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Evaluating Asset Pricing Models in Absence of Arbitrage: Econometric Approach

and Empirical Applications

ABSTRACT

We develop asset pricing tests that explicitly require that a true asset pricing model has to

be arbitrage free, i.e., its stochastic discount factor has to be strictly positive. The no-arbitrage

restriction is especially important in applications that involve dynamic trading strategies and

derivatives. One prominent example is performance evaluation of actively managed portfolios,

such as mutual funds and hedge funds. Empirical results show that the no-arbitrage restriction

makes significant differences in asset pricing tests involving either the traditional Fama-French size

and book-to-market portfolios or hedge fund style portfolios. Ignoring the no-arbitrage restriction,

we reach the misleading conclusion that certain models can satisfactorily price both sets of assets.

However, these models are overwhelmingly rejected by our tests because their stochastic discount

factors take negative values with high probabilities. The no-arbitrage restriction also leads to

better identified parameters, better behaved models, and more insights on potential sources of

model misspecifications.
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One central idea of modern asset pricing theory is the equivalence of absence of arbitrage

and the existence of a positive stochastic discount factor (hereafter SDF) that correctly prices all

assets.1 This result implies that a good asset pricing model should have not only small pricing

errors but also a stochastic discount factor that is strictly positive. Most existing empirical studies

of asset pricing models, however, have mainly focused on the first aspect of model performance

and ignored the second one. For example, the widely studied linear factor models have SDFs that

are not strictly positive and hence are not arbitrage free. There are both statistical and economic

reasons why it might be desirable to impose the no-arbitrage restriction in empirical analysis of

asset pricing models.

First, ignoring the no-arbitrage restriction might lead to misleading conclusions in statistical

inferences of asset pricing models. For example, certain models might have small pricing errors

and thus are regarded as acceptable without the no-arbitrage restriction. However, the SDFs

of such models might take negative values with high probabilities and would be regarded as

unsatisfactory with the no-arbitrage restriction. Thus the no-arbitrage restriction helps to reveal

true sources of model misspecifications which can be helpful for model improvements.

Second, an asset pricing model that allows arbitrage opportunities is not only theoretically

unsound but also practically unreliable because it could lead to misleading results in certain

applications. For example, Dybvig and Ingersoll (1982) show that although linear asset pricing

models, such as the CAPM, might be able to price primary assets, they would have difficulties

in pricing derivatives. Specifically, these models would assign negative values to options with

positive payoffs in states where the SDFs take negative values and zero payoffs in other states.

Though linear factor models are seldom used directly to price options, they have been widely used

in important applications that implicitly involve derivatives.

One prominent example is performance evaluation of actively managed portfolios, such as

mutual funds and hedge funds. The common practice in performance evaluation is to identify

some “good” asset pricing models according to certain criteria and use these models to evaluate the

performance of actively managed funds. Unfortunately, many mutual funds and most hedge funds

employ dynamic trading strategies which, according to Merton (1981), Dybvig and Ross (1985),

and others, could generate option-like payoffs. Many hedge funds directly trade derivatives2 and

it has been widely documented that hedge fund returns exhibit option-like features.3 Grinblatt

and Titman (1987) and Glosten and Jagannathan (1994) have emphasized that it is essential

1See Cochrane (2001), Duffie (2001), Dybvig and Ross (2003), Ingersoll (1987), and others for discussions of the

fundamental theorem of asset pricing.
2TASS, a hedge fund research company, reports that more than 50 percent of the 4,000 hedge funds it follows

use derivatives.
3See, for example, Fung and Hsieh (1997), Agarwal and Naik (2002), Ben Dor and Jagannathan (2002), and

Mitchell and Pulvino (2001).
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to impose the no-arbitrage restriction in asset pricing models when evaluating the performance

of mutual funds with option-like returns. The fast-growing hedge fund industry and the need

to evaluate hedge fund performance make this issue even more urgent in current asset pricing

literature. Goetzmann, Ingersoll, Spiegel, and Welch (2002) show that the use of derivatives by

hedge funds renders the Sharpe ratio an inappropriate measure of hedge fund performance. While

the Sharpe ratio adjusts for total risks, we are more interested in adjusting for systematic risks

in evaluating hedge fund performance.

Even for applications that involve mainly primary assets, there are still important benefits

of imposing the no-arbitrage restriction in testing linear factor models. This is because the

no-arbitrage restriction significantly changes the objective function used for estimating model

parameters. That is, parameters are chosen not solely to minimize pricing errors, but to make a

linear factor model as close as possible to true asset pricing models with strictly positive SDFs.

As pointed out by Cochrane (2001), fundamentally all linear factor models are approximations

of aggregate intertemporal marginal rate of substitution (IMRS hereafter), which is positive.

Therefore, models estimated with the no-arbitrage restriction are likely to be better proxies of

IMRS.

Incorporating the no-arbitrage restriction in empirical analysis of asset pricing models, how-

ever, is not straightforward. One approach is to include returns on derivatives in model evaluation

with the logic that the estimated model should be close to being arbitrage free if it can price both

primary assets and derivatives well. However, this approach requires additional data, and the

results might be sensitive to which derivatives are used in estimation. And strictly speaking, to

ensure that the estimated model is arbitrage free, one needs to incorporate all possible derivatives

that can be formed from the primary assets, which can be empirically challenging. In addition,

econometrically it is also rather difficult to impose the no-arbitrage restriction in traditional linear

regressions that have been widely used to analyze linear factor models. For example, Cochrane

(2001) (p. 130) claims that, “I do not know any way to cleanly graft absence of arbitrage on to

expected return-beta models.”

One of the main objectives of our paper is to develop asset pricing tests that explicitly incorpo-

rate the no-arbitrage restriction. Such tests would make it possible to fully reflect the important

predictions of the asset pricing theory in empirical studies. As a result, the integrity of the the-

ory will not be compromised due to the econometric difficulty in dealing with the no-arbitrage

restriction. The approach developed in our paper is based on the pioneering work of Hansen

and Jagannathan (1997). The Hansen-Jagannathan distances (hereafter HJ-distances) represent

least-square distances between a model SDF and the set of admissible SDFs that correctly price

all assets. The first HJ-distance considers all admissible SDFs without requiring correct SDFs to

be strictly positive, and the second one considers only strictly positive admissible SDFs to avoid
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arbitrage opportunities.

There are two main advantages of adopting the HJ framework. First, as pointed out by

Cochrane (2001), it is very convenient to impose the no-arbitrage restriction under the SDF

framework.4 Second, the second HJ-distance provides an economically meaningful measure of

model misspecification and a natural objective function for estimating model parameters in ab-

sence of arbitrage. Hansen and Jagannathan (1997) show that the second HJ-distance represents

the minimax bound of the pricing errors of all payoffs (including all derivatives) with a unit norm.

Therefore, minimizing the second HJ-distance is equivalent to minimizing the pricing errors of all

possible derivatives even though their prices are not used in estimation.

Unfortunately, the distribution of the second HJ-distance under the null hypothesis of a cor-

rectly specified model is still unknown. As a result, the second HJ-distance is seldom consid-

ered in the existing literature, in spite of the importance of the no-arbitrage restriction in many

applications.5 One main difficulty in econometric analysis of the second HJ-distance is that it

involves certain functions that are not pointwise differentiable with respect to model parameters.

Standard asymptotic analysis involves Taylor series approximations of an appropriate objective

function near true parameter values. This procedure breaks down if the objective function is

not differentiable. We overcome this obstacle by introducing the concept of “differentiation in

quadratic mean” of Le Cam (1986), Pollard (1982), and Pakes and Pollard (1989).6 Based on this

technique, we develop the asymptotic distributions of the second HJ-distance and related statis-

tics under the null hypothesis that a given asset pricing model is correctly specified. This result

allows us to conduct specification tests of asset pricing models in absence of arbitrage. We also

provide the asymptotic distributions of the estimates of model parameters, Lagrangian multipli-

ers, and pricing errors of individual assets for general nonlinear models. These statistics provide

useful diagnostic information on model performance. For example, for linear factor models, the

distributions of model parameters allow us to test whether the risk of a specific factor is priced.

The estimates of Lagrangian multipliers help to reveal deviations of a given model from true asset

pricing models. The pricing errors of individual assets reveal which assets are more difficult to

price.

The new tests developed in our paper fill the gap in the literature and establish the theoretical

foundation of econometric analysis of asset pricing models in absence of arbitrage. Jagannathan

4At the bottom of page 130 of Cochrane (2001), it is written, “It is trivally easy to graft it (absence of arbitrage)

on to a discount factor model: just add m > 0.”
5One exception is Wang and Zhang (2004) who examine the importance of the no-arbitrage restriction using

Bayesian method. Bansal and Viswanathan (1993), Bansal, Hsieh, and Viswanathan (1993), and other studies

also consider the no-arbitrage restriction by restricting the SDF of a model to be positive and evaluate model

performance using GMM or the first HJ-distance.
6This means that although Taylor expansion does not work pointwise, to obtain the asymptotic result, we only

need it to work in an average sense.
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and Wang (1996) develop the asymptotic distribution of the first HJ-distance for linear factor

models when the model is correctly specified. Hansen, Heaton, and Luttmer (1995) develop the

asymptotic distributions of the two HJ-distances when the asset pricing models are misspecified.

Our tests are more powerful than that of Jagannathan and Wang (1996) and are able to reject

certain misspecified models that the Jagannathan and Wang test cannot reject. These are models

that can price test assets well but their SDFs are not strictly positive. In addition, we generally

obtain very different estimates of model parameters and pricing errors using the two procedures

because they focus on very different objective functions. We also extend the analysis of Hansen,

Heaton, and Luttmer (1995) to models with unknown parameters that need to be estimated

from the data. Thus, our paper completes the missing link in the econometric analysis of the

HJ-distances and makes it convenient for empirical researchers to incorporate the no-arbitrage

restriction in their studies of asset pricing models.

To illustrate the importance of the no-arbitrage restriction, we apply our new tests to evaluate

several well-known asset pricing models in pricing two sets of financial assets. The first one involves

the traditional Fama-French 25 Size/Book-to-Market (BM hereafter) portfolios, and the second

one involves several popular hedge fund strategies (trendfollowing, risk arbitrage, and equity

derivative arbitrage) that have been shown in the literature to exhibit option-like returns. Our

empirical results show that the no-arbitrage restriction could make significant differences in asset

pricing tests whether the test assets explicitly involve derivatives or not. In both applications,

we find substantial differences in the estimated first and second HJ-distances for certain models.

We also reach dramatically different conclusions on model performance based on the two HJ-

distances. Though certain models have relatively good performance in pricing both sets of assets

measured by the first HJ-distance, their SDFs take negative values with high probabilities and are

overwhelmingly rejected based on the second HJ-distance. The no-arbitrage restriction also leads

to better identified parameters, better behaved models, and more insights on potential sources of

model misspecifications.

The rest of this paper is organized as follows. In section I, we introduce the HJ-distances

and the importance of the no-arbitrage restriction. Section II develops the econometric theories

of asset pricing tests in absence of arbitrage based on the second HJ-distance. In section III, we

apply the new tests to empirically examine several well-known asset pricing models using the 25

Size/BM portfolios of Fama and French (1993). In section IV, we apply the new tests to evaluate

several popular hedge fund strategies that exhibit option-like returns. Section V concludes, and

the appendix provides the mathematical proofs.

I. Arbitrage and the Hansen-Jagannathan Distances

In this section, we discuss the importance of the no-arbitrage restriction in asset pricing
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applications under the SDF framework. We also demonstrate that the second HJ-distance provides

a natural approach of incorporating the no-arbitrage restriction in asset pricing tests.

Suppose the uncertainty of a discrete-time economy is described by a filtered probability

space
³
Ω,F , P, (Ft)t≥0

´
for t = 0, 1, ..., T. Suppose there are n assets traded in the economy with

payoffs Yt at t, where Yt is an n × 1 vector. Denote Y as the payoff space of all the assets.

The fundamental theorem of asset pricing asserts the equivalence of absence of arbitrage and the

existence of a strictly positive SDF that correctly prices all assets. That is, for all t, we have

E [mt+1Yt+1|Ft] = Xt, mt+1 > 0, ∀Yt+1 ∈ Y (1)

where Xt, an n × 1 vector, represents the prices of the n assets at t. The random variable mt+1

discounts payoffs at t+1 state by state to yield price at t and hence its name stochastic discount

factor. If the market is complete, thenmt+1 will be unique. Otherwise there will be multiplemt+1s

that satisfy (1). We can derive (1) through the first order conditions of a representative investor’s

optimal consumption and portfolio choice. As a result, mt+1 measures aggregate intertemporal

marginal rate of substitution:

mt+1 = β
uc (ct+1)

uc (ct)
,

where uc (·) is the representative investor’s marginal utility of consumption, ct and ct+1 are the

investor’s consumptions at t and t + 1 respectively, and β is the investor’s subjective discount

factor. As pointed out by Cochrane (2001), the general pricing relation in (1) encompasses most

asset pricing models and is applicable to a wide range of assets such as stocks, bonds, options,

and real assets.

The pricing equation in (1) suggests that a good asset pricing model should have (i) small

pricing errors and (ii) an SDF that is strictly positive. Existing empirical studies of asset pricing

models, however, have mainly focused on the first aspect of model performance and ignored the

second one. For example, many empirical studies have used pricing errors of primary assets as

moment conditions to estimate parameters and test model performance based on the Generalized

Method of Moments (GMM) of Hansen (1982). But most of these studies have ignored the no-

arbitrage restriction that mt+1, the SDF of a true asset pricing model, has to be strictly positive.

As a result, even though a given model might have small pricing errors, its SDF could take negative

values with high probabilities. Thus “imposing the no-arbitrage restriction” in our paper means

that we evaluate model performance by its deviations (in least-square sense) from true asset

pricing models that can correctly price all assets and are arbitrage free.

The no-arbitrage restriction is especially likely to be violated in linear factor models. According

to Cochrane (2001), linear factor models identify economic factors whose linear combinations are
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good proxies for aggregate IMRS, i.e.,

β
uc (ct+1)

uc (ct)
≈ a+ b0ft+1. (2)

Due to its linear structure, however, the SDF proxy a+ b0ft+1 could take negative values under

certain market conditions, even though the true SDF βuc (ct+1) /uc (ct) is always positive.

