying their

less accurate counterparts. In addition, even in the absence of any theoretical justification, state vari-

ables with trends in their dynamics or stable return implications receive larger information portfolio

weights. A bias which mimics limited attention is also instilled into the perceived return since return

forecasts which are positively correlated with those from more accurate information sources are ignored

by the information portfolio.

Furthermore, unlike Bayesian frameworks which assume investors commit psychological biases by

imposing assumptions on the prior distribution, we examine the optimal combination of multiple return

forecasts when estimating an asset’s expected return. Therefore, biases in the perceived return are

outputs from our optimal information portfolio. Brav and Heaton (2002) demonstrate the difficulty of

distinguishing between behavioral and rational explanations for anomalies using Bayesian techniques.2

In addition, the optimal information portfolio also generates return predictability. Higher return

uncertainty, characterized by more disparate return forecasts, also increases the apparent strength of

the perceived return biases. Thus, dispersion in the return forecasts is crucial to the magnitude of

our biases, and reflects ex-ante uncertainty regarding an asset’s expected return rather than investor

psychology. For example, changes in a firm’s capital structure or investment strategy can alter its

future earnings dynamics. However, our framework does not assume the return implications of such

events are immediately understood and agreed upon by all market participants. Indeed, every return

forecast would be identical and without error under this simplifying assumption. Instead, dispersion

between the return forecasts may result from parameter uncertainty as well as disagreement regarding

2Section 4 contains further details on the distinction between information portfolio theory and the Bayesian approach.
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the appropriate interpretation of limited information. Lewellen and Shanken (2002) investigate the

repercussions of parameter uncertainty on asset pricing tests and return predictability.

To illustrate our notion of return uncertainty, a BusinessWeek survey conducted at the end of 2005

reported year-end 2006 forecasts for the S&P 500 ranging between 880 and 1,635 with a standard

deviation of 95 points. Provided the 76 forecasters included in the survey have unequal historical

accuracies, the average forecast of 1,347 is not an optimal estimate for the S&P 500 at the end of 2006.

Finding the optimal weight to assign each forecast is one motivation for our information portfolio.

Empirically, Jackson and Johnson (2006) document that momentum and post-earnings announce-

ment drift both coincide with firm-specific events that alter a firm’s earnings, while the composite

share issuance variable of Daniel and Titman (2005) also indicates return predictability. In addition,

Kumar (2005) and Zhang (2005) both report that behavioral biases appear stronger in periods of

higher uncertainty. Besides being event and time dependent, Baker and Wurgler (2005) report that

characteristics such as size and age explain a firm’s sensitivity to investor sentiment.

These empirical regularities are consistent with information portfolio theory as well as psychologi-

cal biases. However, several testable implications unique to information portfolio theory are available.

Most importantly, investors find accurate information sources more credible when forming their per-

ceived return. Even in periods of high return uncertainty, a relative ranking of the information sources

by their historical accuracies is equivalent to the existence of an information portfolio. Prior returns

of the asset are not excluded from being the most accurate source of public information. The his-

torical accuracy of an information source arises from two components; uncertainty in the dynamics

of an underlying state variable and uncertainty regarding its return implications. As a consequence,

after controlling for state variable uncertainty, information portfolio theory asserts that investors fo-

cus their attention on state variables which have the highest correlation with returns. Furthermore,

predictability in a state variable and its return implications increases the accuracy of an information

source, granting its return forecasts more influence over the investor’s perceived return.

The first aspect of our empirical study pertains to the return implications of earnings. Specifically,

we measure the sensitivity of returns to earnings revisions by computing firm-specific correlations be-

tween these variables. We find earnings momentum profits increase monotonically from low to high

sensitivity stocks by 50%, evidence consistent with investors focusing more attention on this informa-

tion source when its corresponding return forecast has been more accurate. The second aspect of our
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empirical study considers the role of earnings uncertainty. As documented in Zhang (2005), momen-

tum profits are larger for stocks with higher earnings dispersion. More importantly, portfolios derived

from double sorts on the sensitivity and uncertainty measures continue to display both relationships

with earnings momentum. Consequently, even after controlling for earnings uncertainty, firms whose

returns are more sensitive to earnings revisions experience greater earnings momentum. This finding

is consistent with more accurate information sources having more influence over the perceived return,

which is the central prediction of information portfolio theory. Several robustness checks verify that

our sensitivity and uncertainty measures are not driven by factors such as book-to-market, size and

analyst coverage.

Nonetheless, in theory, if the most accurate information sources incorporate investor psychology

into their return forecasts, then information portfolio theory and psychology are compatible as both

influence the investor’s perceived return. Indeed, the exact decomposition of the perceived return into

the effects of psychology versus information portfolio theory is ultimately an empirical question. With

this caveat in mind, empirical evidence in Section 5 reports that the optimal information portfolio

cannot be ignored when analyzing historical returns.

The remainder of this paper begins with the introduction of the optimal information portfolio in

Section 2. Section 3 illustrates the impact of state variable predictability on the historical accuracy of

an information source and examines its ability to induce return predictability, while Section 4 links the

optimal information portfolio with biases previously attributed to psychology. Testable implications

of information portfolio theory are provided in Section 5 along with an empirical implementation. Our

conclusions and suggestions for further research are contained in Section 6.

2 Information Portfolio Theory

As in Daniel, Hirshleifer and Subrahmanyam (1998) as well as Barberis, Shleifer and Vishny (1998), we

consider a single-investor, single-asset model. Thus, we restrict our attention to an investor functioning

as a price-setter who does not “free-ride” on market prices.

Underlying our framework are state variables, examples of which include forecasts for the earnings

or sales of an individual firm as well as macroeconomic and industry conditions among many other

possibilities. Each state variable, or its forecast for next period, is interpreted by an information source
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who expresses its estimated return implications.3 For simplicity, each return forecast is generated by a

single state variable. In practice, an individual analyst can issue quarterly earnings forecasts and long

term growth rate projections for earnings along with price targets and buy versus sell recommendations,

while firms often disclose their earnings and sales figures in conjunction with “guidance” for these state

variables. Therefore, multiple information sources may originate from an individual analyst or firm

depending on the amount of information they release. Moreover, different forecasts for a state variable

can yield different return forecasts. For example, cross-sectional dispersion in earnings forecasts would

imply return uncertainty. The information portfolio is responsible for aggregating across the various

return interpretations and forecasts of state variables.

Furthermore, certain return forecasts are hybrids possessing both private and public characteristics.

For example, public announcements such as analyst earnings forecasts are not expressed as returns

and therefore require additional interpretation by the investor. In contrast, the conversion of analyst

price targets into return forecasts is immediate.

To examine the impact of return uncertainty on the investor’s perceived returns, we consider

J return forecasts for a single asset. The magnitude of J accounts for the multitude of available

information sources and their potentially disparate forecasts for an asset’s expected return. Thus, our

information portfolio aggregates J return forecasts originating from J unique information sources who

evaluate the return implications of J state variable forecasts, with every return forecast expressing

the return implications of a single state variable forecast. When state variable dynamics are random,

there would likely exist more state variable forecasts than state variables but this relationship is not

crucial to our framework.

For emphasis, information sources are only assumed to issue return forecasts. The mechanism

for computing their historical accuracy is addressed in the next subsection. Whether an information

source issues also forecasts for the state variables is immaterial to our framework since the historical

accuracy of an information source pertains entirely to its time series of prior return forecasts.

3Although sales are usually reported in millions of dollars and earnings stated on a per share basis, we abstract

from these scale complications by aggregating across their return implications. The state variable to return forecast

transformation is another source of return uncertainty and addressed in the next section.
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2.1 Historical Forecast Accuracy

The historical accuracy of each return forecast is critical to the information portfolio’s solution and is

computed from the previous forecast errors of an information source. Specifically, at time t − 1, the

time series of forecast errors for the jth information source consists of the following vector⎡
⎢⎢⎢⎣

εj
t−1

...

εj
t−n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

yt−1

...

yt−n

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

μj,t−1

...

μj,t−n

⎤
⎥⎥⎥⎦ for j = 1, 2, . . . , J (1)

where μj,t−i denotes the return forecast issued at time t−i−1 for the asset over the previous i = 1, . . . , n

periods, while yt−i represents the corresponding realized return. Therefore, at time t − 1, the jth

information source issues the return forecast μj,t for the (t− 1, t] horizon, while yt denotes the asset’s

realized return at time t. The calendar time corresponding to the (t− 1, t] interval is arbitrary.

At t − 1, the historical accuracy of the jth information source equals

σ2
j,t =

1

n

n∑
i=1

(
εj
t−i

)2
, (2)

according to their forecast errors εj
t−i over the last n periods. Let σ2

j,∗ denote the unknown true

variance associated with the return forecasts of the jth information source. The historical accuracy

in equation (2) serves as the investor’s estimate of σ2
j,∗ at t − 1, and represents the accuracy of μj,t

from the investor’s perspective. Statistically, equation (2) calculates the mean-squared error (MSE)

of the previous n forecast errors.4 Observe that equation (2) allows information sources to employ

Bayesian methods when generating their return forecasts with the usual tradeoff between variance and

bias arising from an informative prior.

Similarly, the covariance between the time series of forecast errors for the jth and kth information

source is estimated as

σj,k,t =
1

n

n∑
i=1

εj
t−i εk

t−i , (3)

for j �= k. Equation (3) represents the investor’s estimate of the true but unknown covariance σj,k,∗

between the return forecasts of two information sources at t− 1. For emphasis, since the estimates in

4This property follows from E
[
ε2
]

= V ar [ε] + (E [ε])2 with the bias in a forecast equaling E[ε].
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equations (2) and (3) are calculated using realized forecast errors over the last n periods, they should

be denoted as σ̂2
j,t and σ̂j,k,t respectively. The hats are omitted for notational simplicity.

Furthermore, the value of n in equations (2) and (3) is specific to an individual asset.5 Intuitively,

established firms in stable industries have a large n. Conversely, initial public offerings, firms under-

going a significant corporate restructuring or undertaking a large investment and those operating in

industries that experience major technological innovations have a small n. In the terminology or Brav

and Heaton (2002), major corporate events result in a change point which reduces n in our framework.

Overall, the μt vector of return forecasts at time t − 1 equals

μt =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1,t

μ2,t

...

μJ,t

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

A time series of these vectors μt−1, . . . , μt−n over the last n periods yields a Θt matrix summarizing

the historical accuracies of the J information sources as well as their historical covariances, described

by equations (2) and (3) respectively. The Θt matrix is a historical estimate of the true but unknown

variance-covariance matrix for the J return forecasts in equation (4). For notational simplicity, we

suppress the t subscripts for μ and Θ in the remainder of the paper with the understanding that they

pertain to the beginning of each period.

The cross-sectional dispersion across the J forecasts of the μ vector at a single point in time,

σ2
μ,t =

1

J − 1

J∑
j=1

(μj,t − μ̄t)
2 , (5)

where μ̄t is defined as the average return forecast at time t − 1

μ̄t =
1

J

J∑
j=1

μj,t , (6)

does not have an explicit role in our solution for the information portfolio. Nonetheless, σ2
μ,t has an

important economic interpretation by offering another proxy for return uncertainty which is likely to

be inversely related to n.

5When n is information source dependent, a j subscript would be added to form nj . For example, n could proxy for

the experience of an information source. However, for ease of exposition, a common value is written for all J information

sources as our initial focus is on a firm-specific information environment.
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2.2 Optimal Information Portfolio

Unlike classical portfolio theory, an asset’s true expected return is not assumed to be known. Instead,

the investor minimizes aggregate forecast to obtain the most accurate estimate of an asset’s expected

return.6 The optimization problem responsible for producing the optimal information portfolio W is

min
W

1

2
W T ΘW

(7)

subject to: W T1 = 1 ,

where 1 denotes a J -dimensional vector of ones. As proven later in this section, after imposing a

common distributional assumption on every return forecast, the objective function in equation (7) is

equivalent to finding the best linear unbiased estimator (BLUE) of the asset’s expected return given

available forecasts. Therefore, equation (7) is consistent with linear regression models used throughout

the empirical finance literature. The optimal information portfolio is solved in the following proposition

whose proof is contained in Appendix A.

Proposition 1. The solution for the optimal information portfolio W in equation (7) equals

W =
Θ−11

1TΘ−11
. (8)

Proposition 1 immediately generates an estimate for the asset’s expected return which is the subject

of the next proposition. For emphasis, when private return forecasts are evaluated, the firm-specific

information portfolio is also investor-specific.

Extending the optimization problem in equation (7) by constraining the investor to obtain a target

expected return, as in classical portfolio theory, allows the investor to “manipulate” the portfolio

weights. In particular, denote the target return as r∗ and observe that the constraint W Tμ = r∗ enables

the investor to overweight optimistic forecasts when seeking a high target return. Consequently, this

extension is left for further research.

6This approach is related to Peng and Xiong (2004)’s minimization for the variance of beliefs regarding subsequent

dividends, while Hong, Scheinkman and Xiong (2005) invoke mean-variance preferences when analyzing different infor-

mation sources.
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2.3 Regression Interpretation of Optimal Information Portfolio

After imposing a common distributional assumption on every return forecast, the objective function

in equation (7) is equivalent to finding the best linear unbiased estimate of the asset’s true expected

return. Specifically, assume the vector μ of return forecasts has the following multivariate normal

distribution

μ
d∼ N (η1, Θ) . (9)

To solve for the optimal conditional expectation, E [η|μ], consider the linear estimator

E [η|μ] = W Tμ , (10)

whose coefficients W minimize the conditional variance of the residuals

V ar [η − E [η|μ]] = V ar
[
η − W T μ

]
= V ar

[
η − W TN (η1, Θ)

]
= W TΘW , (11)

after substituting in the distribution for μ from equation (9). The W coefficients are also required to

produce an unbiased estimator

E
[
η − W Tμ

]
= 0

E
[
η − W TN (η1, Θ)

]
= 0

η − ηW T1 = 0 , (12)

which leads to the W T 1 = 1 constraint. Therefore, the best linear unbiased estimate of the asset’s

expected return is an equivalent formulation of the objective function in equation (7) where the investor

minimizes W TΘW subject to the W T1 = 1 constraint.7 Consequently, the statistical justification

underlying linear regression models also applies to our optimal information portfolio.

However, time-varying information portfolio weights are crucial to our interpretation in Section 4

of the biases manifested in the investor’s perceived return. More importantly, the objective function

in equation (7) which defines the optimal information portfolio is independent of the distributional

assumption in equation (9). Therefore, we refrain from referring to our information portfolio weights

as linear regression coefficients.

7Minimizing WT ΘW in equation (11) is equivalent to minimizing 1
2WT ΘW in equation (7).
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2.4 Perceived Return and Aggregate Return Uncertainty

By aggregating across the return forecasts, the optimal information portfolio immediately generates an

estimate for the asset’s expected return. This estimate is referred to as the investor’s perceived return,

and summarizes the information provided by the J return forecasts. Proposition 2 below computes

the perceived return and its aggregate uncertainty using the optimal information portfolio.

Proposition 2. The perceived return implied by the investor’s optimal information portfolio weights

in Proposition 1 equals

W Tμ =
1T Θ−1μ

1TΘ−11
, (13)

while the aggregate uncertainty of this estimate is

W TΘW =
1

1TΘ−11
. (14)

Proof: The perceived return follows immediately from equation (8) while the aggregate forecast error

is computed as8

W TΘW =
1

1T Θ−11
1TΘ−1 ΘΘ−11

1

1T Θ−11

=
1

1T Θ−11
. (15)

Denote the true return distribution of the asset as N (η, ν). Ex-ante, the investor is unaware of

the asset’s true expected return denoted η. As a consequence, the investor is compelled to aggregate

the J return forecasts and rely on the perceived return in equation (13). To clarify, W T ΘW is not an

estimate of ν. Even if W TΘW equals zero or η is known (as in classical portfolio theory), the asset is

not necessarily riskless.

Under the assumption in equation (9), a hierarchal structure describes the asset’s return distribu-

tion, which has an unknown expectation η distributed N (
W Tμ, W T ΘW

)
. In particular, the distribu-

tional assumption imposed on the return forecasts by equation (9) implies that W T μ
d∼ N (

η, W TΘW
)
.

Therefore, according to Berger (1985), the return distribution of the asset equals9

N (
W Tμ, ν + W T ΘW

)
. (16)

8A negative portfolio weight implies the investor reverses the sign of this information source’s return forecast when

the perceived return is computed.
9See Lemma 1 in Section 4.2 of Berger (1985).
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Thus, ex-ante return uncertainty reflects the asset’s true variability as well as the aggregate uncertainty

of the J forecasts. Consequently, equation (16) provides further justification for the minimization of

W TΘW in equation (7).

2.5 Important Information Portfolio Properties

We begin with the following corollary of Proposition 2 which offers an explicit expression for the

information portfolio between two independent information sources.

Corollary 1. For J = 2 and Θ being the diagonal matrix⎡
⎣ σ2

1 0

0 σ2
2

⎤
⎦ ,

the information portfolio W equals⎡
⎣ w1

w2

⎤
⎦ =

(
1

1
σ2
1

+ 1
σ2
2

)⎡
⎣ 1

σ2
1

1
σ2
2

⎤
⎦ =

1

σ2
2 + σ2

1

⎡
⎣ σ2

2

σ2
1

⎤
⎦ . (17)

Therefore, the investor’s perceived return equals

σ2
2 μ1 + σ2

1 μ2

σ2
1 + σ2

2

, (18)

while the aggregate uncertainty of this estimate is

σ2
1σ

2
2

σ2
1 + σ2

2

. (19)

According to equation (18), the return forecasts of the more accurate information source has a larger

portfolio weight and greater influence on the investor’s perceived return. Intuitively, the information

source with greater historical accuracy has more credibility. The next corollary of Proposition 2 extends

Corollary 1 by examining correlated return forecasts.

Corollary 2. For J = 2, let Θ equal ⎡
⎣ σ2

1 σ12

σ12 σ2
2

⎤
⎦ .
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Under this structure, the portfolio weights are⎡
⎣ w1

w2

⎤
⎦ =

1

σ2
2 + σ2

1 − 2σ12

⎡
⎣ σ2

2 − σ12

σ2
1 − σ12

⎤
⎦ , (20)

while the resulting perceived return equals

σ2
2 μ1 + σ2

1 μ2 − σ12 (μ1 + μ2)

σ2
1 + σ2

2 − 2σ12
. (21)

The aggregate uncertainty associated with this estimate of the asset’s expected return is

σ2
1σ

2
2 − (σ12)

2

σ2
1 + σ2

2 − 2σ12
. (22)

Appendix B proves that a negative historical covariance, σ12 < 0, reduces the perceived return’s

aggregate uncertainty in equation (22), a property which parallels its contribution in classical portfolio

theory for multiple assets rather than multiple return forecasts for a single asset. In our framework,

negative correlation between two information sources represents “offsetting” forecast errors.

3 Historical Accuracy and Return Predictability

Several empirical studies link firm characteristics and periods of uncertainty with behavioral biases

originating from the psychology literature.10 In the context of information portfolio theory, biases in the

perceived return are strongest when n is small, which indicates the firm has entered a new “regime” for

which little data is available. This setting would also be characterized by high cross-sectional dispersion

in equation (5) amongst the return forecasts. Recall that a information source’s historical accuracy

encompasses forecast variability associated with a state variable as well as uncertainty regarding its

return implications, with both of these components being functions of n.