Ignoring the no-arbitrage restriction could have undesirable consequences in empirical analysis

of asset pricing models. Ideally we want to choose parameters a and b such that a + b0ft+1 is a

close proxy of βuc (ct+1) /uc (ct). However, if we estimate a and b by solely minimizing pricing

errors, then the estimated model â+ b̂0ft+1 could be far away from βuc (ct+1) /uc (ct) even though

the estimated pricing errors are small. This is because in many cases the small pricing errors

are obtained at the expense of violating the no-arbitrage restriction and the estimated model

â + b̂0ft+1 often takes negative values with high probabilities. On the other hand, with the no-

arbitrage restriction, parameters are chosen not to minimize pricing errors, but to minimize a

model’s deviations from true asset pricing models, whose SDFs are strictly positive. Hence, by

incorporating the no-arbitrage restriction, we are able to reflect both important predictions of

existing asset pricing theory in our empirical tests. We are also able to better identify model

parameters and, as a result, the estimated models are likely to be better proxies of the aggregate

marginal utility growth.

Violation of the no-arbitrage restriction also could lead to misleading conclusions in important

applications. For example, the SDF of CAPM equals

mCAPM
t+1 = a+ brMKT,t+1,

where rMKT,t+1 is the excess return on the market portfolio at t + 1 and b < 0. Dybvig and

Ingersoll (1982) show that mCAPM
t+1 takes negative values when rMKT,t+1 is large enough. As a

result, the CAPM would assign a negative price to an option that pays one dollar in the states

where mCAPM
t+1 < 0 and zero otherwise, even though the option has non-negative payoff. Although

the CAPM and other linear factor models are seldom used directly to price options, they have

been widely used in important applications that implicitly involve options. Some mutual funds

and most hedge funds use dynamic trading strategies and derivatives and thus exhibit option-

like returns. Models that admit arbitrage opportunities would give misleading results on the

performance of these funds.7 Although the importance of the no-arbitrage restriction for mutual

fund performance evaluation has been pointed out by Grinblatt and Titman (1987) and Glosten

7Suppose we use the CAPM to evalute the performance of a mutual fund that invests in the option that pays

one dollar when mCAPM
t+1 > 0 and zero otherwise. In general if the fund longs the above option, the CAPM would

predict that the fund has a negative “alpha” even though all securities are fairly priced in the market. Because the

CAPM assigns a negative value to the option, it underestimates the initial value of the portfolio and overestimates

the expected return this portfolio should yield. Thus, the model-predicted expected return on the portfolio is
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and Jagannathan (1994), the need for hedge fund performance evaluation makes this issue even

more urgent in the current asset pricing literature. In fact, attempts have been made to deal with

option-like returns of hedge funds. For example, Agarwal and Naik (2002) include option returns

in linear factor models for hedge fund performance evaluation. Though a good improvement over

the existing literature, these option-based models are still not arbitrage free and thus do not

completely solve the problem.

Therefore, due to both statistical and economic concerns, it would be beneficial to impose

the no-arbitrage restriction in empirical asset pricing studies regardless of whether derivatives are

explicitly involved or not. In this paper, we develop asset pricing tests in absence of arbitrage

based on the HJ-distances. Below we give a brief introduction of the two HJ-distances and explain

the basic idea of our approach. In next section, we develop the econometric theory of our new

asset pricing tests.

The HJ-distances are measures introduced in Hansen and Jagannathan (1997) for model mis-

specification. Specifically, the first HJ-distance measures the least-square distance or the L2 norm

between a candidate SDF model H and the set of SDFs that correctly price all assets but without

requiring correct SDFs to be strictly positive, and the second HJ-distance considers only SDFs

that correctly price all assets and are strictly positive. Without loss of generality, we focus our

discussions on the unconditional implication of (1)

E [mt+1Yt+1] = E [Xt] .
8

The first HJ-distance, δ, is defined as

δ = min
m∈M

kH −mk = min
m∈M

q
E (H −m)2, (3)

whereM = {mt+1 : E [mt+1Yt+1] = E [Xt] , ∀Yt+1 ∈ Y } is the set of SDFs that correctly price all
assets. The second HJ-distance, δ+, is defined as

δ+ = min
m∈M+

kH −mk = min
m∈M+

q
E (H −m)2, (4)

where M+= {mt+1 : E [mt+1Yt+1] = E [Xt] , mt+1 > 0, ∀Yt+1 ∈ Y } is the set of SDFs that cor-
rectly price all assets and are strictly positive. Often the candidate model H depends on some

unknown parameters θ, and the two distances are defined as

δ (θ) = min
θ
min
m∈M

kH (θ)−mk = min
θ
min
m∈M

q
E (H (θ)−m)2, (5)

δ+ (θ) = min
θ

min
m∈M+

kH (θ)−mk = min
θ

min
m∈M+

q
E (H (θ)−m)2. (6)

higher than the actual expected return, which means that the fund has a negative “alpha.” Similar argument shows

that the CAPM would predict a positive “alpha” for the fund that shorts the option, even though no abnormal

performance exists.
8If we include enough scaled payoffs in our analysis, the unconditional pricing equation becomes the conditional

pricing equation. For notational convenience, we omit time subscripts t whenever the meaning is obvious.
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Let θ̂ = argminθ δ (θ) and θ̂+ = argminθ δ
+ (θ). The main difference between the two HJ-

distances is that the second one explicitly requires that a true asset pricing model has to be

arbitrage free. In general, the second HJ-distance is bigger than the first one, becauseM+ is a

subset ofM.

The first HJ-distance has been widely used in the empirical asset pricing literature for model

estimation and evaluation. Hansen and Jagannathan (1997) show that θ̂ is a GMM estimator

with a weighting matrix that equals the inverse of the second moment matrix of the payoffs:

δ (θ) = E (H (θ)Y −X)0 E
¡
Y Y 0

¢−1 E (H (θ)Y −X) .

The weighting matrix E (Y Y 0)−1 is model independent and thus simplifies model comparison. The
asymptotic distribution of estimated δ developed by Jagannathan and Wang (1996), which follows

a weighted χ2 distribution, makes it possible to conduct specification tests on asset pricing models.

Hansen and Jagannathan (1997) also show that the first HJ-distance has a nice interpretation as

the maximum pricing error of a portfolio with a unit norm, i.e.,

δ (θ) = min
θ
max
kY k=1

|E (mY )− E (H (θ)Y )| ,∀Y ∈ Y .

Hence minimizing the first HJ-distance is equivalent to minimizing the pricing errors of primary

assets. As a result, the estimated model H(θ̂) is not necessarily strictly positive and the Jagan-

nathan and Wang (1996) test may not be able to reject a model if it has a small first HJ-distance

but is not arbitrage free.

In contrast, the second HJ-distance explicitly requires that in addition to small pricing errors,

a good asset pricing model also should be arbitrage free. Hansen and Jagannathan (1997) show

that the second HJ-distance has a nice interpretation as the minimax bound on pricing errors of

any payoff (including both primary and derivatives assets) in L2 with a unit norm, i.e.,

δ+ (θ) = min
m∈M+

max
kY k=1

|E (mY )− E (H (θ)Y )| ,∀Y ∈ L2.

Therefore, in pricing errors terms, the second HJ-distance differs from the first one by focusing on

the pricing errors of not only primary assets but also all possible derivatives that can be formed

from the primary assets. If the second HJ-distance of an SDF model is close to zero, then the

model not only has small pricing errors but also is arbitrage free, a necessary condition to price

derivatives.9 Therefore, in general we will get very different parameter estimates using the two

9One advantage of the second HJ-distance is that even though we only use primary assets in our estimation, the

objective function reflects pricing errors of all possible derivatives. This greatly simplifies our empirical analysis,

because otherwise we would need to include all possible derivatives in our empirical estimation to fully reflect the

no-arbitrage restriction. This can be difficult to do, because even though we might be able to obtain some derivative

prices, we might not be able to obtain all.
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HJ-distances. Though θ̂ minimizes the weighted pricing errors of primary assets, θ̂+ minimizes

the least-square distance between H(θ̂+) andM+.

The second HJ-distance provides a natural approach to incorporate the no-arbitrage restriction

in empirical analysis of asset pricing models. It provides an appropriate objective function to

estimate model parameters and an economically meaningful measure of model misspecification. It

also complements some prominent existing approaches in dealing with the no-arbitrage restriction.

For example, Bansal and Viswanathan (1993) develop a semi-nonparametric method to identify

positive nonlinear SDFs that can correctly price all assets. They truncate a nonlinear SDF if

it turns negative and evaluate model performance based on pricing errors via GMM. While the

focus of Bansal and Viswanathan (1993) is to approximate true asset pricing models using flexible

functional forms, the focus of our paper is to develop an econometric framework within which

we can evaluate all asset pricing models, whether arbitrage-free or not, by their deviations from

true asset pricing models. Although truncation guarantees a model’s SDF to be nonnegative, it

still matters in practice how the truncated model is estimated. Later empirical analysis shows

that we obtain very different results when estimating truncated models using the first and second

HJ-distances. Of course it would be interesting to combine both approaches: We can use the

method of Bansal and Viswanathan (1993) to identify some good proxies of asset pricing models

and use our tests to evaluate such models.

II. Asset Pricing Tests in Absence of Arbitrage: Econometric Theory

In this section, we develop the econometric theory of asset pricing tests in absence of arbi-

trage based on the second HJ-distance. Specifically, we derive the asymptotic distributions of

the second HJ-distance for general nonlinear asset pricing models. We also develop the asymp-

totic distributions of model parameters, Lagrangian multipliers, and pricing errors of individual

assets based on the second HJ-distance. These statistics provide useful diagnostic information on

potential sources of model misspecifications.

Hansen and Jagannathan (1997) show that it is much easier to consider the following conjugate

representations of the minimization problems in (3) and (4):

δ2 = max
λ

n
EH2 − E

£
H − λ0Y

¤2 − 2λ0EXo , (7)

£
δ+
¤2
= max

λ

n
EH2 − E

£
H − λ0Y

¤+2 − 2λ0EXo , (8)

where λ is an n × 1 vector of Lagrangian multipliers and [H − λ0Y ]+ = max [0,H − λ0Y ]. The

first order conditions of the above two optimization problems are given as

EX − E
£¡
H − λ0Y

¢
Y
¤
= 0, for δ2, (9)
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EX − E
h¡
H − λ0Y

¢+
Y
i
= 0, for

£
δ+
¤2
. (10)

Suppose λ0 and λ
+
0 solve (9) and (10), respectively, then [H − λ00Y ] ∈M and

£
H − λ+00 Y

¤+ ∈M+.

That is, the random variable λ00Y represents the necessary adjustments ofH so that it can correctly

price all assets. Or alternatively, λ00Y can be used to discount future payoffs state by state to

yield current pricing errors of Y : E [(λ00Y )Y ] = E [(H −m)Y ], where m ∈M. Therefore, while

δ measures average deviations of H fromM, λ00Y measures H’s deviations fromM in different

states of the economy. The interpretation of λ+00 Y, although similar to that of λ00Y, is more

complicated due to the no-arbitrage restriction: H −
£
H − λ+00 Y

¤+
is the necessary adjustments

to make H a member ofM+.

For SDF models that depend on unknown model parameters θ, the two HJ-distances are

defined as

[δ]2 = min
θ
max
λ
Eφ (θ, λ) ,£

δ+
¤2

= min
θ
max
λ
Eφ+ (θ, λ) ,

where

φ (θ, λ) ≡ H (θ)2 −
£
H (θ)− λ0Y

¤2 − 2λ0X,

φ+ (θ, λ) ≡ H (θ)2 −
£
H (θ)− λ0Y

¤+2 − 2λ0X.

In empirical applications, the population probability distribution is unobservable and we need to

approximate expectations using time series averages. Suppose we have the following time series

observations of asset prices, payoffs, and model SDFs, {(Xt−1, Yt,Ht (θ)) : t = 1, 2, ..., T} , where
θ is a k-dimensional parameter vector. Following Hansen and Jagannathan (1997), we use the

empirical counterpart of Eφ+ (θ, λ) ,

ETφ+ (θ, λ) =
1

T

TX
t=1

{Ht (θ)
2 −

£
Ht (θ)− λ0Yt

¤+2 − 2λ0Xt−1}

in our econometric analysis of the second HJ-distance.10 Therefore, the main objective of our

asymptotic analysis is to characterize the behavior of
£
δ+T
¤2
= minθmaxλ ETφ+ (θ, λ) , as T →∞.

The standard approach for an asymptotic analysis of ETφ+ (θ, λ) would be to employ a point-
wise quadratic Taylor expansion of the function φ+ (θ, λ) with respect to (θ, λ) around true model

10From now on, we will focus our analysis on the second HJ-distance. For analysis of the first HJ-distance, see

Jagannathan and Wang (1996).
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parameters (θ0, λ0):
11

φ+ (θ, λ) = φ+ (θ0, λ0) +

Ã
∂
∂θφ

+

∂
∂λφ

+

!0
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!

+
1

2

Ã
θ − θ0

λ− λ0

!0Ã
∂2

∂θ∂θ0φ
+ ∂2

∂θ∂λ0φ
+

∂2

∂λ∂θ0φ
+ ∂2

∂λ∂λ0φ
+

!
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!
+ o(k(θ, λ)− (θ0, λ0)k2),

and then optimize the resulting quadratic representation with respect to θ and λ:

ETφ+ (θ, λ) = ETφ+ (θ0, λ0) +

Ã
ET ∂

∂θφ
+

ET ∂
∂λφ

+

!0
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!

+
1

2

Ã
θ − θ0

λ− λ0

!0Ã
ET ∂2

∂θ∂θ0φ
+ ET ∂2

∂θ∂λ0φ
+

ET ∂2

∂λ∂θ0φ
+ ET ∂2

∂λ∂λ0φ
+

!
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!
+ op(k(θ, λ)− (θ0, λ0)k2).