For simplicity, we begin by examining one information source to investigate the impact of n. We

then return to a two-information source environment when return predictability is studied. It is im-

portant to emphasize that information sources may interpret distinct state variables, have different

10This literature includes Zhang (2005) and Kumar (2005). Baker and Wurgler (2005) report that young, small firms

are more sensitive to investor sentiment, while Jackson and Johnson (2006) find that momentum and post-earnings

announcement drift both result from events that significantly alter a stock’s earnings. The composite share issuance

variable of Daniel and Titman (2005) also indicates return predictability, while Vassalou and Apedjinou (2004) report

that momentum strategies are most profitable for firms with high levels of corporate innovation.
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forecasting techniques for these state variables, and utilize unique transformations of these state vari-

ables when generating their ex-ante return forecasts. None of these elements underlying a forecast’s

composition are necessarily disclosed by an information source. Instead, at each point in time, the

investor observes a collection of disparate return forecasts issued by various information sources in-

cluding their own private forecasts. Previous forecast errors for each information source define the Θ

matrix underlying our optimal information portfolio.

3.1 Uncertainty in the Return Implications of State Variables

Assume the jth information source utilizes a linear model for converting a known state variable Vt into

its return forecast

μj,t = α̂ + β̂Vt . (23)

The hats signify the unknown coefficients of the transformation, while the state variable Vt in equation

(23) is not random. Other information sources may or may not utilize this state variable when issuing

their return forecast.

According to equation (24) below, the α and β coefficients in equation (23) are calibrated from

historical data on realized returns and state variables

yt−i = α + βVt−i + ξt−i , (24)

over the previous i = 1, . . . , n periods where ξt−i is an i.i.d. error term distributed N (
0, σ2

ξ

)
. After

estimating equation (24) to obtain α̂ and β̂, the information source utilizes equation (23) to convert

Vt into μj,t.

To illustrate the importance of n, the forecast error εj
t below contributes another observation to

the time series of historical forecast errors in equation (1) at time t. In particular, the V ar
[
εj
t

]
term
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in equation (25) below augments the historical accuracy computation in equation (2) at time t11

E
[
εj
t

]2
= V ar [yt − μj,t]

= V ar [ξt] +
{
V ar [α̂] + (Vt)

2 V ar
[
β̂
]

+ 2Vt Cov
[
α − α̂, β − β̂

]}
(25)

= Transformation Uncertainty + Estimation Error in Transformation .

For large n, the α̂ and β̂ estimates converge to α and β respectively, implying equation (25) reduces

to V ar [ξt]. As a consequence, when n → ∞, the uncertainty of the jth information source converges

to σ2
ξ . This quantity represents the inherent variability of the state variable to return transformation,

and equals the true but unknown σ2
j,∗ variance for the jth information source.12

However, when n is small, estimation error in α̂ and β̂ is more severe. Lewellen and Shanken

(2002) examine the asset pricing implications of parameter uncertainty and demonstrate that return

predictability cannot necessarily be exploited by investors. Indeed, a small n obscures a forecast’s true

accuracy, undermining the credibility of a knowledgeable information source or a truly relevant state

variable. For example, Jagannathan and Wang (2005) find that consumption explains the role of the

SMB and HML factors in cross-sectional returns. However, SMB and HML dominate consumption in

empirical applications due to the limitations of consumption data.

Equation (25) also illustrates the importance of predictability in the return implications of a state

variable to reducing V ar
[
εj
t

]
. Indeed, if the conversion of Vt into μj,t is perfectly predictable, then the

coefficients in equation (23) would be known rather than estimates, implying the ξt−i error terms in

equation (24) are identically zero. For example, transforming an analyst’s price target into a return

forecast involves a perfectly predictable function (although not the linear relationship in equation (23)).

Conversely, when the relationship between a stock’s return and a state variable is unpredictable, this

instability causes a forecast to have higher uncertainty.

11The μj,t return forecast is unbiased since E [yt − μj,t] = E
[
α − α̂ + Vt

[
β − β̂

]
+ ξt

]
is zero provided E [α̂] and E

[
β̂
]

equal α and β respectively. These equalities follow from equation (24) providing unbiased estimates of the coefficients

according to the (BLUE) theory underlying linear regression models.
12To clarify, the investor cannot compute V ar

[
εj
t

]
in equation (25) at time t−1 when the transformation in equation

(23) is not disclosed by the information source issuing the jth return forecast. Instead, the investor relies on the jth

information sources’s historical accuracy which is computed from its previous forecast errors according to equation (2).
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Finally, even the idealized environment in equation (25) has two important complications. First,

the α and β parameters may be time-varying, complicating their estimation for any value of n. Second,

as discussed in the next subsection, Vt could be a forecast for the state variable with its own random

evolution. For example, ex-ante usage of the Fama-French (1993) model requires forecasts for the SMB

and HML factors.

3.2 Uncertainty in State Variable Dynamics

Jackson and Johnson (2006) document a post-event drift in analyst forecasts following seasoned equity

offerings, stock re-purchases, equity-financed mergers and dividend initiations as well as omissions.

Persistent analyst forecasts indicate that the full implications of such events are not immediately

understood.

Suppose the jth return forecast is derived from an information source’s forecast for a state variable,

denoted Ṽt, which is a linear function of its previous realization

Ṽt = â + b̂Vt−1 , (26)

while the true dynamics of Vt are described by

Vt−i = a + bVt−i−1 + ζt−i , (27)

over the previous i = 1, . . . , n periods where ζt−i is another i.i.d. error term whose distribution is

N (
0, σ2

ζ

)
. Equation (27) is utilized to estimate the a and b coefficients, while the ζt−i error terms

signify the state variable’s random evolution. The Ṽt notation contains a tilde to emphasize that the

information source is forecasting the state variable, in contrast to equation (23) where Vt is known.

When equation (23) with known α and β parameters is combined with equation (26), the following

return forecast is generated by the jth information source,

μj,t = α + βṼt

= α + β
[
â + b̂Vt−1

]
. (28)

For clarification, the conversion of the state variable into a return forecast continues to be specified

by equation (23). However, for simplicity, the α and β coefficients are assumed to be known since our

16



attention is currently focused on the contribution of state variable uncertainty to the jth information

source’s historical accuracy.13

Inserting the true dynamics of the state variable in equation (27) into equation (24) implies that

returns evolve as

yt = α + β [a + bVt−1 + ζt] + ξt . (29)

When combined, equations (29) and (28) imply14

E
[
εj
t

]2
= V ar [yt − μj,t]

= V ar [ξt] + β2V ar [ζt]

+
{
β2V ar [â] + β2 (Vt−1)

2 V ar
[
b̂
]

+ 2β2Vt−1Cov
[
a − â, b− b̂

]}
(30)

= Transformation Uncertainty + State Variable Uncertainty

+ Estimation Error in State Variable Dynamics .

To clarify, the term V ar [ζt] corresponds to state variable uncertainty, while V ar [ξt] represents ran-

domness in the return implications of the state variable.

The estimation error in equation (30) tends toward zero as n → ∞, implying σ2
j,t+1 converges

to σ2
ξ + β2σ2

ζ which equals the jth information source’s true accuracy σ2
j,∗ in this economy. This

information environment involves an infinite amount of relevant return and state variable time series

data. Furthermore, if there is no uncertainty regarding the evolution of the state variable or its return

implications, then σ2
ξ and σ2

ζ are both zero. In the limit of this no uncertainty environment, σ2
j,t+1

converges to zero and the asset’s true expected return η is eventually revealed.

An important property of equation (30) is that predictability in Vt reduces V ar
[
εj
t

]
. As a con-

sequence, after controlling for V ar [ξt], return forecasts derived from a predictable state variable are

more accurate. Conversely, conditioning a return forecast on an unpredictable state variable yields less

13The j superscript also applies to the α, β, a and b coefficients as well as the ξ and ζ error terms but is omitted for

notational simplicity.
14The linearity of equations (26), (28) and (29) imply μj,t is an unbiased estimate of yt. Specifically, E

[
εj
t

]
equals

zero since the unbiased estimates produced by equation (27) ensure E [â] = a and E
[
b̂
]

= b.
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accurate information source. More formally, consider two state variables; the first being unpredictable

and the second highly predictable. Given identical V ar [ξt] terms, return forecasts derived from the

highly predictable state variable are more accurate. As an extreme example, suppose Vt is perfectly

predictable and follows a known deterministic process with V̂t ≡ Vt as in the previous subsection. For

this special case, V ar [ζt] equals zero while the a and b coefficients are known, implying equation (30)

reduces to V ar [ξt].

In general, state variables are not necessarily normally distributed, nor are their return implications

required to be linear transformations. Indeed, no assumptions are imposed on the conversion of a state

variable into a return forecast when solving for the information portfolio.

3.3 Return Predictability

Consider an array of return forecasts ranging from optimistic to pessimistic in response to a firm

initiating an investment. Thus, the profitability (earnings / cashflow) of the investment may be

thought of as the relevant state variable.15

We study a simple two-period, two information source example. At the initial timepoint t1, the

firm announces a large investment. Over the subsequent (t1, t2] interval, the high return forecast is μH,1

while its low return counterpart is μL,1. At t1, assume the two return forecasts are equally credible,

implying σ2
H,1 equals σ2

L,1. For simplicity, the two information sources are independent with both

information sources issuing simultaneous forecasts. According to Corollary 1, the investor’s perceived

return over the (t1, t2] horizon is μ1 = 1
2
[μH,1 + μL,1] while the return realized at t2 equals r1,2.

By time t2, partial information regarding the success of the investment is revealed. In particular,

there are two scenarios, the first indicating success and the second failure. The ex-ante probability

attached to these scenarios is irrelevant when the ex-post return sequence is studied at t3. Furthermore,

assume μH,2 continues to exceed μL,2 although the disparity between these forecasts at time t2 may be

lower than at t1 depending on the prevailing uncertainty regarding the investment’s profitability.

15Berk, Naik and Green (1999) as well as Gomes, Kogan and Zhang (2003) and Carlson, Fisher and Giammarino

(2004) investigate the influence of investment decisions on cross-sectional return characteristics.
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Success Revealed:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r1,2 is high

σ2
H,2 < σ2

L,2, high return forecast is more accurate since r1,2 is high

Perceived return μ2 over (t2, t3] horizon is closer to μH,2

μ2 reflects extrapolation from high r1,2

Failure Revealed:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r1,2 is low

σ2
L,2 < σ2

H,2, low return forecast is more accurate since r1,2 is low

Perceived return μ2 over (t2, t3] horizon is closer to μL,2

μ2 reflects extrapolation from low r1,2

A small n would increase the disparity between σ2
H,2 and σ2

L,2, causing either μH,2 or μL,2 to have

a greater influence on μ2 for a given realized return r1,2. Thus, μ2 is closer to either the high or low

return forecast at t2 when n is small.

One may argue that the empirical evidence concerning long term reversals motivates a mean-

reverting prior distribution when issuing return forecasts. However, when the optimistic (pessimistic)

information source at t1 decreases (increases) their return forecasts at t2, uncertainty is reduced.

Indeed, if μH,1 and μL,1 converge to a common return forecast μ∗ at t2, then the return uncertainty

created by the investment is resolved and equation (5) is zero. Therefore, extrapolation attributable

to information portfolio theory continues as long as there is return uncertainty.

Intuitively, an sequence of returns may exhibit predictability as a result of events whose return

implications are not immediately understood and agreed upon by all information sources. This finding

does not prevent the return forecasts from being updated by the information sources. Instead, only the

continuation of forecast dispersion beyond one period is required.16 Furthermore, greater predictability

in the profitability of the investment implies the disparity between the return forecasts would narrow

more rapidly. In particular, our discussion in the previous subsection for a general state variable

16The horizon between the issuance of forecasts is important. Long time intervals allow more uncertainty to be

resolved before the investor’s perceived return is adjusted.
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implies predictability in the investment’s profitability reduces return uncertainty.

In summary, high (low) return forecasts are more accurate following high (low) realized returns.

Therefore, according to information portfolio theory, return forecasts are assigned larger information

portfolio weights when they are similar to previous return realizations. As a consequence, the perceived

return appears to be extrapolated from past returns. Intuitively, many return sequences exist ex-ante,

with the investment’s success determining a particular realized return sequence. Similarly, Bondarenko

and Bossaerts (2000) provide an excellent description of the return bias induced by conditioning on

an option’s eventual in-the-money or out-of-the-money status.

3.4 Conditional Expectations and Forecast Heterogeneity

The law of iterated expectations is usually invoked to conclude that the “error” separating an ex-

pected conditional return and its realization has mean zero. However, information portfolio theory

allows different information sources to utilize distinct statistical methodologies when forecasting state

variables or modeling their return implications. Disparate return forecasts also originate from infor-

mation sources analyzing different state variables. Consequently, the law of iterated expectations does

not ensure homogenous return forecasts across the J information sources.

Therefore, the potential for disagreement regarding future state variables and their impact on the

asset’s return is not ignored by our framework since a non-zero value for equation (5) enables forecast

heterogeneity to justify the existence of multiple information sources. From a practical perspective,

we assume the asset’s expected return is sufficiently complex to prevent market participants from fully

agreeing upon the η parameter. This assumption would also generate transactions between market

participants.

Conversely, the standard econometric approach when testing market efficiency restricts itself to

a single return forecast, which implicitly assumes that σ2
μ in equation (5) is zero. Specifically, a

single multifactor model is calibrated to generate conditional expected returns, a procedure which

fails to account for uncertainty surrounding the interpretation of available information. Indeed, this

methodology assumes there is no disagreement regarding the forecasts of the factors next period.

Therefore, if earnings are relevant to factor dynamics, the reality of earnings forecast dispersion is

ignored. Furthermore, the beta coefficient for every factor is constrained to be identical across all

information sources, who are further assumed to employ the same multifactor model.
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As a final clarification, our model’s structure allows the return forecasts to be determined by an

asset’s correlation with factor portfolios. Under this formulation, the asset’s true expected return

is unknown for at least one of three reasons; randomness in the dynamics of the factors, estimation

error in the factor sensitivities, and uncertainty regarding the number of required factors. The factors

can be interpreted as state variables or as intermediaries between state variables and return forecasts.

As an example, the market return could serve as a state variable. Alternatively, information sources

could utilize state variables to predict the market factor, whose return implications are obtained from

calibrating a firm’s beta coefficient.

4 Information Portfolios and Perceived Return Biases

This section connects our optimal information portfolio with several return biases previously attributed

to investor psychology. In particular, we demonstrate that the appearance of overconfidence, biased

self-attribution, representativeness, conservatism and limited attention are instilled into the perceived

return by the optimal information portfolio. However, none of the information sources nor the investor

are assumed to be influenced by psychological biases in our analysis.

4.1 Appearance of Overconfidence and Biased Self-Attribution

To analyze the appearance of overconfidence in the perceived return, we examine with two information

sources; one private and one public whose moments are denoted with pr and pb subscripts respectively.

A bias in the investor’s perceived return which mimics overconfidence is produced whenever the infor-

mation portfolio weight wpr for a private information source exceeds the information portfolio weight

wpb of a public information source.

Interpretation 1. Appearance of Overconfidence

Corollary 1 implies the following information portfolio weights for private and public information⎡
⎣ wpb

wpr

⎤
⎦ =

1

σ2
pr + σ2

pb

⎡
⎣ σ2

pr

σ2
pb

⎤
⎦ . (31)
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Consequently, private information is overweighted with wpr exceeding wpb whenever σ2
pr < σ2

pb. Fur-

thermore, the perceived return would equal

1

σ2
pr + σ2

pb

[
σ2

pr μpb + σ2
pb μpr

]
, (32)

which emphasizes μpr more than μpb.

According to equation (32), whenever a private information source is more accurate than its public

counterpart, the investor’s perceived return appears to exhibit overconfidence. Recall that several

private information sources can originate from the investor. Indeed, forecasts for state variables such

as earnings require further interpretation to become return forecasts, and create additional private

information sources. In contrast, when there is no uncertainty surrounding the return implications of

publically available information, the number of private information sources is reduced. Overall, let the

return forecast μpr in equation (32) be associated with the investor’s most accurate source of private

information. Provided this private source is more accurate than the public information source over

the last n periods, the investor appears overconfident.

The next interpretation of our optimal information portfolio extends the above analysis to include

the appearance of biased self-attribution. In the context of information portfolio theory, the investor

exhibits the appearance of biased self-attribution when one of their private information sources is more

accurate than a public information source, while another private information source is less accurate

according to equation (2). These private information sources are denoted by c and d subscripts

respectively and supplement the original public information source with J increasing to three.17

Interpretation 2. Appearance of Overconfidence with Biased Self-Attribution

Consider the variance-covariance matrix ⎡
⎢⎢⎢⎣

σ2
c 0 0

0 σ2
d 0

0 0 σ2
pb

⎤
⎥⎥⎥⎦ ,

with the property that σ2
d > σ2

pb > σ2
c . The corresponding information portfolio equals

[wc, wd, wpb] =
1

D

[
σ2

d σ2
pb, σ2

c σ2
pb, σ2

c σ2
d

]
,

17With respect to terminology in the psychology literature, confirming private information sources are more accurate

than a public information source, while disconfirming private information sources have been less accurate than all public

information sources over the last n periods.
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where D is defined as D = σ2
d σ2

c + σ2
d σ2

pb + σ2
c σ2

pb. Therefore, the perceived return W T μ equals

[σ2
c μd + σ2

d μc] σ
2
pb + σ2

c σ2
d μpb

D
, (33)

and is influenced more by μc than μd.

The σ2
d > σ2

c property ensures the information portfolio weight for μc exceeds the information

portfolio weight of μd. Thus, more accurate private information sources have more influence over the

investor’s perceived return. Interestingly, the investor may appear overconfident even if their private

information sources are inaccurate on average since inaccurate private information sources receive

small information portfolio weights. For example, if the investor successfully predicts the return

implications of industry characteristics, but performs poorly on other dimensions such as a firm’s

individual earnings, then the importance of industry data is accentuated by the information portfolio.

By implication, the investor pursues trading strategies derived from private information sources which

have provided them with individual success, regardless of the technique’s generality.

Overall, the investor’s perceived return gravitates towards the most accurate private information

sources and away from those which are less accurate. This tendency causes the investor’s perceived

return to exhibit the appearance of overconfidence and biased self-attribution as a result of the optimal

information portfolio.

These implications of the optimal information portfolio are formalized below with two private

information sources whose historical accuracies are denoted σ2
pr,1 and σ2

pr,2 respectively, along with a

public information source whose accuracy equals σ2
pb. Let pj represent the probability that the jth

private information source is less accurate than its public counterpart, σ2
pr,j > σ2

pb, after n periods

according to equation (2). These probabilities capture the skill of the information sources. Recall

from the previous section that assessing an information source’s skill is more difficult when n is small,

implying pj ≈ 1
2
. The following four scenarios summarize the comparative historical accuracies of the

three information sources after n periods.

23



Scenario Historical Accuracies Probability Investor Appears to Exhibit

A σ2
pr,1 , σ2

pr,2 < σ2
pb < Neither (1 − p1) (1 − p2) Overconfidence from both private sources

B σ2
pr,1 < σ2

pb < σ2
pr,2 (1 − p1) p2 Overconfidence, 1st private source is confirming

C σ2
pr,2 < σ2

pb < σ2
pr,1 p1 (1 − p2) Overconfidence, 2nd private source is confirming

D Neither < σ2
pb < σ2

pr,1 , σ2
pr,2 p1 p2 No Overconfidence

Therefore, a bias which mimics overconfidence arises in scenarios A, B and C . These scenarios

have a cumulative probability of

(1 − p1) (1 − p2) + (1 − p1) p2 + p1 (1 − p2) = 1 − p1 p2 . (34)

Suppose private and public information sources are equally accurate with p1 = p2 = 1
2
. In this

situation, the probability of a bias mimicking overconfidence is 75%. The investor appears to exhibit

the greatest amount of overconfidence in scenario A where both private information sources are more

accurate than the public information source. Furthermore, in scenarios B and C , a historically accurate

(inaccurate) private information source is assigned a larger (smaller) portfolio weight than the public

information source. Therefore, the probability that biased self-attribution appears to influence the

investor’s perceived return equals 50%.