(11)

However, standard Taylor expansion breaks down for our case because the function φ+ (θ, λ) is

not pointwise differentiable. To better illustrate this point, observe that φ+ (θ, λ) can be written

as

φ+ (θ, λ) ≡ H (θ)2 − g(H (θ)− λ0Y )− 2λ0X,

where g (x) = [max (x, 0)]2 ≡ [x+]2. Observe that g(x) is first order differentiable everywhere

with first order derivative

g(1)(x) = 2[x]+ =

(
2x if x > 0,
0 if x < 0.

However, g(x) does not have second order derivative at x = 0, i.e., g(1) is no longer differentiable

everywhere. The second order derivative of g (x) equals

g(2)(x) =

⎧⎪⎪⎨⎪⎪⎩
2 if x > 0,

not exist if x = 0,

0 x < 0.

Therefore, for δ+T , the function [Ht (θ)− λ0Yt]
+ is not pointwise differentiable with respect to

(θ, λ) for all Ht (θ) and Yt.
12 That is, for a given (θ, λ) , there are combinations of Ht (θ) and Yt

such that Ht (θ)−λ0Yt = 0, which is the kink point of [Ht (θ)− λ0Yt]
+ . As a result, the derivatives

of φ+ (θ, λ) with respect to (θ, λ) are not always well defined for those Ht (θ) and Yt.

The key to overcome this difficulty is that pointwise differentiability is not a necessary condition

to obtain (11), because all we need is a good approximation to ETφ+ (θ, λ) (but not φ+ (θ, λ) itself)

11The true parameters (θ0, λ0) solve the population optimization problem: (θ0, λ0) ≡ argminθmaxλ Eφ+ (θ, λ) .
12Let ω be a random variable. A function f (θ, ω) is pointwise differentiable with respect to θ means that the

function has partial derivatives with respect to θ in the classical sense for all possible values of ω.
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around true parameter values (θ0, λ0) . To this end, the notion of “differentiability in quadratic

mean” in modern statistics (c.f. Le Cam (1986)) will play an important role.13 In contrast

to “pointwise differentiability,” which implies a good approximation to φ+ (θ, λ) for all Ht and

Yt, “differentiability in quadratic mean” implies that the error of approximating ETφ+ (θ, λ) is
negligible in quadratic mean or L2(P ) norm. In other words, all we need is an approximation

of φ+ (θ, λ) that works well in an average sense. For further discussions of non-differentiability

issues, see Pollard (1982), Pakes and Pollard (1989), and Hansen, Heaton, and Luttmer (1995),

among others.

Our approach can be briefly described as follows and is along the lines of Pollard (1982). First

we decompose ETφ+ (θ, λ) into a deterministic component and a (centered) random component

ETφ+ (θ, λ) = Eφ+ (θ, λ) + (ET − E)φ+ (θ, λ) .

To obtain a quadratic representation like (11), we consider a second order approximation to the

deterministic term to extract the curvature of Eφ+ (θ, λ) and a first order approximation to the
random component. Since the random component is centered, it is in general one order smaller

than the deterministic component. This explains the difference in orders of approximation of the

two components in the above equation.

The following Lemma justifies a local asymptotic quadratic (LAQ) expansion of the objective

function ETφ+ (θ, λ) along the lines of Pollard (1982).
Lemma 1. Suppose Assumptions A.1 to A.6 in the appendix hold. Then we have the following

local asymptotic quadratic (LAQ) representation for ETφ+ (θ, λ) around (θ0, λ0) :

ETφ+ (θ, λ)

= Eφ+ (θ0, λ0) + (ET − E)φ+ (θ0, λ0) +
Ã

A

B

!0Ã
U

V

!
+
1

2

Ã
U

V

!0Ã
Γ11 Γ12

Γ21 Γ22

!Ã
U

V

!
+ o(k(θ, λ)− (θ0, λ0)k2) + op(k(θ, λ)− (θ0, λ0)kT−1/2),

where U ≡ (θ − θ0) , V ≡ (λ− λ0) , A ≡ (ET − E) ∂
∂θφ

+
|(θ0,λ0), B ≡ (ET − E) ∂

∂λφ
+
|(θ0,λ0), and

Γ ≡
Ã
Γ11 Γ12

Γ21 Γ22

!
≡
Ã
E ∂2

∂θ∂θ0φ
+ E ∂2

∂θ∂λ0φ
+

E ∂2

∂λ∂θ0φ
+ E ∂2

∂λ∂λ0φ
+

!
|(θ0,λ0)

.

Proof. See the appendix.14

13A function f (θ, ω) is differentiable in quadratic mean with respect to θ at θ0, if there exists a ∆(ω) in L2 such

that E [(f (θ, ω)− f (θ0, ω))/ (θ − θ0)−∆ (ω)]2 → 0 as θ → θ0. Similar ideas have been used by Pakes and Pollard

(1989) and others to handle non-differentiable criteria functions.
14Note that since the second derivatives are well defined except on a set of probability zero, the expectations are

indeed well defined.
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Based on the LAQ of ETφ+ (θ, λ) in Lemma 1, we develop the asymptotic distribution of the
second HJ-distance in the following theorem. One of the assumptions we need is that a central

limit theorem holds for the empirical process:

√
T (ET − E) (H (θ0)Y −X)→ Z ≡ N (0,Λ) ,

where Λ = E[H (θ0)Y −X][H (θ0)Y −X]0.

Theorem 1. Suppose Assumptions A.1 to A.9 in the appendix hold. Then under the null

hypothesis H0: δ+ = 0, T
£
δ+T
¤2
is asymptotically distributed as a weighted χ2 distribution with

(n− k) degrees of freedom:

T
£
δ+T
¤2 → Z 0ΞZ,

where Ξ = D−1−D−1G
¡
G0D−1G

¢−1
G0D−1, G ≡ E {Y [5H (θ0)]

0} , D ≡ E [Y Y 0] , and 5H (θ) is

the gradient of H (θ) with respect to θ.

Proof. See the appendix.

The above result provides a basis of specification test of asset pricing models in the absence of

arbitrage. Our result extends the Jagannathan and Wang test in two important ways. First, our

test explicitly requires that a true asset pricing model has to be arbitrage free. Second, though

Jagannathan and Wang (1996) only consider linear factor models, our test is applicable to SDF

models H (θ) that have a general nonlinear dependence on θ. These include asset pricing models

in which the representative investor has complicated utility functions.

In addition to the above test statistic, we also provide the asymptotic distributions of the es-

timators of model parameter θ̂+, the Lagrangian multiplier λ̂+, and pricing errors of individual as-

setsH(θ̂+)Y−X, for general nonlinear SDFmodelH (θ), where (θ̂+, λ̂+) = argminθmaxλ ETφ+(θ, λ).
Proposition 1. [Model Parameter] Suppose Assumptions A.1 to A.9 in the appendix hold.

Then under the null hypothesis H0: δ+ = 0,
√
T (θ̂+ − θ0) is asymptotically normally distributed

with mean zero and covariance matrix¡
G0D−1G

¢−1
G0D−1ΛD−1G

¡
G0D−1G

¢−1
,

where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .

Proof. See the appendix.

The asymptotic distribution of parameter estimates provide useful information on model spec-

ification. For example, in a linear factor model, it allows us to examine the importance of a specific

factor by testing whether the coefficient of the factor is significantly different from zero.

Proposition 2. [Lagrangian Multiplier] Suppose Assumptions A.1 to A.9 in the appendix

hold. Then under the null hypothesis H0: δ+ = 0,
√
T (λ̂+(θ̂+) − λ0) is asymptotically normally

distributed with mean zero and covariance matrix

[D−1 −D−1G
¡
G0D−1G

¢−1
G0D−1]Λ[D−1 −D−1G

¡
G0D−1G

¢−1
G0D−1],
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where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .

Proof. See the appendix.

The distribution of the Lagrangian multiplier provides directions for improvements of the

model. If the multiplier of one particular asset is very large, then it means that the model SDF

has to be significantly modified to correctly price this particular asset.

Proposition 3. [Pricing Errors] Suppose Assumptions A.1 to A.9 in the appendix hold.

Then under the null hypothesis H0: δ+ = 0, the standardized pricing errors of individual assets,√
TET (H(θ)Y −X)|θ=θ̂+ , have an asymptotic normal distribution with zero mean and covariance

matrix

[I −G
¡
G0D−1G

¢−1
G0D−1]Λ[I −D−1G

¡
G0D−1G

¢−1
G0],

where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .

Proof. See the Appendix.

The distribution of the pricing errors helps to identify whether a given model has difficulties

in pricing a specific asset.

For the special case of linear factor models, the SDF has the form H(θ) = F 0θ, where F is

a vector of risk factors. Moreover, 5H (θ) = F and 52H (θ) = 0, which do not depend on θ at

all. It is straightforward to show that under H0: δ+ = 0, our asymptotic distribution of δ+ is

identical to the asymptotic distribution of δ developed in Jagannathan and Wang (1996). The

reason is that δ+ = 0 necessarily implies δ = 0 and, as a result, both HJ-distances have the

same asymptotic distributions. We emphasize that this fact, however, does not mean that our

δ+-based test is redundant for several important reasons. First, the implementations of the two

tests are fundamentally different. While for the Jagannathan and Wang test we estimate (θ̂, λ̂)

by minimizing the first HJ-distance, we estimate (θ̂+, λ̂+) by minimizing the second HJ-distance

for our test. Except for the rare case in which δ+ = 0, the estimated two HJ-distances and their

associated parameters tend to be very different from each other. Second, because of the first

reason, the two tests have very different powers in rejecting misspecified models. Even though

δ+ = 0 implies δ = 0, the reverse is not true. Consequently, although the Jagannathan and

Wang test might accept SDF models that belong toM but notM+, our test would reject those

models because they are not arbitrage free. Third, our econometric approach is quite different

from that in the existing literature and can be useful in other finance applications that involve

nondifferentiable objective functions. In fact, δ+ has been rarely used in the literature mainly

because its distribution is unknown, and studies that do consider δ+, such as Wang and Zhang

(2004), have to resort to simulation methods.15

15We believe that the similarity between our test and the existing ones is an advantage of our test: It makes it very

convenient for empirical researchers, who have been familiar with the Jagannathan and Wang test, to incorporate

the no-arbitrage restriction in their empirical evaluations of asset pricing models.

14



Hansen, Heaton, and Luttmer (1995) develop the asymptotic distributions of δ and δ+ when

the model is misspecified (i.e., δ 6= 0 and δ+ 6= 0), respectively, with known model parameters.

We can easily extend the above analysis to show that the results of Hansen, Heaton, and Luttmer

(1995) still hold when parameters need to be estimated from the data.

III. Application I: Fama-French 25 Portfolios

Many linear factor models considered in the existing asset pricing literature are not arbitrage

free because their SDFs can take negative values. To illustrate the importance of the no-arbitrage

restriction in traditional asset pricing applications, we apply our new tests to evaluate several well-

known asset pricing models using the Fama-French 25 portfolios. Although Hodrick and Zhang

(2001) have conducted a comprehensive analysis of asset pricing models using the 25 portfolios

based on the first HJ-distance, they do not explicitly address the importance of the no-arbitrage

restriction.

A. Data and Asset Pricing Models

The data used in our analysis are monthly returns of the 25 portfolios in excess of one-month

T-bill rates and one-month T-bill rates between January 1952 and December 2002. Therefore,

the models are required to price both the equity premium and the cross-sectional differences in

size and BM portfolios. We obtain the data from Kenneth French’s website.

Table 1 provides summary statistics for the excess returns of the 25 portfolios. It is similar

to Table 2 of Fama and French (1993), which covers a shorter period between January 1963 and

December 1991. During our longer sample period, most average returns are higher, except that of

low BM firms. Since the standard errors are smaller, the t-statistics are larger except for low BM

firms. Table 1 indicates that there are considerable dispersions in the average returns across the

25 portfolios. The average annualized returns range from 2.5% for the smallest firms with lowest

BM ratios to 13.1% for the smallest firms with highest BM ratios. Within size quintiles, there is a

nearly monotonic increase in average returns as BM increases. Within BM quintiles, the average

returns of the smallest firms are larger than those of the largest firms, except for the lowest BM

quintile. However, there is no monotonic relation in average returns across size quintiles.

To test the conditional implications of asset pricing models, we also examine scaled returns

by multiplying the returns of the 25 portfolios by default premium. Default premium (DEF

hereafter), a commonly used conditioning variable, is defined as the yield spread between Baa

and Aaa rated corporate bonds and is obtained from Federal Reserve Bank. Panel A of Figure 1

provides a time series plot of DEF.

We consider several widely studied asset pricing models and their conditional versions to

capture time varying risk prices. Specifically, we use industrial production (IP hereafter) from

Citibase as a state variable because it is a well-documented business cycle indicator. We apply
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the Hodrick and Prescott (1997) filter recursively to better measure the cyclical component of

the IP series. We initiate the filter by using the first 5 years (1947-1951) of data. Consequently,

the first element of our cycle is December 1951. We then use the procedure recursively on all

available data to obtain the subsequent elements for the cyclical series. This method guarantees

that each element is in the information set at t. Panel B of Figure 1 presents a time-series plot of

IP. Following Cochrane (1996), we scale the original factors by IP and in total we consider nine

models in our analysis.16

The first model we consider is the well-known CAPM developed by Sharpe (1964) and Lintner

(1965). This model is probably the most widely studied asset pricing model in finance literature.

The SDF of this model is

HCAPM
t = b0 + b1rMKT,t,

where rMKT,t is the excess return on the market portfolio at t, and b0 and b1 are constant pa-

rameters. The CAPM is a one-period model with constant prices of risk. In a multiple-period

setting, the market risk price could be time varying and depend on the state of the economy. We

consider two variations of the conditional version of the CAPM, which we denote as CAPM+IP

and CAPM*IP to reflect the different ways in which the conditional information is introduced.

The SDF of CAPM+IP is

HCAPM+IP
t = b0 + b1rMKT,t + c0zt−1,

where zt−1 is the realization of the state variable at t− 1, i.e., the cyclical component of IP. The
SDF of CAPM*IP is

HCAPM*IP
t = b0 + b1rMKT,t + c0zt−1 + c1zt−1rMKT,t.

This is equivalent to allowing b0 and b1 in HCAPM
t to be linear functions of the state variable

as suggested by Cochrane (1996). The above three versions of the CAPM are not arbitrage free

because their SDFs can take negative values with positive probabilities.