Finally, our results continue to apply when there are more public than private information sources.18

When two public information sources and one private information source are available, the following

four scenarios are available after n periods.

18The relationship between the number of private information sources and their accuracy is ambiguous. More private

information sources could increase the likelihood of at least one private information source being more accurate than

the public information source. Conversely, additional private information sources may diminish the resources allocated

to generating each return forecast and thereby decrease their accuracy.
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Scenario Historical Accuracies Probability Investor Appears to Exhibit

A σ2
pb,1 , σ2

pb,2 < σ2
pr < Neither p1 p2 No Overconfidence

B σ2
pb,1 < σ2

pr < σ2
pb,2 p1 (1 − p2) Limited Overconfidence from 2nd public source

C σ2
pb,2 < σ2

pr < σ2
pb,1 p2 (1 − p1) Limited Overconfidence from 1st public source

D Neither < σ2
pr < σ2

pb,1 , σ2
pb,2 (1 − p1) (1 − p2) Overconfidence from both public sources

The concept of limited overconfidence in scenarios B and C reflects the private information source’s

larger portfolio weight relative to one of the public information sources. Only in scenario A when the

private information source is less accurate than both public information sources is there no evidence

of overconfidence.

4.2 Appearance of Representativeness and Conservatism

Recall from the previous section that accuracy increases as a result of predictability in state variable

dynamics as well as predictability in their return implications. These properties imply that trends,

whether in the state variables or their return implications, are capable of increasing an information

source’s portfolio weight since trends imply predictability. For example, a strong trend in a binomial

sequence consists predominately of either up or down movements, implying the estimated binomial

probability over the last n observations would be near 0 or 1.

Consider two information sources, labeled consistent and inconsistent, with the former arising from

predictable state variables or stability in the return implications of the state variables. The moments

for the consistent and inconsistent information sources are denoted μC and σ2
C as well as μI and σ2

I

respectively. The property σ2
I > σ2

C is induced by predictability underlying the consistent information

source.

Interpretation 3. Appearance of Representativeness
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Let μ =

⎡
⎣ μC

μI

⎤
⎦ and Θ =

⎡
⎣ σ2

C 0

0 σ2
I

⎤
⎦. From Corollary 1, the information portfolio equals

⎡
⎣ wC

wI

⎤
⎦ =

1

σ2
I + σ2

C

⎡
⎣ σ2

I

σ2
C

⎤
⎦ , (35)

and implies the perceived return

1

σ2
C + σ2

I

[
σ2

C μI + σ2
I μC

]
, (36)

is influenced more by μC than μI .

Hence, consistent information sources have more influence on the investor’s perceived return than

their inconsistent counterparts. However, trends can produce consistent information sources in the

absence of any superior knowledge regarding the true dynamics of a state variable or its relationship

with future returns. Thus, an information source’s consistency may be temporary, especially when n

is small. For example, prior returns can generate a consistent information source for an IPO over a

short horizon until the dynamics of a firm’s earnings are able to be reliably estimated.

Assume the return forecasts from two information sources both emanate from the true return

distribution, which is further assumed to be stationary. These two information sources have identical

levels of theoretical accuracy, implying that predictability in a state variable or stability in its return

implications does not offer an advantage to one information source versus the other. Therefore, any

trend that causes one of the two information sources to be more accurate after n periods is statistically

insignificant. Nonetheless, for a finite n, one of the information sources is always more accurate.19

Scenario Consistent Inconsistent Probability Investor Appears to Exhibit

A σ2
1 < σ2

2
1
2 Representativeness; 1st source consistent, 2nd inconsistent

B σ2
2 < σ2

1
1
2 Representativeness; 2nd source consistent, 1st inconsistent

19The return forecasts originate from a (normal) continuous distribution. Consequently, the probability that σ2
1 equals

σ2
2 after n periods is zero.
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Observe that the appearance representativeness occurs in both scenarios, while its apparent mag-

nitude is proportional to the disparity |σ2
1 − σ2

2|. With both historical accuracies computed according

to equation (2), this distance decreases as n increases since the return forecasts from both information

sources arise from the same distribution.

Furthermore, the investor’s perceived return may appear insensitive to the release of new informa-

tion. As illustrated below, even for the simplest case where two information sources are available, the

perceived return has four degrees of freedom.

Interpretation 4. Appearance of Conservatism

According to Corollary 1, an infinite number of μC , μI , σ2
C and σ2

I combinations that result in the same

perceived return,

σ2
C μI + σ2

I μC

σ2
C + σ2

I

.

Therefore, conservatism cannot be established without evaluating multiple sources of information since

the investor’s perceived return is an aggregate quantity.

For example, the announcement of poor earnings coupled with strong sales may occur after a

large investment or price discounting. On the announcement date, the investor’s perceived return

need not fluctuate as much as the individual return forecasts derived from earnings and sales due to

their negative correlation. As demonstrated in the next subsection when a bias which mimics limited

attention is investigated, negatively correlated forecasts receive larger information portfolio weights.

Consequently, the investor’s perceived return does not necessarily respond significantly to a single

news item, unless all of the return forecasts are updated in a similar direction after its release.

4.3 Appearance of Limited Attention

The σ1,2 covariance term in Corollary 2 incorporates the appearance of limited attention bias into the

perceived return. Barber, Odean and Zhu (2003) present empirical evidence of this bias for individual

investors.

Figure 1 illustrates the response of the perceived return and its uncertainty in equations (21)

and (22) respectively as a function of the correlation between two forecasts. Observe that forecast
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correlation has a dramatic impact on the investor’s aggregate uncertainty but less influence on their

perceived return. Appendix B formalizes this assertion by computing the partial derivatives of the

perceived return and its aggregate uncertainty in Corollary 2 with respect to σ12. Intuitively, the

investor ignores an information source whose return forecasts are positively correlated with more

accurate information sources. This behavior parallels the removal of independent variables in linear

regression models due to multicollinearity.

For example, if two analysts are simultaneously optimistic or pessimistic, then the investor may

limit their attention to a single representative information source.20 In contrast, if these information

sources offer alternative perspectives on the asset’s expected return, then the investor benefits from

analyzing both forecasts since their errors have historically been negatively correlated. More formally,

consider the portfolio weights in Corollary 2

w1 =
σ2

2 − σ12

σ2
2 + σ2

1 − 2σ12

> 0

(37)

w2 =
σ2

1 − σ12

σ2
2 + σ2

1 − 2σ12
> 0 .

If the two forecasts are independent, then σ12 equals zero and both portfolio weights are positive.

However, suppose that σ12 equals σ2
1. The Cauchy-Schwartz inequality implies that σ2

1 ≤ σ2
2 when

σ12 = σ2
1. Thus, the first information source is more accurate than the second.21 More importantly,

when the covariance equals σ2
1, the portfolio weights in equation (37) become

w1 =
σ2

2 − σ2
1

σ2
2 + σ2

1 − 2σ2
1

=
σ2

2 − σ2
1

σ2
2 − σ2

1

= 1 (38)

w2 =
σ2

1 − σ2
1

σ2
2 + σ2

1 − 2σ2
1

= 0 . (39)

Consequently, positive covariance between the two information sources can eliminate the second re-

turn forecast from the perceived return, with a visual illustration in Figure 2. Thus, investors tend

to ignore return forecasts which are positively correlated with more accurate information sources,

while negatively correlated forecasts have the greatest influence over the investor’s perceived return.

20Optimism (pessimism) is defined by positive (negative) forecast errors.
21The Cauchy-Schwartz inequality provides an upper bound on the covariance, (σ12)

2 ≤ σ2
1 σ2

2 . Therefore, when

σ12 = σ2
1 , this inequality is interpreted as

(
σ2

1

)2 ≤ σ2
1 σ2

2 which implies σ2
1 ≤ σ2

2 .
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Therefore, when attempting to detect conservatism, it is essential to evaluate the aggregate impact of

contradictory information.

In summary, the number of return forecasts the investor processes depends on their correlation

structure. Thus, the investor may rely on broadly defined sector information rather than firm-specific

characteristics if the latter are positively correlated within an industry. For example, during the

Internet bubble, the returns of dot-com firms appear to have been driven by industry characteristics.

In addition, earnings forecasts issued by analysts who herd are less likely to influence an asset’s

perceived return.

4.4 Rational versus Behavioral Interpretations

Although the perceived return is derived from the optimal information portfolio, this estimate of the

asset’s expected return is not referred to as being rational since the return forecasts may or may

not incorporate investor psychology. In particular, the most accurate information sources could be

those which incorporate investor psychology into their return forecasts. As a consequence, information

portfolio theory does not preclude behavioral biases from influencing the perceived return. For example,

suppose all J return forecasts are identical and equal to μ∗, with this common expectation further

assumed to be the result of at least one psychological bias. In this situation, the investor’s perceived

return μ∗ contains this behavioral bias regardless of the information portfolio. Conversely, the use of

psychology could increase forecast dispersion due to disagreements over the exact nature of the biases

committed by investors. As a result, the relevance of information portfolio theory is enhanced by

differences of opinion regarding investor psychology. Overall, decomposing the perceived return into

the effects of psychology versus the optimal information portfolio is ultimately an empirical question.

Our objective in this paper is to demonstrate that return uncertainty can instill biases into perceived

returns which mimic those in the psychology literature.

In addition, information portfolio theory facilitates the computation of an investor’s expected

return, which enhances rather than contradicts utility maximization. The extent to which information

uncertainty is priced by the market is not addressed in this paper since additional assumptions on

investor utility are not invoked to convert the results of Proposition 2 into a dollar-denominated

price. Instead, we limit our attention to the investor’s perceived return, a critical input for any

pricing application. However, Proposition 3, below whose proof is in Appendix C, provides a utility
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maximizing application of Proposition 2 after imposing the distributional assumption in equation (9)

on the return forecasts.

Proposition 3. Suppose the investor has initial wealth M and a negative exponential utility function

whose coefficient of absolute risk aversion is denoted a, U(M) = 1−e−aM . Given the return distribution

in equation (16), the optimal fraction of wealth f invested in the risky asset equals

f =
1T Θ−1 (μ − rf1)

a M [1 + ν1T Θ−11]
, (40)

where rf represents the riskfree interest rate.

As an explicit illustration, consider two correlated identical return forecasts issued by information

sources with identical historical accuracies (μ1 = μ2 = μ∗, σ2
1 = σ2

2 = σ2
∗) with σ12 describing the

off-diagonal sample covariance element of Θ as in Corollary 2. Under these specifications, the solution

for f in Proposition 3 reduces to

f =
2 (μ∗ − rf )

a M

(
1

2ν + σ2∗ + σ12

)
. (41)

Observe that when information sources forecast higher returns or are more accurate historically, the

investor increases their exposure to the risky asset. When the return forecasts are negatively correlated,

the investor also purchases a larger amount of the risky asset. According to equation (41), accurate

return forecasts offset the investor’s risk aversion. Therefore, it is difficult to distinguish the influence of

time-varying risk aversion on the investor’s portfolio allocation from the quality of available forecasts.

In particular, more return uncertainty proxies for higher risk aversion. Consequently, inaccurate

information sources cause the investor to reduce their exposure to the risky asset.

As a special case of equation (41), the fraction of wealth allocated to the risky asset equals
η−rf

a M ν

when there is no uncertainty regarding the asset’s expected return since σ2
∗ and σ12 are zero while

μ∗ = η.

4.5 Contrast with Bayesian Methods

When an asset’s expected return is unstable, Brav and Heaton (2002) demonstrate that representa-

tiveness and conservatism result from Bayesian priors which underweight past or recent observations

respectively. In their model, these biases arise from uncertainty regarding a random change point

30



which initiates a different economic regime. Therefore, they highlight the difficulty posed by different

possible priors when attempting to disentangle rational from behavioral explanations of return pat-

terns. Furthermore, overconfidence may be inserted directly into the prior distribution of a private

return forecast by assuming the investor underestimates its uncertainty.

In contrast, our biases arise from aggregating across multiple return forecasts. Indeed, biases are

outputs of information portfolio theory, enabling us to provide testable implications independent of any

prior distribution. Information portfolio theory also requires at least two return forecasts. Although

Bayesian updating is applicable to multiple forecasts, a prior distribution(s) remains an integral part

of the posterior and therefore the investor’s expected return. In contrast, the historical accuracies of

our information sources are derived entirely from return forecasts and realizations.

5 Empirical Implementation

Information portfolio theory does not assume that investor beliefs are characterized by behavioral bi-

ases in the psychology literature. Instead, uncertainty surrounding an asset’s expected return increases

the potential for the perceived return to manifest these biases. In this section, testable implications of

information portfolio theory are discussed and verified empirically.

5.1 Testable Implications

There are several testable implications of information portfolio theory. These include hypotheses that

enable us to distinguish information portfolio theory from psychology.

First, biases are more pronounced when an asset’s expected return is uncertain. Therefore, in

the aftermath of events which undermine the relevance of previous return forecasts, biases in the

perceived return are stronger. Corporate restructurings, significant investments as well as technological

innovations all reduce the relevance of previous observations. Therefore, these events reduce n and

are likely to increase return forecast dispersion. Second, the investor may condition their beliefs on

forecasts derived from state variables which are correlated with returns, regardless of their theoretical

justification, provided they lower forecast errors. This tendency is aggravated when n is small. Third,

negatively correlated return forecasts reduce the investor’s aggregate forecast error. In contrast, a

return forecast is assigned a lower portfolio weight if its forecast errors are positively correlated with
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another more accurate information source. Fourth, assuming two state variables can be transformed

into returns with comparable accuracy, the more predictable state variable has a greater influence on

the perceived return.

Two testable hypotheses involving private return forecasts are also available. First, investors over-

weight their (confirming) accurate private information sources at the expense of their (disconfirming)

failures. Consequently, the trading strategies implemented by an investor are determined by the suc-

cess of their private return forecasts. Second, less experienced investors have a greater propensity to

exhibit overconfidence and biased self-attribution since they have produced fewer forecast errors to as-

sess their ability. This implication once again corresponds to a small n proxying for a poor information

environment.22

To distinguish between the implications of behavioral theories versus information portfolio theory,

the accuracy associated with each information source is crucial. When investors focus their atten-

tion on accurate information sources, our theory (at least partially) describes their perceived return.

Thus, ranking information sources by their historical accuracy facilitates empirical tests of information

portfolio theory.

However, psychology and information portfolio theory are not incompatible. The extent to which

they both influence the perceived return is ultimately an empirical question. For example, if the most

accurate information sources incorporate investor psychology into their return forecasts, then the role

of psychology in the perceived return is undeniable. In this economy, return uncertainty causes the

optimal information portfolio to augment, rather than completely explain, the presence of biases in

the perceived return.

5.2 Hypotheses and Data

For testing the two dimensions of information portfolio theory, we examine the transformation of

earnings to returns (sensitivity) and the variability (uncertainty) of earnings. In our empirical exercise,

there are implicitly two information sources; earnings and everything unexplained by earnings.

The relationship between returns and earnings forecasts generates our first hypothesis. Intuitively,

the ξt error terms in equation (24) are being referenced. Indeed, if returns and earnings are perfectly

22These biases may be investigated when individual analysts are interpreted as issuing private return forecasts. Thus,

analysts that herd are less confident, while those issuing bold forecasts are more confident.
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correlated, then V ar [ξt] is zero for this transformation.

Hypothesis 1. Investors focus more on earnings when this state variable has a stronger relationship

with earnings. In particular, the return forecast derived from earnings is assigned a higher information

portfolio weight when the return implications of earnings are more certain.

Our second hypothesis concerns earnings uncertainty and refers to the ζt error terms in equation

(27). For example, if earnings evolve according to a known deterministic process agreed upon by all

analysts, then V ar [ζt] is zero.

Hypothesis 2. Assets with greater earnings uncertainty exhibit stronger biases. In particular, return

forecasts are more disparate when earnings dispersion is higher.

The first hypothesis is critical to verifying the predictions of information portfolio theory since

it is unique to our framework, while the second hypothesis is consistent with several behavioral in-

terpretations (Zhang (2005)). According to our first hypothesis, even during periods of high return

uncertainty, information portfolio theory predicts that investors attempt to find the “best” available

information sources.

Analyst earnings forecasts serve as public information in our empirical tests. We consider all

domestic primary stocks listed on the NYSE, AMEX and NASDAQ with analyst coverage. The

monthly stock return and market capitalization data are obtained from CRSP while analyst forecasts

are from the I/B/E/S Summary History dataset. The intersection of the CRSP and I/B/E/S datasets

over the January, 1976 to December, 2004 sample period is utilized. The start date is determined by

the beginning of the I/B/E/S Summary History dataset. Forecast revisions are scaled by stock prices

retrieved from I/B/E/S to account for adjustments such as stock dividends and stock splits. Finally,

we obtain book to market ratios (B/M) from Compustat.

We construct an uncertainty measure to proxy for the return dispersion in equation (5) as well

as a sensitivity measure to gauge the relative informativeness of earnings versus everything else when

forecasting returns.
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5.3 Sensitivity of Returns to Forecast Revisions

Each month, we estimate stock price sensitivities to earnings information by computing the correlation

coefficient between stock returns and forecast revisions over the previous twelve months.23 These

correlations proxy for the return implications of analyst forecasts. In particlar, stocks with higher

correlations are more influenced by earnings since our sensitivity measure parallels the transformation

from an earnings state variable into a return signal.

I/B/E/S contains summary statistics on analyst forecasts for the third Thursday of each month

(referred to as the I/B/E/S compilation date hereafter). We define the forecast revision for firm i in

month t as

revi,t =
FY 1i,t − FY 1i,t−1

Pi,t
, (42)

where FY 1i,t and FY 1i,t−1 are the mean analyst forecast for fiscal year 1 in month t and t − 1

respectively, while Pi,t is the stock price provided by I/B/E/S on the compilation date in month t.24

For each revi,t, we compute the contemporaneous stock return reti,t defined as the return of stock i

between two I/B/E/S compilation dates in month t− 1 and month t. Once again, the stock prices on

the I/B/E/S compilation dates are extracted from I/B/E/S.

Using the monthly forecast revisions and stock returns, we then find the return-forecast sensitivity

of stock i in month t by computing the correlation coefficient between revi and reti over the past

12 months. Based on this sensitivity measure, the stocks are sorted into three groups every month

consisting of the bottom 30%, middle 40% and top 30% respectively. For ease of illustration, these

three groups are labeled low sensitivity (S1), medium sensitivity (S2) and high sensitivity (S3) stocks.

23We also estimate the correlation coefficient using observations from the previous 6 and 24 months. Our results are

robust to these alternative estimates of the correlation coefficient.
24Additional adjustments on revi,t are performed in the month when a firm announces its fiscal year earnings since

analyst forecasts switch to subsequent fiscal years after the announcement. Thus, the FY 1 estimates in two consecutive

months could be forecasts for two different fiscal years. For example, suppose a firm announces its fiscal year earnings in

month t. If the announcement date is before the I/B/E/S compilation date in that month, revi,t is defined as its mean

FY 1 estimate in month t minus its mean FY 2 estimate in month t − 1. Conversely, if the announcement occurs after

the I/B/E/S compilation date in that month, then revi,t remains defined as the difference in the mean FY 1 estimates

between month t and t−1. However, revi,t+1 is defined as the mean FY 1 estimate in month t+1 minus the mean FY 2

estimate in month t.
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5.4 Earnings Uncertainty

Our theory also asserts that biases are more severe when state variables are more uncertain. The

uncertainty of earnings information is measured using the standard deviation of analyst forecasts

scaled by stock price25

stdevi,t =
σi,t

Pi,t
. (43)

Along with the sensitivity classifications, we divide the stocks into three uncertainly groups each month

according to equation (43) which are comprised of the bottom 30%, middle 40% and top 30%. These

three groups are referred to as low uncertainty (U1), medium uncertainty (U2) and high uncertainty

(U3) stocks.