The next model we consider is the Fama and French (1993) three-factor model, denoted as

FF3. In addition to the market factor, FF3 also includes SMB and HML to capture the cross-

sectional differences in average stock returns related to size and book-to-market ratio, respectively.

FF3 has the following SDF,

HFF3
t = b0 + b1rMKT,t + b2rSMB,t + b3rHML,t,

where rSMB,t and rHML,t are the return differences between small and big firms, and high and low

BM firms, respectively. We also consider two conditional versions of FF3, FF3+IP and FF3*IP,

16Other than DEF and IP, we have used other popular conditioning variables and obtain similar results.

16



with the following SDFs:

HFF3+IP
t = b0 + b1rMKT,t + b2rSMB,t + b3rHML,t + c0zt−1,

HFF3*IP
t = b0 + b1rMKT,t + b2rSMB,t + b3rHML,t

+c0zt−1 + c1zt−1rMKT,t + c2zt−1rSMB,t + c3zt−1rHML,t.

This type of extension of the Fama-French model has been explored by Kirby (1997).

We extend FF3 further to include three additional factors and refer to the new model as FF6.

The first additional factor is a momentum factor from Jegadeesh and Titman (1992). Momentum

is one of the few anomalies that FF3 cannot capture. We use the momentum factor constructed by

Kenneth French. The other two additional factors are TERM (yield spread between 30-year and

1-year government bonds) and DEF (yield spread between Baa and Aaa rated corporate bonds).

Data on TERM are obtained from CRSP. Fama and French (1996) show that these bond market

factors help explain cross-sectional stock returns.17

Finally, we consider a linearized version of Campbell’s (1996) log-linear asset pricing model,

denoted as CAM, and its time-varying extension, CAM*IP. The intertemporal asset pricing model

of Campbell (1996) allows for time-varying investment opportunities, and variables that can

predict market returns can be considered as risk factors. Other than the market factor, the

original model includes four additional factors: the labor income factor, LBR, constructed as

the monthly growth rate in real labor income (from Citibase); dividend yield on the market

portfolio, DIV (from CRSP); the relative T-bill rate, RTB, calculated as the difference between

the one-month T-bill rate and its one-year backward moving average (from CRSP); and the term

structure factor, TERM, the yield spread between 30-year and 1-year government bonds.18 In

the conditional version, we scale the original factors by the state variable IP.

An alternative approach of imposing the no-arbitrage restriction that has been considered in

the literature is to truncate the SDF of a linear factor model when it turns negative. For example,

the SDF of the truncated CAPM would be

HTrun, CAPM
t = max [0, b0 + b1rMKT,t] .

In our empirical analysis, we also evaluate the truncated versions of all nine models based on

the two HJ-distances. Though truncation guarantees a model’s SDF to be nonnegative, it does

not guarantee that the model also has small pricing errors (or smaller HJ-distances), because the

truncated model could be even further away from true asset pricing models. Through this exercise,

17The SDFs of FF6 and the remaining models have similar forms as that of CAPM and FF3 and are omitted to

avoid repetition.
18The original model of Campbell (1996) has a pricing proxy in the form of yt = exp (−ft0b) . We consider its

linearized version to illustrate the importance of the no-arbitrage restriction in studying linear factor models.
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we examine whether we reach different conclusions using the two HJ-distances for truncated

models as well.

B. Empirical Results

In this section, we report the empirical performance of the above models in pricing the Fama-

French 25 portfolios. We estimate model parameters, Lagrangian multipliers, and pricing errors

of individual assets of each model by minimizing the first and second HJ-distances, respectively.19

Table 2 reports specification test results of the nine models (both original and truncated

versions) using the 25 portfolios and the 25 portfolios scaled by DEF. We first report the magnitude

of the two HJ-distances, δT (θ̂) and δ
+
T (θ̂

+), and their differences. If an asset pricing model does not

allow arbitrage opportunities, then the two HJ-distances should be close to each other. Otherwise,

the two distances could differ from each other dramatically. We then report the probabilities that

Ht(θ̂) takes negative values, p(H < 0). Since truncated models cannot take negative values by

definition, we omit such information for truncated models. If a model takes negative values with

high probability, it allows arbitrage opportunities and should not be considered as an economically

sound model. We finally report specification test statistics based on two HJ-distances, p(δ = 0)

from Jagannathan and Wang and p(δ+ = 0) from our Theorem 1. If a model is not rejected by

either specification test at the 95% confidence level, the corresponding p-value should be higher

than 5%.

Panel A of Table 2 reports specification test results of the nine models using the 25 portfolios.

For CAPM and its two conditional variations, CAPM+IP and CAPM*IP, the two HJ-distances

are very similar to each other. The second HJ-distances δ+T (θ̂
+) of the three models are slightly

larger (about 2%) than the first HJ-distances δT (θ̂). The probabilities that the SDFs take negative

values in the three models are close to zero. Therefore, it seems that the no-arbitrage restriction

does not make a big difference in our inferences of the three CAPM models. Finally, given

the widely recognized failure of the CAPM in capturing the size and value premiums, it is not

surprising that all three models are easily rejected based on both HJ-distances.

The results of FF3 and its two time-varying extensions, FF3+IP and FF3*IP, are quite similar

to that of the three CAPM models, although the HJ-distances of the FF3 models are much smaller

than that of the CAPM models. For all three models, the estimated second HJ-distances δ+T (θ̂
+)

are only slightly bigger (about 2 to 3%) than the first HJ-distances δT (θ̂). The probabilities that

the SDFs take negative values are also close to zero. All three models are rejected by the two HJ-

distance tests. It is surprising to find that the Fama-French factors do not seem to be adequate to

capture the cross-sectional return differences of the Fama-French portfolios. Again, it seems that

the no-arbitrage restriction does not significantly affect the inference of the three FF3 models.

19In general (θ̂, λ̂) and (θ̂+, λ̂+) differ from each other, except for the rare cases in which both the HJ-distances

are identically zero.
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In contrast to the previous six models, the no-arbitrage restriction has a much bigger impact on

the inferences of the FF6 model. For example, the second HJ-distance δ+T (θ̂
+) is about 11% bigger

than the first HJ-distance δT (θ̂). There is also a nontrivial probability, about 12%, that H
FF6
t (θ̂)

takes negative values. Most important, the specification tests based on the two HJ-distances

give very different conclusions on model performance. Although the Jagannathan and Wang test

cannot reject FF6 at conventional significance levels (p-value=11%), our test easily rejects the

model (p-value=0%). Therefore, the no-arbitrage restriction makes a substantial difference in our

inferences of FF6. Without the no-arbitrage restriction, we could have mistakenly concluded that

the model does a good job in pricing the 25 portfolios based on δT (θ̂). However, such performance

is achieved at the expense of a relatively high probability of HFF6
t (θ̂) taking negative values.

The no-arbitrage restriction is also important for CAM, and its conditional version CAM*IP.

For example, δ+T (θ̂
+) is 25% and 30% bigger than δT (θ̂) for the two models, respectively. The

probabilities that HCAM
t (θ̂) and HCAM*IP

t (θ̂) take negative values are also quite substantial and

equal to 17% and 20%, respectively. Most interestingly, neither model can be rejected by the

Jagannathan and Wang test: The p-values are above 20% for both models. However, our test

overwhelmingly rejects both models (the p-values are close to zero for both models). The pricing

errors of the two models measured by the first HJ-distance are the smallest among the nine models.

However, the “good” performances of the two models measured by δ̂T (θ̂) are mainly driven by

the fact that HCAM
t (θ̂) and HCAM*IP

t (θ̂) take negative values with high probabilities.

In Panel B of Table 2, we obtain qualitatively similar results for the 25 portfolios scaled by

default premium. The no-arbitrage restriction significantly affects the inferences of FF6 and the

two Campbell models. The second HJ-distances are much larger than the first HJ-distances for

the three models (21%, 26%, and 37% larger, respectively). The SDFs of all models also have

quite high probabilities of taking negative values. Although the Jagannathan and Wang test

cannot reject the three models (p-values equal 7%, 42%, and 48%, respectively), the three models

are strongly rejected by our test (p-values are all close to zero).

The corresponding results for the truncated versions of the nine models in Panels C and D

of Table 2 are similar to that of the original models. For the truncated versions of FF6, CAM,

and CAM*IP, the second HJ-distances are about 10 to 20% bigger than the first HJ-distances.

Although certain models cannot be rejected by the first HJ-distance, all models are rejected based

on the second HJ-distance. As expected, we find that the truncated models are not as flexible as

the original ones and tend to have bigger pricing errors. Our results on truncated models illustrate

the important point that truncation is different from our approach of imposing the no-arbitrage

restriction: One can still reach misleading conclusions using the first HJ-distance for truncated

models.

The no-arbitrage restriction also could lead to very different estimated model parameters,
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Lagrangian multipliers, and pricing errors of individual assets. Table 3 reports model parameters

in Panels A and B, Lagrangian multipliers in Panel C, and pricing errors of individual assets in

Panel D, estimated using both the first and second HJ-distances. To save space, we only present

results for FF6, CAM, and CAM*IP in Panels C and D. The patterns for the other three models

are qualitatively similar.

Panels A and B of Table 3 do not show big differences between θ̂ and θ̂+ for the first six

models, but the differences become larger for FF6, CAM, and CAM*IP. For FF6, under δ, only

the coefficient of the momentum factor (MOM) is significant; but under δ+, the coefficients of

both the market and the HML factors become significant, while the coefficient of MOM becomes

insignificant. For CAM and CAM*IP, the coefficients of most factors become much smaller under

δ+.

Panel C of Table 3 reports the estimates of the Lagrangian multipliers using both HJ-distances.

In general, we find more significant Lagrangian multipliers estimated under δ+ than under δ,

suggesting that the first HJ-distance tends to underestimate the necessary adjustments a model

needs to become admissible.

Panel D of Table 3 reports pricing errors of individual assets for the three models estimated

using the two HJ-distances. We find that pricing errors of individual assets under δ to be smaller

and less significant than that under δ+. These results are consistent with our estimates of δT (θ̂)

and δ+T (θ̂
+) and demonstrate that the first HJ-distance underestimates both overall and individual

pricing errors.

The differences between (θ̂, λ̂) and (θ̂+, λ̂+) can be observed more directly from the estimated

SDF models Ht(θ̂) and Ht(θ̂
+) and their deviations from true asset pricing models. We present

time series plots of Ht(θ̂) and Ht(θ̂
+) for FF6 and CAM*IP in Panels A and B of Figure 2,

respectively. It is clear that Ht(θ̂) is much more volatile and takes negative values much more

frequently than Ht(θ̂
+) for both models. In particular, Ht(θ̂) is negative around 1976, 1982, 1992,

and after 2001, which coincide with NBER business cycle troughs. This suggests that both models

have difficulties in pricing the Fama-French 25 portfolios during economic downturns because their

SDFs have to take negative values to reduce the pricing errors. On the other hand, Ht(θ̂
+) takes

negative values only in rare occasions, suggesting that for a given sample, linear factor models

can be made closer to be arbitrage free if they are estimated using the right objective function.

Panels C and D of Figure 2 present time series plots of deviations from true asset pricing

models for FF6 and CAM*IP, respectively. For each model, based on equation (10), we use

[Ht(θ̂
+)− λ̂0Yt]+ as a proxy for a true asset pricing model and denote it as m∗t . Thus deviations

fromM+ for each model under δ and δ+ become m∗t −Ht(θ̂) and m∗t −Ht(θ̂
+), respectively. To

become admissible, i.e., a member of M+, both models need much more dramatic adjustments

for Ht(θ̂) than Ht(θ̂
+). Interestingly, for both models, even though δT (θ̂) is much smaller than
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δT (θ̂
+), Ht(θ̂) is actually further away fromM+ than Ht(θ̂

+) across most states of the economy.

To summarize, the different objective functions, i.e., the first and second HJ-distances, used

for model estimation and evaluation, could lead to dramatically different estimated parameters

and conclusions on model performance. Models estimated using the first HJ-distance tend to

be much more volatile and take negative values more frequently than those estimated using the

second HJ-distance. More dramatic adjustments also are needed to make these models admissible

than those estimated using the second HJ-distance. The pricing errors of individual assets are

also bigger and more significant under the second HJ-distance. Most important, without the

no-arbitrage restriction, we have the illusion that certain models can price the Fama-French 25

portfolios well based on the first HJ-distance.20

The analysis in this section illustrates an important point: Even for applications that do not

explicitly involve derivatives, the no-arbitrage restriction could still make significant differences

in empirical asset pricing studies.

IV. Application II: Hedge Fund Returns

The no-arbitrage restriction is crucial for applications that explicitly involve derivatives. One

prominent example of such applications is hedge fund performance evaluation. Compared to

regular mutual funds, hedge funds enjoy greater freedom in their investment strategies and fre-

quently use dynamic trading strategies and derivatives. Therefore, models that allow arbitrage

opportunities could easily lead to misleading conclusions on hedge fund performance.

A. Hedge Fund Returns and Asset Pricing Models

To examine the importance of the no-arbitrage restriction on hedge fund performance eval-

uation, we focus on a few specific hedge fund strategies that have been carefully studied in the

literature and shown to exhibit option-like returns. Specifically, we study hedge funds which state

that they follow any of the following three strategies: trendfollowing, risk arbitrage, and equity

derivative arbitrage.

Fung and Hsieh (2001) provide a thorough analysis of the trendfollowing strategy that is

followed by the majority of commodity trading advisors (CTAs). Fung and Hsieh (1997) show

that returns of trendfollowing funds are uncorrelated with standard equity, bond, currency, and

commodity index returns, and they have option-like features–they tend to be large and positive

during the best and worst performing months of the world equity markets. Fung and Hsieh (2001)

provide the insightful observation that a lookback straddle provides a good characterization of

the trendfollowing strategy.