Table 1 provides an overview of the sensitivity and uncertainty portfolios. Furthermore, we in-

vestigate whether there are significant differences among the portfolios in terms of value/growth and

large/small characteristics as well as analyst coverage. The Spearman rank correlation coefficients

among the sensitivity measure, the uncertainty measure, B/M, size and the number of analysts are

computed each month, with their time series average reported in Panel A. Each month we also com-

pute the average rankings of B/M, size and number of analysts for the stocks in the sensitivity and

uncertainty portfolios. The ranking is normalized to [0, 1]. Thus, a ranking of 0.5 is the median and

mean observation. Their time series averages are recorded in Panel B.

The statistics indicate low correlation between the sensitivity measure and the uncertainty measure

(0.062), B/M ratio (0.013) and size (0.016). The uncertainty measures correlation with size is also very

low (-0.018). On the other hand, the uncertainty measure has a positive correlation with B/M (0.265).

In other words, higher dispersion stocks tend to be high B/M or value stocks which is consistent with

the findings in Doukas, Kim and Pantzalis (2004). The correlation between the uncertainty measure

and B/M is confirmed in Panel B as the average ranking of B/M for the stocks in the low uncertainty

portfolio (U1) is 0.40, while the average ranking for the medium (U2) and high (U3) uncertainty

portfolios are 0.51 and 0.59 respectively. The pattern is also consistent in the double-sorted portfolios

(e.g. S1U1 is the portfolio of the stocks belonging to both S1 and U1). Besides this relationship,

25As a robustness test, the mean analyst forecast is also used to normalize σi,t instead of the stock price. The results

from this alternative are nearly identical to those using equation (43). Consequently, for brevity, they are unreported

but available upon request.
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the sensitivity and uncertainty portfolios are unrelated to B/M, size and analyst coverage factors.

The average rankings of the three variables (B/M, size and number of analysts) for the stocks in each

sensitivity and uncertainty portfolio are all close to 0.5 (with the exception of B/M and the uncertainty

portfolios). Therefore, the portfolios have similar B/M, size and analyst coverage characteristics, and

are well represented by an average stock.

5.5 Earnings Momentum Strategies

When the first two hypotheses are combined, the result is the following prediction for the profitability

of earnings momentum strategies. This third hypothesis states that these cross-sectional returns are

largest when conditioning on a credible earnings forecast during periods of high return uncertainty.

Hypothesis 3. Earnings momentum profits are largest for stocks with high (previous) uncertainty and

sensitivity measures.

Earnings momentum is implemented as in Jegadeesh and Titman (1993), but with forecast revisions

over the past 6 months instead of stock returns. The forecast revision for firm i in month t is defined

as

REV 6i,t =
5∑

j=0

revi,t−j , (44)

where revi,t is defined in equation (42). We rank the stocks according to equation (44) and assign

them to one of five quintile portfolios each month. The bottom quintile portfolio contains stocks

with the most unfavorable earnings forecast revision, while the top quintile contains those with the

most favorable revision. Overlapping portfolios are then constructed to compute equally-weighted

returns each month. For instance, the portfolio having the most favorable revision (E5) consists of six

overlapping portfolios from the previous six ranking months. The return for this portfolio is the simple

average return of the six portfolios formed over the past six months. If a stock’s return is missing

during the holding period, it is replaced with the corresponding value-weighted market return. The

earnings momentum portfolio is the zero-investment portfolio that buys the most favorable revision

portfolio and sells the least favorable revision portfolio, E5-E1, each month.

Our earnings momentum strategy differs slightly from the standard price momentum strategy in

another respect. After ranking stocks according to their past returns, Jegadeesh and Titman (1993)
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skip one month before buying stocks to avoid bid-ask spread and short-term stock price reversal.

This one month gap is not inserted into our strategies for two reasons. First, we rank stocks based

on their earnings which, unlike past returns, is not subject to the bid-ask spread problem. Second,

almost all earnings consensus estimates are available between the 10th and the 20th day of the month.

Consequently, about half a month has already been omitted before we start holding positions at the

beginning of next month.

5.6 Earnings Momentum Conditioned on Sensitivity and Uncertainty

Chan, Jegadeesh and Lakonishok (1996) document strong earnings momentum profits and suggest that

earnings momentum is caused by the slow response of market participants to earnings information.

If earnings momentum is caused by market under-reaction to earnings information, our theory would

predict that earnings momentum is stronger for stocks whose earnings information is more credible,

and those with more uncertain earnings. Thus, we hypothesize that earnings momentum strategies

are more profitable for stocks in the high sensitivity and high uncertainty portfolios.

Table 2 reports earnings momentum profits and illustrates the importance of return sensitivity to

earnings and earnings uncertainty. When the earnings momentum strategy is implemented using the

full sample, the strategy generates an average return of 0.69% per month with a t-statistic of 4.38.

Next, we implement the strategy separately for the three sensitivity groups (S1, S2 and S3). The

momentum profit remains significant in each of the three groups. More interestingly, the profit increases

monotonically from the low sensitivity group (S1) to the high sensitivity group (S3), with the profit

of the latter being about 50% higher than the former (0.79% vs. 0.52%). To clarify, the grouping of

S1, S2 and S3 is determined before the stocks are assigned to the earnings momentum portfolios (E1

to E5), and thus before the buying or selling of stocks.

The momentum profit pattern is identical in the three uncertainty groups, increasing monotonically

from U1 to U3, the profit of U3 being approximately 70% higher than U1 (0.74% vs. 0.44%). When the

earnings momentum strategy is applied to double-sorted portfolios on sensitivity and uncertainty, the

monotonic increasing pattern of the momentum profits continues. Within each sensitivity group, the

profit increases monotonically from U1 to U3 (e.g. within the medium sensitivity group, the profit is

0.49%, 0.64% and 0.79% for S2U1, S2U2 and S2U3 respectively). In addition, within each uncertainty

group, the profit increases monotonically from S1 to S3 (e.g. within the medium uncertainty group,
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the profit is 0.45%, 0.64% and 0.73% for S1U2, S2U2 and S3U2 respectively).

There is existing evidence that momentum profits are affected by factors such as the B/M ratio,

documented in Daniel and Titman (1999), along with size and analyst coverage, as reported in Hong,

Lim and Stein (2000). Our descriptive statistics in Table 1 indicate that our sensitivity and uncertainty

results are not manifestations of these factors.

In particular, our uncertainty measure is positively correlated with B/M, implying low uncertainty

stocks tend to be growth stocks. Daniel and Titman (1999) find stronger momentum among growth

stocks, and attribute this finding to investor overconfidence. If uncertainty is irrelevant, the positive

correlation between uncertainty and B/M would indicate higher momentum profit amongst low rather

than high uncertainty stocks. Therefore, our ability to find increasing momentum profits from U1 to

U3 attests to the importance of conditioning on uncertainty.

The sensitivity and uncertainty measures are also weakly positively correlated with analyst cov-

erage, although this feature is not found in Panel B of Table 1. Hong, Lim and Stein (2000) report

higher momentum profits for stocks with less analyst coverage, consistent with the slow diffusion of

information. Their findings also predict less momentum profits for the high sensitivity and high uncer-

tainty stocks, while we find increasing momentum profits from S1 to S3 and U1 to U3. Consequently,

the sensitivity and uncertainty measures both contain important conditional information that is not

captured by the existing literature.

Overall, we can reasonably conclude that our earnings momentum results, which are derived from

sensitivity and uncertainty measures for the return implications of earnings and variability in earnings

respectively, are not driven by book-to-market, size and analyst coverage effects documented in the

existing literature.

6 Conclusions

We introduce an information portfolio which minimizes the aggregate uncertainty of multiple return

forecasts. This portfolio summarizes investor beliefs, and yields an expected return which exhibits

biases that are similar to overconfidence, biased self-attribution, representativeness and conservatism

as well as limited attention. Therefore, despite being optimal, expected returns display biases that

have previously been attributed to investor psychology.
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Furthermore, biases and return predictability are strongest in periods of high return uncertainty.

As a consequence, information quality can (at least partially) explain the biases in expected returns.

Moreover, testable implications of information portfolio theory distinct from psychology are avail-

able. In contrast to Bayesian frameworks, these implications are independent of any assumed prior

distribution.

By examining the profits of earnings momentum strategies, we document the importance of return

sensitivity to earnings as well as earnings uncertainty. The two pillars of information theory are

verified since momentum profits increase monotonically from low to high sensitivity stocks, and from

low to high uncertainty stocks. More importantly, the sensitivity results continue after controlling

for the effects of information uncertainty. Thus, investors condition their beliefs in accordance with

information portfolio theory since more accurate return forecasts are assigned greater influence on the

expected return. The significance of our sensitivity and uncertainty measures is not driven by factors

such as book-to-market, size and analyst coverage.
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Appendices

A Proof of Proposition 1

Denote the Lagrangian of equation (7) as

L(W, λ) =
1

2
W TΘW + λ(W T 1 − 1) , (45)
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which generates two equations

∂L(W, λ)

∂W
= ΘW + λ1 = 0 (46)

∂L(W, λ)

∂λ
= W T1 − 1 = 0 (47)

involving two unknowns; W and the Lagrangian multiplier λ. Equation (46) is equivalent to

W = −λΘ−11 . (48)

Multiplying the transpose of equation (48) by the 1 vector yields

W T1 = −λ1T Θ−11 (49)

which implies

1 = −λ1TΘ−11 , (50)

due to the W T1 = 1 constraint. Therefore, the λ parameter is solved as

−λ =
1

1TΘ−11
. (51)

Substituting equation (51) into equation (48) produces the final result

W =

(
1

1TΘ−11

)
Θ−11 , (52)

which satisfies the constraint

W T1 =

(
1

1TΘ−11

)
1T Θ−11 = 1 . (53)

B Covariances and the Perceived Return

The partial derivative of the investor’s perceived return in equation (21) with respect to σ12 equals

∂Perceived Return

∂σ12
=

− (μ1 + μ2) [σ2
1 + σ2

2 − 2σ12] + 2 [σ2
2 μ1 + σ2

1 μ2 − σ12 (μ1 + μ2)]

(σ2
1 + σ2

2 − 2σ12)
2

=
(μ2 − μ1) (σ2

1 − σ2
2)

(σ2
1 + σ2

2 − 2σ12)
2 , (54)
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according to the quotient rule of calculus. In general, the sign of this derivative may be either positive

or negative. According to the numerator of equation (54), when either the return forecasts or their

historical accuracies are identical, the investor’s perceived return is invariant to the covariance. Figure

1 finds the perceived return is insensitive to σ12 over a range of values.

The partial derivative of the perceived return’s aggregate uncertainty in equation (22) with respect

to σ12 equals

∂Aggregate Uncertainty of Perceived Return

∂σ12

=
−2σ12 [σ2

1 + σ2
2 − 2σ12] + 2 [σ2

1σ
2
2 − (σ12)

2]

(σ2
1 + σ2

2 − 2σ12)
2

=
2σ12 [σ12 − (σ2

1 + σ2
2)] + 2σ2

1σ
2
2

(σ2
1 + σ2

2 − 2σ12)
2 . (55)

As confirmed by Figure 1, the perceived return’s uncertainty is sensitive to the sign of the sample

covariance. In particular, when σ12 is negative, equation (55) is large and positive. Thus, return

uncertainty decreases as the covariance becomes more negative.

C Proof of Proposition 3

Recall from equation (16) that the perceived return is distributed N (
W Tμ, ν + W TΘW

)
under the

distributional assumption of equation (9). To prove Proposition 3, the following utility maximization

problem is solved

max
f

E
{
U
[
M
(
(1 − f) (1 + rf) + f

(
1 + W Tμ

))]}
= max

f
−E

[
exp

{−a M
(
1 + rf + f

(
W Tμ − rf

))}]
= max

f
− exp

{
−a M f W Tμ + a M f rf +

a2 M2 f2

2

[
ν + W TΘW

]}
, (56)

where the last equality results from the moment generating function of a normal distribution. The

necessary maximization involves setting the following partial derivative of equation (56) with respect

to f

(−a M W Tμ + a M rf + a2 M2 f
[
ν + W T ΘW

])(−e

{
−a M f WT μ+a M f rf +a2 M2 f2

2 [ν+WT ΘW ]
})

(57)

to zero. This requires the first term in the above product to be zero

−a M W T μ + a M rf + a2 M2 f
[
ν + W TΘW

]
= 0 . (58)
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Therefore, the optimal investment in the risky asset equals

f =
W Tμ − rf

a M [ν + W TΘW ]
, (59)

which becomes

f =
1

a M

(
1T Θ−1μ
1T Θ−11

− rf

)
ν + 1

1T Θ−11

=
1T Θ−1 (μ − rf1)

a M [1 + ν1T Θ−11]
, (60)

after substituting in the results of Proposition 2.

Observe that the optimal portfolio weights from Proposition 1 transform equation (59) into equation

(60). When there is no uncertainty regarding the asset’s true expected return, equation (59) implies

f =
η−rf

aM ν
since W Tμ = η and W T ΘW = 0.
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Figure 1: Impact of correlation between two return forecasts on the perceived return and its uncertainty

according to equations (21) and (22) respectively. The above figure is derived from the following

parameter values; μ1 = 0.07, μ2 = 0.10, σ1 = 0.40 and σ2 = 0.60. The σj parameter denotes the

square root historical accuracy computed in equation (2) for the jth information source, and serves as

the uncertainty of μj for j = 1, 2.
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Figure 2: Impact of correlation between return forecasts on information portfolio weights. The above

figure is derived from the following parameter values; μ1 = 0.07, μ2 = 0.10, σ1 = 0.40 and σ2 = 0.60 (as

in Figure 1). Observe that higher positive correlation reduces the portfolio weight of the less accurate

information source.



Sensitivity Uncertainty B/M Size # of Analysts
Sensitivity 1 0.062 0.013 0.016 0.111
Uncertainty 1 0.265 -0.018 0.129

B/M 1 -0.275 -0.091
Size 1 0.833

# of Analyst 1

B/M Size # of Analysts
S1 0.49 0.51 0.50
S2 0.50 0.50 0.50
S3 0.51 0.50 0.51

U1 0.40 0.50 0.48
U2 0.51 0.52 0.52
U3 0.59 0.48 0.50

S1U1 0.39 0.51 0.49
S1U2 0.51 0.52 0.51
S1U3 0.58 0.49 0.50
S2U1 0.40 0.50 0.48
S2U2 0.51 0.51 0.51
S2U3 0.59 0.48 0.49
S3U1 0.40 0.49 0.47
S3U2 0.50 0.51 0.52
S3U3 0.60 0.48 0.51

Panel A: Spearman Rank Correlation Coefficients

Table 1: Descriptive Statistics

Panel B: Characteristics of Sensitivity and Uncertainty Portfolios

This table describes our sensitivity and uncertainty measures as well as the characteristics of our dataset pertaining 
to B/M, size and number of analysts. The sensitivity measure is estimated monthly for each stock by computing the 
correlation coefficient between returns and price-scaled analyst forecast revisions over the previous 12 months. The 
uncertainty measure represents the price-scaled standard deviation of analyst forecasts for every stock each month. 
The sensitivity measure, uncertainty measure and number of analysts are derived from the I/B/E/S Summary 
History dataset, while B/M is the book-to-market ratio using the most recent quarterly data from Compustat. Size 
denotes the stock’s market capitalization as reported in CRSP. The Spearman rank correlation coefficients among 
the five variables are computed each month from January 1976 to December 2004. Panel A reports the time series
average of the Spearman correlation coefficients. Panel B reports growth/value, big/small and analyst coverage 
characteristics for the sensitivity and uncertainty portfolios. The sensitivity (uncertainty) portfolios denoted S1, S2 
and S3 (U1, U2 and U3) represent the bottom 30%, middle 40% and top 30% of stocks ranked according to their 
sensitivity (uncertainty) measures. Double-sorted portfolios are also formed (e.g., S1U1 consists of stocks that
belong to both S1 and U1). Each month, stocks are also ranked by B/M, size and number of analysts. This ranking 
is then normalized to the [0,1] interval. The average ranking for B/M, size and number of analysts in each 
sensitivity and uncertainty portfolio is computed monthly. The numbers in Panel B are the time series average for
these monthly rankings in each sensitivity and uncertainty portfolio. 



E1 E2 E3 E4 E5 E5-E1 t-stat
1.09 1.22 1.25 1.48 1.79 0.69 4.38

E1 E2 E3 E4 E5 E5-E1 t-stat
1.24 1.28 1.23 1.38 1.76 0.52 3.36
1.12 1.24 1.25 1.46 1.81 0.69 3.76
1.11 1.26 1.34 1.54 1.90 0.79 4.20

E1 E2 E3 E4 E5 E5-E1 t-stat
1.21 1.14 1.17 1.40 1.65 0.44 2.33
0.96 1.10 1.16 1.32 1.59 0.64 4.34
0.81 1.05 1.25 1.29 1.55 0.74 5.04

E1 E2 E3 E4 E5 E5-E1 t-stat
1.61 1.38 1.25 1.37 1.72 0.11 0.40
1.18 1.22 1.23 1.27 1.62 0.45 2.50
0.95 1.30 1.28 1.46 1.66 0.71 4.42
1.43 1.31 1.25 1.42 1.93 0.49 2.24
1.08 1.25 1.28 1.45 1.72 0.64 3.66
0.87 1.20 1.35 1.46 1.66 0.79 4.53
1.41 1.35 1.27 1.62 1.92 0.52 2.28
1.15 1.25 1.44 1.50 1.88 0.73 4.53
0.82 1.11 1.40 1.44 1.68 0.86 3.94

All

Panel C: Strategy conditional on uncertainty of earnings information

Table 2: Earnings Momentum Strategies

Panel A: Strategy using full sample

Panel B: Strategy conditional on sensitivity of stock price to earnings information

Panel D: Strategy conditional on both sensitivity and uncertainty

S1
S2
S3

U1
U2
U3

S1U1
S1U2
S1U3
S2U1

S3U3

S2U2
S2U3
S3U1
S3U2

This table describes the profitability of earnings momentum strategies applied to stocks with varying levels of earnings
uncertainty and return sensitivity to earnings. At the end of each month from July 1977 to December 2004, stocks 
from the intersection of the CRSP and I/B/E/S datasets are ranked on the basis of changes in consensus analyst 
earnings forecasts, measured by cumulative price-deflated revisions in the past six months. Stocks are assigned to five 
quintile portfolios, and equally weighted returns are computed for each portfolio. The bottom 20% is assigned to the 
E1 portfolio and the top 20% denotes the E5 portfolio. The trading strategy 6-0-6 in Jegadeesh and Titman (1993) is
then implemented. Each month, the portfolio containing the most favorable (unfavorable) past revisions is an 
overlapping portfolio consisting of the E5 (E1) portfolios during the previous six months. Returns for the favorable 
(unfavorable) overlapping portfolios are the average returns over the six E5 (E1) portfolios. If a stock's return is 
missing during the holding period, it is replaced with the corresponding value-weighted market return. The earnings 
momentum portfolio (E5-E1) is the zero-cost portfolio that buys the most favorable revision portfolio and sells the 
least favorable revision portfolio (E5-E1) every month. Panel A reports the results for the strategy using the full 
sample. Panel B reports the results for stocks sorted on their sensitivity to analyst forecast revisions (S1, S2 and S3). 
Stocks are assigned to these groups before the earnings momentum portfolios are formed. Panel C reports the results 
when stocks are grouped according to their price-scaled standard deviation of analyst forecasts (U1, U2 and U3). 
These uncertainty groups are also constructed prior to the formation of the earnings momentum portfolios. Panel D 
reports our results after double-sorting by the sensitivity and uncertainty measures (e.g. S1U1 represents the group of 
stocks belonging to S1 and U1).  