20At a deeper level, all models are approximations of reality and therefore are wrong. However, the significance

of the no-arbitrage restriction is that it allows us to reject certain models that previous tests fail to reject; more

important, it also provides more realistic assessments of the inadequacies of existing models. Such insights are

helpful in guiding future research efforts in indentifying better models.
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Risk arbitrage, the second strategy we consider, involves simultaneously long and short in

companies involved in merger and acquisition. The strategy longs the target company and shorts

the acquiring company. Mitchell and Pulvino (2001) show that the returns to this strategy are

correlated with market returns in a nonlinear way: Risk arbitrage generates moderate returns in

flat or rising market environments, but large negative returns in declining markets. In fact, they

demonstrate that risk arbitrage is akin to writing uncovered index put options.

In addition to the above two strategies, we also consider funds that are involved in equity

derivative arbitrage, which obviously involves investment in derivatives.

The hedge fund data used in our analysis are obtained from TASS. Among all the datasets

that have been used in existing hedge fund studies, the TASS database is probably the most

comprehensive one. It covers more than 4,000 funds from November 1977 to September 2003,

which are classified into “live” and “graveyard” funds. The “graveyard” database did not exist

before 1994. To mitigate the problem of survivorship bias, we include both “live” and “graveyard”

funds and we restrict our sample to the period between January 1994 and September 2003. The

database provides monthly net-of-fee returns and net asset values. In our sample, 557 funds use

trendfollowing strategy, 559 funds use risk arbitrage, and 164 funds use equity derivative arbitrage.

It is numerically difficult to fit asset pricing models to returns of more than one thousand

hedge funds. Instead we focus on the returns of hedge funds portfolios. The portfolio approach

helps to remove noises in individual hedge fund returns, and increases the precision of parameter

estimates and the power of statistical tests. Even though these funds follow one of the above

three specific strategies, each of them also belongs to one of the eleven broad investment styles.

As documented by Brown and Goetzmann (1999), the most natural way to group the funds is by

their styles because the styles greatly capture the cross-sectional return differences.

Table 4 provides summary statistics of the hedge fund portfolios. Panel A presents distribution

information of the three strategies among ten broad investment styles.21 The trendfollowers

are mainly concentrated in CTAs, although some belong to fund of funds, global macro, and

long/short equity. The risk arbitrage funds are concentrated in event driven, and some belong

to convertible arbitrage, fund of funds, long/short equity, emerging market and equity neutral.

Equity derivative arbitrage is used by different styles. Panel B reports summary statistics of the

style portfolio returns. The average monthly returns of the ten portfolios range from 0.97% of

fixed-income arbitrage to 1.99% of global macro. Consistent with their investment approaches,

the styles that take directional bets tend to have higher return volatility than those that take

relative bets.

The asset pricing models used to evaluate hedge fund performance are similar to those in the

previous section for the Fama-French 25 portfolios. However, since we only have ten portfolios to

21Dedicated short is excluded because none of the funds belong to this category.
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price, we choose the more parsimonious models to avoid overfitting the data. We only consider two

CAPM models, CAPM and CAPM+IP, and two FF3 models, FF3 and FF3+IP. To capture the

option-like returns of hedge funds, we consider an option-based model, OPT, and its conditioning

version, OPT+IP. In OPT, in addition to the market factor, we include two additional factors

from the option market. The first factor is the return on at-the-money S&P 500 index straddles,

with a time-to-maturity of 20 to 50 days. It captures the aggregate volatility risk (Ang, Hodrick,

Xing, and Zhang 2004). The second factor is the return on out-of-the-money (moneyness 0.92)

S&P 500 index puts that expire in 20 to 50 days. It captures the jump risk in market index. The

data for option returns are obtained from Optionmetrics. The second model OPT+IP includes

IP as a factor. Similar to before, we also consider the truncated versions of the above six models.

B. Empirical Results

Table 5 report specification test results of the six asset pricing models in pricing the ten hedge

fund portfolios. Panel A contains results for the original models, while Panel B contains results

for the truncated models.

In Panel A, for CAPM and CAPM+IP, δ+T (θ̂
+) is much bigger than δT (θ̂). The difference

is especially large for CAPM+IP: δ+T (θ̂
+) is 67% bigger than δT (θ̂). Although the Jagannathan

and Wang test rejects CAPM (p-value=0%), it fails to reject CAPM+IP (p-value=57%). How-

ever, the superior performance of CAPM+IP over CAPM according to the first HJ-distance is

mainly because CAPM+IP allows arbitrage opportunities: The probability that HCAPM+IP
t (θ̂)

takes negative values is as high as 43%. As a result, CAPM+IP is easily rejected based on

the second HJ-distance. Therefore, without the no-arbitrage restriction, we could have reached

the misleading conclusion that CAPM+IP is able to satisfactorily price hedge fund portfolio re-

turns. The negative SDF gives CAPM+IP greater freedom in fitting hedge fund returns and thus

underestimates the magnitudes of the pricing errors.

The results of the two FF3 models are very similar. For both FF3 and FF3+IP, the second

HJ-distances are much bigger than the first HJ-distances: The percentage differences are 19% and

85%, respectively. The SDFs of both models take negative values with high probabilities: 17%

and 43%, respectively. The first HJ-distance of FF3+IP is much smaller than that of all the other

models and FF3+IP cannot be rejected by the Jagannathan and Wang test: The p-value is 56%.

This result again gives the illusion that FF3+IP can satisfactorily explain the returns of the ten

hedge fund portfolios and there is no strong evidence of abnormal performance. However, with

the no-arbitrage restriction, we reach the dramatically different conclusion that neither model can

satisfactorily explain hedge fund returns.

Finally, we examine the performance of the option-based models. Recent studies, such as

Agarwal and Naik (2004), include option returns in linear factor models to evaluate hedge fund

performance. However, the results here show that this approach, although a good improvement
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over existing methods, does not completely resolve the problem, because they still allow arbitrage

opportunities. For the two option-based models, the probabilities that the SDFs take negative

values are 17% and 40%, respectively, which are similar to that of the FF models. The estimated

second HJ-distances are about 20% and 67% bigger than the first HJ-distances for the two models,

respectively. Again, ignoring the no-arbitrage restriction, OPT+IP would be accepted by the

Jagannathan and Wang test (p-value=31%). However, with the no-arbitrage restriction, both

models are overwhelmingly rejected by our test. We reach similar conclusions for the truncated

models in Panel B, although the differences between the first and second HJ-distances are not as

dramatic.

The no-arbitrage restriction also could lead to very different estimated model parameters,

Lagrangian multipliers, and pricing errors of individual assets. Table 6 reports model parameters

in Panels A and B, Lagrangian multipliers in Panel C, and pricing errors of individual assets in

Panel D, estimated using both the first and second HJ-distances. To save space, we only present

results for the conditional models in Panels C and D. The patterns for the other three models are

qualitatively similar.

Panels A and B of Table 6 show that the coefficients of the SMB, HML, and IP factors under δ+

are smaller and less significant than that under δ. Panel C of Table 6 reports the estimates of the

Lagrangian multipliers using both HJ-distances. Though most Lagrangian multipliers under δ are

not significant, most of them under δ+ are significant, again suggesting that the first HJ-distance

underestimates the necessary adjustments a model needs to become admissible. Panel D of Table

6 presents the pricing errors of individual assets for the three models. Under the first HJ-distance,

among the three models, only one hedge fund style portfolio, event driven, has significant pricing

errors. In contrast, under the second HJ-distance, many more hedge fund style portfolios have

significant pricing errors. The magnitudes of pricing errors under δ+ are also generally bigger

than that under δ. These results suggest that by ignoring the no-arbitrage restriction, the first

HJ-distance tends to underestimate the abnormal performance of hedge funds.

We illustrate the differences in estimated parameters using the time-series plots of Ht(θ̂) and

Ht(θ̂
+) for FF3+IP and OPT+IP in Panels A and B of Figure 3, respectively. It is clear that

Ht(θ̂) is much more volatile and takes negative values much more frequently than Ht(θ̂
+) for

both models. In particular, Ht(θ̂)s of both models take negative values during the time periods

of 1996-1998, 1999-2000, and after 2002. Interestingly, compared to Ht(θ̂)s of the Fama-French

25 portfolios, Ht(θ̂)s for hedge funds seem to be even more volatile, suggesting that it is much

more difficult to price hedge fund returns. On the other hand, Ht(θ̂
+)s take negative values only

in rare occasions, again suggesting that linear factor models can be made close to be arbitrage

free if they are estimated using the right objective function.

Panels C and D of Figure 3 present time series plots of deviations from true asset pricing
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models for FF3+IP and OPT+IP, respectively. Again we use m∗t = [Ht(θ̂
+)− λ̂0Yt]+ as a proxy

for a true asset pricing model and deviations from M+ for each model under δ and δ+ become

m∗t −Ht(θ̂) and m
∗
t −Ht(θ̂

+), respectively. It is clear that both models need much more dramatic

adjustments for Ht(θ̂) than Ht(θ̂
+) to become a member ofM+. Interestingly, even though δT (θ̂)

is much smaller than δT (θ̂
+) for both models, Ht(θ̂) is actually further away from M+ than

Ht(θ̂
+) across most states of the economy.

Although the no-arbitrage restriction is helpful in testing traditional asset pricing models us-

ing the Fama-French 25 portfolios, it is essential for evaluating the performance of hedge funds.

For the Fama-French 25 portfolios, the no-arbitrage restriction makes a significant difference only

for the more sophisticated models, such as FF6 and CAM+IP. However, for hedge funds, the no-

arbitrage restriction makes a huge difference for most models. To price hedge fund returns, much

more volatile SDFs are needed and these models take negative values with much higher proba-

bilities. As a result, the models tend to underestimate model pricing errors and fund abnormal

performances. Based on the first HJ-distance, several models suggest that the pricing errors of

the ten hedge fund portfolios are not significantly different from zero and thus these funds do not

have significant abnormal performances. However, based on the second HJ-distance, all models

are overwhelmingly rejected and the magnitude of pricing errors are much bigger than before.

Although these results are not definitive evidence that hedge funds can outperform the market,

they nonetheless illustrate the crucial role played by the no-arbitrage restriction in evaluating

hedge fund performance. Even though the models considered here are some of the most popular

ones in the literature, there are still many other models we do not include in our analysis. It is

possible that we might reach different conclusions using alternative models. However, the bottom

line here is that no matter which model one uses, the new asset pricing tests developed in our

paper enable empirical researchers to incorporate the no-arbitrage restriction in their studies.

V. Conclusion

According to modern asset pricing theory, a good asset pricing model should correctly price

all assets and have an SDF that is strictly positive to be arbitrage free. Most existing asset

pricing tests, however, have mainly focused on model pricing errors and ignored the no-arbitrage

restriction. In this paper, we argue that it is important to reflect both theoretical predictions

in empirical tests of asset pricing models. Although it may seem that an extra constraint would

make it harder to fit the data, we argue that the no-arbitrage restriction leads to more appropriate

measures of model performance and parameter estimates. It is also extremely important for

applications that involve derivatives. We develop asset pricing tests that explicitly incorporate

the no-arbitrage restriction under the SDF framework. Our new tests are natural extensions of

existing tests and are just as easy to implement. Therefore, they make it straightforward to
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incorporate the no-arbitrage restriction in empirical asset pricing studies.

Empirically, we demonstrate the importance of the no-arbitrage restriction through two ap-

plications. In the first application, we evaluate several traditional asset pricing models using the

Fama-French 25 Size/BM portfolios. In the second application, we evaluate several linear models

using hedge fund strategies that explicitly exhibit option-like returns. Our empirical results show

that the no-arbitrage restriction makes important differences in both applications, even though

the first one does not explicitly involve derivatives. Without the no-arbitrage restriction, we could

easily reach the misleading conclusion that certain models can satisfactorily explain the returns

of the Fama-French portfolios or hedge fund returns. But, in fact, all these models have SDFs

that take negative values with high probabilities and thus are not arbitrage free. The no-arbitrage

restriction also leads to better identified model parameters, better behaved models, and provides

more insights on potential sources of model misspecifications.

In the current asset pricing literature, it is often the case that different models are used to price

primary and derivative assets. For example, we tend to use CAPM type models to price stocks

and Black and Scholes (1973) type models to price options. We also use yield factor models to

price bonds and Heath, Jarrow, and Morton (1992) type models to price interest rate derivatives.

Due to both theoretical and practical considerations, it would be much more satisfying if we could

develop models that can simultaneously price both primary and derivative assets. Obviously such

models have to satisfy the minimum requirement of being arbitrage free. Therefore, it is our

hope that the new tests developed in our paper would contribute to the developments of the asset

pricing literature by making it possible to incorporate the no-arbitrage restriction in empirical

asset pricing studies.
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Mathematical Appendix

In this appendix, we establish the econometric theory of asset pricing tests based on the second HJ-

distance. Specifically, we develop the asymptotic distributions of the second HJ-distance and related statistics

under the null hypothesis that a given asset pricing model is correctly specified.

Suppose the uncertainty of the economy is described by a filtered probability space
³
Ω,F , P, (Ft)t≥0

´
for t = 0, 1, ..., T. Suppose we also have the following time series observations of asset payoffs, prices, and

model SDFs, {(Yt,Xt−1,Ht(θ))}Tt=1, where Yt denotes an n-dimensional vector of asset payoffs at time t,

Xt−1 denotes the corresponding n-dimensional asset price vector at time t− 1, and the stochastic discount
factor Ht (θ) is assumed to be observable up to an unknown k-dimensional parameter vector θ.

The analysis in this section is based on the following assumptions.

Assumption A.1. The population optimization problem has a unique solution

(θ0, λ0) ≡ argmin
θ
max
λ
Eφ+ (θ, λ) .

Assumption A.2. E kY k2 <∞, E kXk2 <∞, E
h
maxkθ−θ0k<C H (θ)2

i
<∞ for some positive C.

Assumption A.3. The SDF H (θ) is twice differentiable in θ.

Assumption A.4. The set {H (θ)− λ0Y = 0} has probability zero under the true probability distribution.

Assumption A.5. The first order derivatives (which exist everywhere)Ã
∂
∂θφ

+ (θ, λ)
∂
∂λφ

+ (θ, λ)

!

form a Donsker class for (θ, λ) in a neighborhood of (θ0, λ0).

Assumption A6. The time series (Yt,Xt−1,Ht(θ)) is stationary and ergodic.

The above assumptions are somewhat standard in asymptotic analysis. Assumption A.1 is needed for

identification purpose. Assumption A.2 requires all random variables to be square integrable. This is needed

for the existence of the asymptotic covariance matrix of the second HJ-distance and exchanging differentiation

and expectation operations. Assumption A.3 is a smoothness assumption needed for quadratic Taylor series

expansion. Assumption A.4 guarantees that the set of non-differentiable points of the criterion function is

not too big so that “differentiation in quadratic mean” will hold. It should hold for most models in the

existing literature. Assumption A.5 ensures that central limit theorem holds for the first derivatives of φ+.

A set F of functions is called a Donsker class for P if a functional central limit theorem holds for the sequence

of empirical processes
√
T (ET −E)f for f ∈ F (see Dudley 1981). A key property of a Donsker class is that

for every given ε > 0, η > 0, there exists a γ > 0 and an n0 such that, for all n > n0

P

(
sup
[γ]

|
√
T (ET − E)f1 −

√
T (ET − E)f2| > η

)
< ε.
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[γ] means that the supremum runs over all pairs of functions f1 and f2 in F that are less than γ apart in

L2(P ) norm. This property is needed to justify the first order approximation to the random component

(ET − E)φ+ (θ, λ). Assumption A.6 enables inferences of population distribution using time series counter-
parts. In certain applications, we might have to transform the original price and/or payoff series to satisfy

Assumption A.6. For example, although stock prices generally are not stationary and ergodic, stock returns

generally are.

The following Lemma justifies local asymptotic quadratic (LAQ) expansion of the objective function

ETφ+ (θ, λ) along the lines of Pollard (1982).

Lemma 1. Suppose Assumptions A.1 to A.6 hold. Then we have the following local asymptotic quadratic

representation for ETφ+ (θ, λ) around (θ0, λ0) :

ETφ+ (θ, λ)

= Eφ+ (θ0, λ0) + (ET − E)φ+ (θ0, λ0) +
Ã

A

B

!0Ã
U

V

!
+
1

2

Ã
U

V

!0Ã
Γ11 Γ12

Γ21 Γ22

!Ã
U

V

!
(LAQ)

+ o(k(θ, λ)− (θ0, λ0)k2) + op(k(θ, λ)− (θ0, λ0)kT−1/2),

where U ≡ (θ − θ0) , V ≡ (λ− λ0) , A ≡ (ET − E) ∂
∂θφ

+
|(θ0,λ0), B ≡ (ET − E) ∂

∂λφ
+
|(θ0,λ0), and

Γ ≡
Ã
Γ11 Γ12

Γ21 Γ22

!
≡
Ã
E ∂2

∂θ∂θ0φ
+ E ∂2

∂θ∂λ0φ
+

E ∂2

∂λ∂θ0φ
+ E ∂2

∂λ∂λ0φ
+

!
|(θ0,λ0)

.

Proof. Write

ETφ+ (θ, λ) = Eφ+ (θ, λ) + (ET − E)φ+ (θ, λ) . (A.1)

First consider the first term. Since the SDF model H (θ) is twice differentiable in θ, it is clear that φ+ (θ, λ)

has continuous first derivativesÃ
∂
∂θφ

+ (θ, λ)
∂
∂λφ

+ (θ, λ)

!
=

Ã
2H (θ) [∇H(θ)]− 2[H (θ)− λ0Y ]+[∇H(θ)]

2[H (θ)− λ0Y ]+Y − 2X

!
(A.2)

everywhere, where ∇H(θ) is the gradient of H (θ) with respect to θ. From Assumption A.2., we obtain

immediately that

∂

∂θ
Eφ+ (θ, λ) = E

∂

∂θ
φ+ (θ, λ) ,

∂

∂λ
Eφ+ (θ, λ) = E

∂

∂λ
φ+ (θ, λ) .

Note that Ã
E ∂
∂θφ

+(θ, λ)

E ∂
∂λφ

+(θ, λ)

!
|(θ0,λ0)= 0,

because (θ0, λ0) solves the population optimization problem minθmaxλ Eφ+ (θ, λ) .

Next we demonstrate that although the first derivative of φ+ in (A.2) are not differentiable everywhere,

they are in fact differentiable in quadratic mean as in Pollard (1982, page 920). Recall that a random function
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f(α) is differentiable in quadratic mean with respect to α at α0 if there exists a random vector ∆ such that

f(α) = f(α0) +∆
0
(α− α0) + kα− α0kR

such that

E(R)2 → 0, as α→ α0

Intuitively, this means that f(α0)+∆
0
(α−α0) is a good approximation to f(α) around α0 “on average.” To

demonstrate (A.2) is differentiable in quadratic mean, define the remainder term r by the following equationÃ
∂
∂θφ

+ (θ, λ)
∂
∂λφ

+ (θ, λ)

!

=

Ã
∂
∂θφ

+

∂
∂λφ

+

!
|(θ0,λ0)

+

Ã
∂2

∂θ∂θ0φ
+ ∂2

∂θ∂λ0φ
+

∂2

∂λ∂θ0φ
+ ∂2

∂λ∂λ0φ
+

!
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!
+ k(θ, λ)− (θ0, λ0)k r

Note that although the second derivatives involved may not exist everywhere, the set of points for which

they are not defined has probability zero due to Assumption A.4. Hence as a function in the Hilbert space

L2(P ), the remainder term r is well defined. The remainder term r can be shown to be dominated by a

function in L2 (P ) and r→ 0 almost surely as (θ, λ)→ (θ0, λ0) . The argument for this assertion is similar to

that of Lemma A in Pollard (1982). By the dominated convergence theorem, this implies differentiability in

quadratic mean of the above first derivatives of φ+. Because L2 (P ) convergence implies L1 (P ) convergence,

the quadratic mean differentiability for (A.2) implies that Eφ+ (θ, λ) has traditional second derivatives given
by Ã

E ∂2

∂θ∂θ0φ
+ E ∂2

∂θ∂λ0φ
+

E ∂2

∂λ∂θ0φ
+ E ∂2

∂λ∂λ0φ
+

!
.

We emphasize again that the second derivatives inside the expectation operator is well defined except on

a set of zero probability. It follows that the deterministic term Eφ+ (θ, λ) has the following quadratic
approximation,

Eφ+ (θ, λ) = Eφ+ (θ0, λ0)+
1

2

Ã
θ − θ0

λ− λ0

!0Ã
E ∂2

∂θ∂θ0φ
+ E ∂2

∂θ∂λ0φ
+

E ∂2

∂λ∂θ0φ
+ E ∂2

∂λ∂λ0φ
+

!
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!
+o(k(θ, λ)− (θ0, λ0)k2).

(A.3)

Recall that the first order term vanishes because of vanishing first order derivatives at (θ0, λ0). Therefore,

compared to traditional Taylor expansions, the key point here is to justify that we can still use the second

derivatives of φ+ (which are not defined everywhere) to obtain an approximation to Eφ+ (θ, λ) .

The first order differentiability of φ+ (θ, λ) with respect to (θ, λ) and Assumption A.5 on the first order

derivatives guarantee the stochastic differentiability of the empirical process (see Pollard 1982, page 921,

equation (4))

(ET − E)φ+ (θ, λ)

= (ET − E)φ+ (θ0, λ0) +
Ã
(ET − E) ∂∂θφ+ (θ, λ)
(ET − E) ∂

∂λφ
+ (θ, λ)

!0
|(θ0,λ0)

Ã
θ − θ0

λ− λ0

!
+ op

³
k(θ, λ)− (θ0, λ0)kT−1/2

´
.

(A.4)
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Combining (A.3) and (A.4), we obtain the LAQ for ETφ+ (θ, λ).¥

Based on the LAQ of ETφ+ (θ, λ) in Lemma 1, we develop the asymptotic distribution of the second
HJ-distance in the following theorem with the following additional assumptions.

Assumption A.7. The estimator (θ̂+, λ̂+) ≡ argminθmaxλ ETφ+ (θ, λ) for (θ0, λ0) is consistent.

Assumption A.8. The matrix Γ in LAQ is nonsingular, with a positive definite Γ22 and a negative definite

[Γ11 − Γ12Γ−122 Γ21].

Assumption A.9. A central limit theorem holds for the empirical process:

√
T (ET − E) (H (θ0)Y −X)→ Z ≡ N (0,Λ) ,

where Λ = E[H (θ0)Y −X][H (θ0)Y −X]0.

We point out that the consistency condition in Assumption A.7 can be replaced by more primitive

assumptions, and see Hansen, Heaton, and Luttmer (1995) for a detailed argument.

Theorem 1. Suppose Assumptions A.1 to A.9 hold. Then under the null hypothesis H0: δ+ = 0, T
£
δ+T
¤2

is asymptotically distributed as a weighted χ2 distribution with (n− k) degrees of freedom:

T
£
δ+T
¤2 → Z 0ΞZ,

where Ξ = D−1 − D−1G
¡
G0D−1G

¢−1
G0D−1, G ≡ E {Y [5H (θ0)]

0} , D ≡ E [Y Y 0], and 5H (θ) is the

gradient of H (θ) with respect to θ.

Proof. Based on the LAQ in Lemma 1, we have

ETφ+ (θ, λ)

= Eφ+ (θ0, λ0) + (ET − E)φ+ (θ0, λ0) +A0U +
1

2
V 0Γ11V + [B + Γ21U ]

0
V +

1

2
V 0Γ22V| {z }

quadratic in V

+ o(k(θ, λ)− (θ0, λ0)k2) + op(k(θ, λ)− (θ0, λ0)kT−1/2).

For fixed θ, the quadratic in V in the above equation is maximized at

V̂ =
³
λ̂+ − λ0

´
= −Γ−122 [B + Γ21U ] + op(T

−1/2), (A.5)

and its maximum at V = V̂ equals

A0U +
1

2
U 0Γ11U −

1

2
[B + Γ21U ]

0
Γ−122 [B + Γ21U ]

= A0U +
1

2
U 0Γ11U −

1

2
B0Γ−122 B −B0Γ−122 Γ21U −

1

2
U 0
£
Γ12Γ

−1
22 Γ21

¤
U + op

¡
T−1

¢
= −1

2
B0Γ−122 B +

£
A0 −B0Γ−122 Γ21

¤
U +

1

2
U 0
£
Γ11 − Γ12Γ−122 Γ21

¤
U + op

¡
T−1

¢
| {z }

quadratic in U

.
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The above quadratic in U is minimized at

Û =
³
θ̂+ − θ0

´
= −

£
Γ11 − Γ12Γ−122 Γ21

¤−1 £
A− Γ12Γ−122 B

¤
+ op(T

−1/2), (A.6)

and its minimum at U = Û equals

−1
2
B0Γ−122 B −

1

2

£
A0 −B0Γ−122 Γ21

¤ £
Γ11 − Γ12Γ−122 Γ21

¤−1 £
A− Γ12Γ−122 B

¤
+ op

¡
T−1

¢
.

Therefore, the two-step optimization leads to the following asymptotic representation of the objective

function,

min
θ
max
λ
ETφ+ (θ, λ)− Eφ+ (θ0, λ0)

= (ET − E)φ+ (θ0, λ0)

− 1
2
B0Γ−122 B −

1

2
A0
£
Γ11 − Γ12Γ−122 Γ21

¤−1
A+A0

£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22 B

− 1
2
B0Γ−122 Γ21

£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22 B + op

¡
T−1

¢
= (ET − E)φ+ (θ0, λ0)−

1

2

Ã
A

B

!0Ã
J11 J12

J21 J22

!Ã
A

B

!
+ op

¡
T−1

¢
, (A.7)

where

J11 =
£
Γ11 − Γ12Γ−122 Γ21

¤−1
J12 = J21 = −

£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22

J22 = Γ
−1
22 + Γ

−1
22 Γ21

£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22 .

First we argue that (ET − E)φ+ (θ0, λ0) vanishes under H0: δ+ = 0. To see this, observe that (θ0, λ0)
solves the population optimization problem minθmaxλ Eφ+ (θ, λ) . Under the null hypothesis δ+ = 0, this

means that Eφ+ (θ0, λ0) = 0. Since φ+ (θ0, λ0) is nonnegative, we must have φ+ (θ0, λ0) = 0 almost every-
where. Consequently, (ET − E)φ+ (θ0, λ0) = 0.

Next we consider the second term in (A.7). Note that

A = (ET − E)
∂

∂θ
φ+|(θ0,λ0) = (ET − E)

n
2H (θ0) [5H (θ0)]− g(1)[5H (θ0)]

o
,

B = (ET − E)
∂

∂λ
φ+|(θ0,λ0) = (ET − E) [g(1)Y − 2X],

and

Γ11 = E
n
(2− g(2))[5H (θ0)] [5H (θ0)]

0 + (2H (θ0)− g(1))
£
52H (θ0)

¤o
,

Γ12 = E
n
g(2)Y [5H (θ0)]

0
o
,

Γ22 = E[− g(2)Y Y 0].
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where g(1) and g(2) denote the first and second derivatives at points where they exist. These derivatives can

be easily evaluated as

g = g(H (θ0)− λ00Y ) = [(H (θ0)− λ00Y )1E(θ0,λ0)]
2,

g(1) = 2(H (θ0)− λ00Y )1E(θ0,λ0),

g(2) = 2 · 1E(θ0,λ0),

where 1 is an indicator function and E (θ0, λ0) = {H (θ0)−λ00Y > 0}. Under the null hypothesis H0 : δ+ = 0,
we have λ0 = 0 and hence we conclude that E (θ0, λ0) has full probability. Consequently

A = (ET − E)
∂

∂θ
φ+|(θ0,λ0)

= (ET − E)
©
2H (θ0) [5H (θ0)]−

£
2(H (θ0)− λ00Y )1E(θ0,λ0)

¤
[5H (θ0)]

ª
= (ET − E)

©
2H (θ0) [5H (θ0)]

£
1− 1E(θ0,λ0)

¤
[5H (θ0)]

ª
= 0,

and

B = (ET − E) [g(1)Y − 2X]

= (ET − E) 2[(H (θ0)− λ00Y )1E(θ0,λ0)Y −X]

= (ET − E) 2[(H (θ0)− λ00Y )1E(θ0,λ0)Y −X]

= 2 (ET − E) [H (θ0)Y −X]

Γ11 = E
n
(2− g(2))[5H (θ0)][5H (θ0)]

0 + (2H (θ0)− g(1)) [52H (θ0)]
o

= E
©¡
2− 2 · 1E(θ0,λ0)

¢
[5H (θ0)][5H (θ0)]

0 + [2H (θ0)− 2(H (θ0)− λ00Y )1E(θ0,λ0)][52H (θ0)]
ª

= E
©
2
£
1− 1E(θ0,λ0)

¤
[1 +H (θ0)] [5H (θ0)][5H (θ0)]

0ª
= 0

Γ21 = E
n
g(2)Y [5H (θ0)]

0
o
= E

©
2 · 1E(θ0,λ0)Y [5H (θ0)]

0ª = E {2Y [5H (θ0)]
0}

Γ22 = E[−g(2)Y Y 0] = E [−2Y Y 0] .

It follows that Ã
A

B

!
= 2 (ET − E)

Ã
0

H (θ0)Y −X

!
and (from (A.7))

J11 = 2
−1 ¡G0D−1G¢−1

J12 = 2
−1 ¡G0D−1G¢−1G0D−1

J22 = −2−1
h
D−1 −D−1G

¡
G0D−1G

¢−1
G0D−1

i
,

where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .
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Therefore, under H0: δ+ = 0, the second HJ-distance has the following representation

T
£
δ+T
¤2

= −2
"
√
T (ET − E)

Ã
0

H (θ0)Y −X

!#0Ã
J11 J12

J21 J22

!"
√
T (ET − E)

Ã
0

H (θ0)Y −X

!#
+ op (1)

= [
√
T (ET − E) (H (θ0)Y −X)]0(−2)J22[

√
T (ET − E) (H (θ0)Y −X)]

= [
√
T (ET − E) (H (θ0)Y −X)]0

h
D−1 −D−1G

¡
G0D−1G

¢−1
G0D−1

i
[
√
T (ET − E) ((H (θ0)Y −X)] + op (1) .

By Assumption A.9,
√
T (ET − E) [H (θ0)Y −X] has an asymptotic limiting distribution N (0,Λ) . It follows

immediately that under H0: δ+ = 0, the asymptotic distribution of T
£
δ+T
¤2
can be represented as Z0ΞZ.

Next we show that Z0ΞZ follows a weighted χ2 distribution with (n− k) degrees of freedom. Observe

that the matrix

I −D−1/2G
¡
G0D−1G

¢−1
G0D−1/2 (A.7)

is symmetric and idempotent (a matrix A is idempotent iff A2 = A). A simple computation shows that its

trace is equal to n−k. Therefore this matrix has a rank of (n−k). For a vector of standard normal random
vector z, define

W = [I −D−1/2G
¡
G0D−1G

¢−1
G0D−1/2]D−1/2Λ1/2z.

Then W 0W has the same distribution as Z0ΞZ, because Λ1/2z has the same distribution as Z. Since matrix

(A.7) has rank n − k, the random variable W concentrates on a n− k dimensional subspace. This finishes

the proof. ¥

The following propositions provide the asymptotic distributions for the estimates of the model para-

meters and the Lagrangian multipliers.

Proposition 1. [Model Parameter] Suppose Assumptions A.1 to A.9 hold. Then under the null hy-

pothesis H0: δ+ = 0,
√
T (θ̂+ − θ0) is asymptotically normally distributed with mean zero and covariance

matrix ¡
G0D−1G

¢−1
G0D−1ΛD−1G

¡
G0D−1G

¢−1
,

where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .

Proof. Since A = 0 under the hypothesis H0 : δ+ = 0, we obtain the following representation for θ̂+ − θ0

from (A.6)

θ̂+ − θ0 = −
£
Γ11 − Γ12Γ−122 Γ21

¤−1 £
A− Γ12Γ−122 B

¤
+ op(T

−1/2)

=
£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22 B + op(T

−1/2)

=
¡
G0D−1G

¢−1
G0D−1 (ET − E) [H (θ0)Y −X] + op(T

−1/2).

By Central Limit Theorem,
√
T (ET − E) [H (θ0)Y − X] has an asymptotic limiting distribution N (0,Λ) .

It follows that
√
T (θ̂+ − θ0) is asymptotically normally distributed with mean zero and covariance matrix¡

G0D−1G
¢−1

G0D−1ΛD−1G
¡
G0D−1G

¢−1
.¥
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Proposition 2. [Lagrangian Multiplier] Suppose Assumptions A.1 to A.9 hold. Then under the null

hypothesis H0: δ+ = 0,
√
T (λ̂+(θ̂+) − λ0) is asymptotically normally distributed with mean zero and

covariance matrix

[D−1 −D−1G
¡
G0D−1G

¢−1
G0D−1]Λ[D−1 −D−1G

¡
G0D−1G

¢−1
G0D−1],

where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .

Proof. We have the following asymptotic representation from (A.5) and (A.6)

λ̂+(θ̂+)− λ0 = −Γ−122 [B + Γ21(θ̂+ − θ0)] + op(T
−1/2)

= −Γ−122 (B − Γ21
£
Γ11 − Γ12Γ−122 Γ21

¤−1
[−Γ12Γ−122 B]) + op(T

−1/2)

= −Γ−122 (I + Γ21
£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22 )B + op(T

−1/2)

=
h
D−1 −D−1G

¡
G0D−1G

¢−1
G0D−1

i
(ET − E) [H (θ0)Y −X] + op(T

−1/2).

The result follows immediately from the fact that
√
T (ET − E) [H (θ0)Y −X] has an asymptotic limiting

distribution N (0,Λ). ¥

Proposition 3. [Pricing Errors] Suppose assumptions A.1 to A.9 hold. Then under the null hypothesis

H0: δ+ = 0, the standardized pricing error
√
TET (H(θ)Y −X)|θ=θ̂+ has an asymptotic normal distribution

with zero mean and covariance matrix

[I −G
¡
G0D−1G

¢−1
G0D−1]Λ[I −D−1G

¡
G0D−1G

¢−1
G0],

where G ≡ E {Y [5H (θ0)]
0} and D ≡ E [Y Y 0] .

Proof. The pricing error distribution ET (H(θ)Y −X)|θ=θ̂+ has the following representation

ET (H(θ)Y −X)|θ=θ̂+ = ET [H (θ0)Y −X] + [ETY [5H (θ0)]
0] (θ̂+ − θ0) + op(T

−1/2)

= ET [H (θ0)Y −X] + [EY [5H (θ0)]
0](θ̂+ − θ0) + op(T

−1/2)

= ET [H (θ0)Y −X] +G(θ̂+ − θ0) + op(T
−1/2).

Since

θ̂+ − θ0 =
£
Γ11 − Γ12Γ−122 Γ21

¤−1
Γ12Γ

−1
22 B + op(T

−1/2)

= −
¡
G0D−1G

¢−1
G0D−1ET [H (θ0)Y −X] + op(T

−1/2),

we have

ET (H(θ)Y −X)|θ=θ̂+ = [I −G
¡
G0D−1G

¢−1
G0D−1]ET [H (θ0)Y −X] + op(T

−1/2).

The result follows immediately from the fact that
√
T (ET − E) [H (θ0)Y −X] has an asymptotic limiting dis-

tribution N (0,Λ). The proof of Theorem 1 indicates that this is a normal random variable that concentrates

on (n− k) dimensional subspace. ¥
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Table 1. Summary Statistics for Fama-French 25 Size/BM portfolios 
 

This table provides summary statistics of monthly excess returns of the Fama-French 25 Size/BM portfolios 
from January 1952 to December 2002. The excess returns are constructed by subtracting one-month T-bill 
rates from total monthly returns. Portfolios are numbered ij with i indexing size increasing from one to five 
and j indexing book-to-market ratio increasing from one to five.     
 

Portfolios BM1 BM2 BM3 BM4 BM5 
Panel A: Means 
SIZE 1 0.21 0.75 0.80 1.03 1.09 
SIZE 2 0.36 0.67 0.87 0.92 1.02 
SIZE 3 0.49 0.72 0.74 0.88 0.93 
SIZE 4 0.54 0.57 0.79 0.81 0.87 
SIZE 5 0.51 0.53 0.63 0.63 0.66 
 
Panel B: Standard errors 
SIZE 1 7.82 6.69 5.68 5.32 5.62 
SIZE 2 7.00 5.71 5.05 4.92 5.48 
SIZE 3 6.43 5.13 4.72 4.62 5.16 
SIZE 4 5.75 4.87 4.65 4.55 5.23 
SIZE 5 4.71 4.40 4.17 4.28 4.83 
 
Panel C: t-statistics 
SIZE 1 0.67 2.78 3.46 4.79 4.81 
SIZE 2 1.26 2.90 4.26 4.64 4.61 
SIZE 3 1.88 3.48 3.88 4.70 4.46 
SIZE 4 2.34 2.89 4.22 4.40 4.11 
SIZE 5 2.65 2.98 3.74 3.62 3.36 

 
 
 
 



Table 2. Asset Pricing Tests Based on the HJ-Distances for the Fama-French 25 Portfolios 
 

This table provides empirical results on specification tests of nine asset pricing models and their truncated 
versions based on the two HJ-distances for the Fama-French 25 Size/BM portfolios from January 1952 to 
December 2002. Panels A and B contain results for original models using the 25 portfolios and the 25 
portfolios scaled by default premium (DEF), respectively. DEF is the yield difference between Baa and Aaa 
rated corporate bonds. Panels C and D contain corresponding results for the truncated versions of the nine 
models  The first (second) row of each panel contains the estimated first (second) HJ-distances. The third row 
of each panel contains the percentage difference between the two HJ-distances. In Panels A and B, the fourth 
row reports the probabilities that model SDFs estimated using the first HJ-distance take negative values. The 
last two rows of each panel report the p-values of specification tests based on the first and second HJ-
distances, respectively.  
 
Panel A: Results for original models using Fama-French 25 portfolios 

 CAPM CAPM+IP CAPM*IP FF3 FF3+IP FF3*IP FF6 CAM CAM*IP 
δ 0.417 0.416 0.416 0.364 0.364 0.361 0.308 0.295 0.276 
δ + 0.425 0.423 0.422 0.373 0.372 0.371 0.343 0.369 0.357 

(δ+ - δ)/ δ 2% 2% 2% 2% 2% 3% 11% 25% 30% 
p(H<0) 0% 0% 0% 0% 0% 0% 12% 17% 20% 
p(δ =0) 0% 0% 0% 0% 0% 0% 11% 26% 21% 
p(δ +=0) 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 
Panel B: Results for original models using Fama-French 25 portfolios scaled by DEF 

 CAPM CAPM+IP CAPM*IP FF3 FF3+IP FF3*IP FF6 CAM CAM*IP 
δ 0.368 0.368 0.367 0.325 0.324 0.320 0.242 0.253 0.222 
δ + 0.387 0.387 0.387 0.340 0.340 0.334 0.293 0.320 0.305 

(δ+ - δ)/ δ 5% 5% 5% 4% 5% 4% 21% 26% 37% 
p(H<0) 0% 0% 0% 0% 0% 1% 12% 14% 17% 
p(δ =0) 0% 0% 0% 0% 0% 0% 7% 42% 48% 
p(δ +=0) 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 
Panel C: Results for truncated models using Fama-French 25 portfolios 

 CAPM CAPM+IP CAPM*IP FF3 FF3+IP FF3*IP FF6 CAM CAM*IP 
δ 0.417 0.416 0.416 0.366 0.366 0.365 0.316 0.315 0.315 
δ + 0.425 0.423 0.422 0.372 0.371 0.370 0.338 0.362 0.347 

(δ+ - δ)/ δ 2% 2% 2% 2% 2% 2% 7% 15% 10% 
p(δ =0) 0% 0% 0% 0% 0% 0% 2% 12% 0% 
p(δ +=0) 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 
Panel D: Results for truncated models using Fama-French 25 portfolios scaled by DEF 

 CAPM CAPM+IP CAPM*IP FF3 FF3+IP FF3*IP FF6 CAM CAM*IP 
δ 0.368 0.368 0.367 0.328 0.326 0.319 0.251 0.267 0.245 
δ + 0.387 0.387 0.387 0.339 0.338 0.333 0.290 0.319 0.298 

(δ+ - δ)/ δ 5% 5% 5% 3% 4% 4% 16% 20% 21% 
p(δ =0) 0% 0% 0% 0% 0% 0% 2% 18% 6% 
p(δ +=0) 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 



Table 3. Estimates of Model Parameter, Lagrangian Multipliers, and Pricing Errors of Individual 
Assets Based on the Two HJ-Distances for the Fama-French 25 Portfolios 
 
This table provides estimates of model parameters, Lagrangian multipliers, and pricing errors of individual 
assets of the nine asset pricing models based on the two HJ-distances for the Fama-French 25 portfolios from 
January 1952 to December 2002. Panels A and B report the estimates of the parameters of the nine models 
based on the first and second HJ-distances, respectively. Panel C reports the estimates of the Lagrangian 
multipliers and Panel D reports the pricing errors for the 25 portfolios based on the two HJ-distances. 
 
Panel A: Model parameters estimated based on the first HJ-distance (bold entries indicate that the parameters 
are significant at the 5% level) 
 
 CNST MKT       
CAPM 1.01 -3.02       
 CNST MKT IP      
CAPM+IP 1.01 -3.29 -6.27      
 CNST MKT IP MKT*IP     
CAPM*IP 1.01 -3.19 -6.56 18.00     
 CNST MKT SMB HML     
FF3 1.06 -4.59 -2.10 -8.11     
 CNST MKT SMB HML IP    
FF3+IP 1.05 -4.68 -2.24 -8.03 -2.96    
 CNST MKT SMB HML IP MKT*IP SMB*IP HML*IP 
FF3*IP 1.05 -5.49 -3.02 -9.12 0.02 -0.90 -1.60 -1.00 
 CNST MKT SMB HML MOM TERM DEF  
FF6 0.67 -1.74 -0.74 -3.36 -9.14 1.96 9.71  
 CNST MKT LBR DY TRB TERM   
CAM -0.47 -0.01 -2.84 55.51 24.42 -8.45   
 CNST MKT LBR DY TRB TERM   
CAM*IP -0.27 -0.27 -19.55 52.49 130.22 -7.60   
 IP MKT*IP LBR*IP DY*IP TRB*IP TERM*IP   
CAM*IP 0.11 -1.90 -21.60 -5.10 -76.70 6.80   

 



Panel B: Model parameters estimated based on the second HJ-distance (bold entries indicate that the 
parameters are significant at the 5% level) 
 
 CNST MKT       
CAPM 1.01 -3.04       
 CNST MKT IP      
CAPM+IP 1.01 -3.30 -5.99      
 CNST MKT IP MKT*IP     
CAPM*IP 1.01 -3.13 -7.39 36.90     
 CNST MKT SMB HML     
FF3 1.06 -4.61 -2.08 -8.08     
 CNST MKT SMB HML IP    
FF3+IP 1.05 -4.72 -2.28 -7.97 -3.99    
 CNST MKT SMB HML IP MKT*IP SMB*IP HML*IP 
FF3*IP 1.05 -4.82 -2.53 -8.09 -0.03 0.30 -1.30 0.40 
 CNST MKT SMB HML MOM TERM DEF  
FF6 0.79 -3.61 -1.73 -6.55 -3.81 -0.18 6.26  
 CNST MKT LBR DY TRB TERM   
CAM 0.52 -1.69 -0.77 19.26 90.02 -3.35   
 CNST MKT LBR DY TRB TERM   
CAM*IP 0.67 -1.37 1.71 15.92 65.99 -3.46   
 IP MKT*IP LBR*IP DY*IP TRB*IP TERM*IP   
CAM*IP -0.11 -0.10 -1.30 -0.30 -52.60 48.80   

 



Panel C: Estimates of Lagrangian multipliers (bold entries indicate that the estimates are significant at the 5% 
level) 
 

 Use δ Use δ+ 
 FF6 CAM CAM*IP FF6 CAM CAM*IP 

11 -4.95 -3.62 -3.75 -7.62 -7.49 -7.19 
12 -1.31 -1.19 0.18 -1.30 -1.01 -0.85 
13 -3.99 -5.65 -5.17 -2.32 -3.45 -3.48 
14 14.73 7.16 7.12 15.59 14.04 14.56 
15 -4.00 -1.02 -2.32 0.78 3.09 1.74 
21 0.06 -0.72 0.40 -3.32 -4.51 -3.73 
22 3.06 2.40 -0.80 0.03 -1.81 -1.47 
23 2.23 2.70 3.06 4.30 5.10 4.54 
24 0.58 1.99 4.46 2.04 2.72 3.92 
25 3.66 6.07 4.85 0.64 3.81 2.91 
31 -5.19 -0.20 -0.99 -2.76 -1.33 -1.54 
32 3.45 1.81 3.59 1.88 0.00 0.63 
33 -8.18 -5.27 -3.41 -7.56 -6.82 -8.44 
34 0.38 1.34 -2.55 -0.37 0.36 -0.38 
35 0.55 0.08 0.36 -0.19 0.18 1.06 
41 7.09 4.26 5.35 9.54 8.63 8.40 
42 -12.18 -14.33 -13.52 -10.16 -10.40 -10.75 
43 3.54 6.10 3.24 3.74 4.67 4.15 
44 1.06 -2.02 -2.89 1.32 -0.56 -0.35 
45 -1.17 -1.14 1.14 -1.16 -0.69 0.22 
51 4.36 1.61 -0.04 3.51 0.71 -0.38 
52 -1.52 -3.10 -2.53 -1.10 -2.37 -0.36 
53 4.58 6.43 7.35 4.94 6.55 7.04 
54 -2.32 -0.54 0.56 -3.76 -2.56 -2.93 
55 -2.36 -1.40 -2.24 -3.17 -2.64 -3.44 

 
 



Panel D: Estimates of pricing errors of individual assets (bold entries indicate that the estimates are significant 
at the 5% level) 
 

 Use δ Use δ+ 
 FF6 CAM CAM*IP FF6 CAM CAM*IP 

11 -0.34% -0.41% -0.31% -0.48% -0.47% -0.41% 
12 -0.07% -0.13% -0.03% -0.08% 0.01% 0.03% 
13 -0.08% -0.13% -0.09% -0.04% 0.07% 0.08% 
14 0.11% 0.06% 0.08% 0.15% 0.31% 0.31% 
15 0.00% 0.08% 0.06% 0.05% 0.34% 0.31% 
21 -0.14% -0.21% -0.10% -0.23% -0.33% -0.28% 
22 -0.02% 0.00% -0.01% -0.07% 0.01% 0.02% 
23 0.02% 0.08% 0.09% 0.05% 0.20% 0.19% 
24 0.03% 0.13% 0.15% 0.04% 0.26% 0.26% 
25 0.07% 0.25% 0.20% 0.02% 0.35% 0.32% 
31 -0.10% -0.11% -0.04% -0.08% -0.20% -0.18% 
32 0.00% 0.03% 0.08% 0.00% 0.06% 0.07% 
33 -0.12% 0.01% 0.02% -0.08% 0.10% 0.07% 
34 0.01% 0.16% 0.09% 0.01% 0.25% 0.22% 
35 -0.03% 0.12% 0.09% -0.06% 0.26% 0.23% 
41 0.05% -0.07% 0.00% 0.05% -0.12% -0.10% 
42 -0.20% -0.19% -0.16% -0.16% -0.11% -0.11% 
43 -0.01% 0.11% 0.06% 0.01% 0.17% 0.14% 
44 0.00% 0.07% 0.04% -0.01% 0.18% 0.16% 
45 -0.08% 0.09% 0.10% -0.11% 0.19% 0.19% 
51 0.11% -0.03% -0.04% 0.11% -0.07% -0.09% 
52 -0.07% -0.07% -0.05% -0.05% -0.05% -0.01% 
53 0.01% 0.10% 0.13% 0.01% 0.11% 0.14% 
54 -0.08% 0.09% 0.08% -0.12% 0.11% 0.09% 
55 -0.18% 0.01% -0.06% -0.24% 0.08% 0.04% 

 



Table 4. Summary Statistics of Hedge Funds 
 
The hedge fund data are obtained from TASS. The sample period is between January 1994 and September 
2003, which yields 116 months of observations. We include both live funds and “graveyard” funds. Individual 
funds are included in our sample if they follow one of the following three strategies: trend follower, risk 
arbitrage and equity derivative arbitrage. Panel A reports the distribution of our sample hedge funds among 
the ten hedge fund investment styles defined by TASS. Panel B reports summary statistics of style portfolio 
monthly returns for our sample funds. 
 
Panel A: Distribution of hedge funds among ten investment styles 
 
Styles Total Months Mean Std Dev Minimum Maximum 
Convertible arbitrage 116 36 15 8 57 
Emerging markets 116 13 5 4 19 
Equity market neutral 116 10 7 2 26 
Event driven 116 44 24 11 82 
Fixed-income arbitrage 116 2 1 1 4 
Fund of funds 116 150 47 59 241 
Global macro 116 26 3 3 35 
Long/short equity 116 40 16 16 65 
Managed futures 116 101 10 66 114 
Multi-strategy 116 17 6 5 29 
 
Panel B: Summary statistics of style portfolio returns 
 
Styles Mean Std Dev t-Statistics 
Convertible arbitrage 0.90 1.49 6.5 
Emerging markets 0.80 4.28 2.0 
Equity market neutral 0.80 0.63 13.6 
Event driven 1.02 1.93 5.7 
Fixed-income arbitrage 0.77 1.55 5.3 
Fund of funds 0.80 1.93 4.5 
Global macro 1.99 6.62 3.2 
Long/short equity 1.09 2.60 4.5 
Managed futures 0.99 3.97 2.7 
Multi-strategy 1.06 4.30 2.7 
 



Table 5. Evaluation of Hedge Fund Returns Based on the Two HJ-Distances 
 

This table provides empirical results on specification tests of six asset pricing models and their truncated 
versions based on the two HJ-distances for the ten hedge fund portfolios from January 1994 to September 
2003. Panels A and B contain results for original models and their truncated versions using the ten hedge fund 
portfolios. The first (second) row of each panel contains the estimated first (second) HJ-distances. The third 
row of each panel contains the percentage difference between the two HJ-distances. In Panel A, the fourth row 
reports the probabilities that model SDFs estimated using the first HJ-distance take negative values. The last 
two rows of each panel report the p-values of specification tests based on the first and second HJ-distances, 
respectively.  
 
Panel A: Results for original models using ten hedge fund portfolios 
 

 CAPM CAPM+IP FF3 FF3+IP OPT OPT+IP 
δ 1.007 0.642 0.901 0.560 0.913 0.633 
δ + 1.131 1.070 1.074 1.037 1.098 1.057 

(δ+ - δ)/ δ 12% 67% 19% 85% 20% 67% 
p(H<0) 0% 43% 17% 43% 17% 40% 
p(δ =0) 0% 57% 0% 56% 0% 31% 
p(δ +=0) 0% 0% 0% 0% 0% 0% 

 
Panel B: Results for truncated models using ten hedge fund portfolios 
 

 CAPM CAPM+IP FF3 FF3+IP OPT OPT+IP 
δ 1.007 0.708 0.907 0.699 0.882 0.677 
δ + 1.131 1.069 1.066 1.025 1.090 1.048 

(δ+ - δ)/ δ 12% 51% 17% 47% 24% 55% 
p(δ =0) 0% 10% 0% 3% 0% 8% 
p(δ +=0) 0% 0% 0% 0% 0% 0% 

 
 



Table 6. Estimates of Model Parameters, Lagrangian Multipliers, and Pricing Errors for Individual 
Assets Based on the Two HJ-Distances for the Ten Hedge Fund Portfolios 
 
This table provides estimates of model parameters, Lagrangian multipliers, and pricing errors of individual 
assets of the six asset pricing models based on the two HJ-distances for the ten hedge fund portfolios from 
January 1994 to September 2003. Panels A and B report estimates of the parameters of the six models based 
on the first and second HJ-distances, respectively. Panel C reports the estimates of the Lagrangian multipliers 
and Panel D reports the pricing errors for the ten hedge fund portfolios based on the two HJ-distances.  
 
Panel A: Model parameters estimated based on the first HJ-distance (bold entries indicate that the parameters 
are significant at the 5% level) 
 

 CNST MKT SMB HML STR PUT IP 
CAPM 1.04 -6.95      
CAPM+IP 0.07 -3.16     -2.36 
FF3 0.84 1.04 22.74 29.70    
FF3+IP -0.03 4.46 14.80 23.89   -2.20 
OPT 0.86 -22.22   -1.00 -0.36  
OPT+IP 0.05 -9.83   -0.20 -0.18 -2.21 

 
Panel B: Model parameters estimated based on the second HJ-distance (bold entries indicate that the 
parameters are significant at the 5% level) 
 

 CNST MKT SMB HML STR PUT IP 
CAPM 1.05 -8.10      
CAPM+IP 0.83 -6.96     -0.51 
FF3 1.00 -8.50 11.06 5.46    
FF3+IP 0.85 -7.91 8.55 3.22   -0.41 
OPT 1.04 -9.06   -0.55 0.05  
OPT+IP 0.87 -7.28   -0.37 0.04 -0.43 

 
Panel C: Estimates of Lagrangian multipliers (bold entries indicate that the estimates are significant at the 5% 
level) 
 

 Use δ Use δ+ 
λ CAPM+IP FF3+IP OPT+IP CAPM+IP FF3+IP OPT+IP 

convertible arbitrage 27.8 25.5 26.4 64.4 60.9 60.6 
emerging markets 10.1 9.4 9.6 3.7 5.2 3.9 
equity market neutral 61.1 23.8 53.4 210.1 196.2 208.2 
event driven -10.6 11.3 -4.9 42.1 50.4 49.7 
fixed income 14.3 14.5 11.4 39.3 29.0 34.2 
fund of funds -86.8 -80.6 -86.2 -180.1 -174.3 -182.1 
global macro 4.3 4.3 5.0 13.7 11.9 13.9 
long/short equity 16.0 4.7 13.3 49.2 46.9 47.2 
managed futures 4.9 5.8 5.9 19.1 22.0 20.6 
multi-strategy 17.3 14.4 18.1 11.3 12.5 12.5 

 
 



Panel D: Estimates of pricing errors of individual assets (bold entries indicate that the estimates are significant 
at the 5% level) 
 

 Use δ Use δ+ 
 CAPM+IP FF3+IP OPT+IP CAPM+IP FF3+IP OPT+IP 

convertible arbitrage 0.16% 0.24% 0.17% 0.52% 0.59% 0.49% 
emerging markets 0.43% 0.74% 0.52% -0.13% 0.17% -0.04% 
equity market neutral 0.15% 0.04% 0.13% 0.35% 0.30% 0.33% 
event driven 0.00% 0.27% 0.10% 0.31% 0.54% 0.40% 
fixed income 0.02% 0.09% 0.05% 0.25% 0.20% 0.25% 
fund of funds -0.10% 0.01% 0.01% 0.14% 0.27% 0.20% 
global macro 0.63% 0.82% 1.12% 1.19% 1.17% 1.45% 
long/short equity 0.09% 0.10% 0.15% 0.30% 0.58% 0.35% 
managed futures -0.17% -0.20% -0.04% 0.79% 0.74% 0.82% 
multi-strategy 0.64% 0.75% 0.94% 0.28% 0.59% 0.51% 

 
 
  



Figure 1. Time series plots of conditioning variables.  
 
Panel A contains yield spread between Baa and Aaa corporate bonds, and Panel B contains the cyclical components of natural logarithm of industrial production. 
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Panel B: Monthly cycle (IP)
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Figure 2. Time series plots of the SDFs of two asset pricing models estimated using the 25 Fama-French size/BM portfolios.  
 
Panel A and B contain time series plots of the estimated SDFs of the Fama-French six-factor model and the linearized Campbell model using the first and second 
HJ-distances, respectively. Panel C and D contain time series plots of the deviations of the estimated SDFs from true SDFs of the Fama-French six-factor model 
and the linearized Campbell model, respectively.  
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Panel C: Estimated m-H for FF6
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Figure 3. Time series plots of the SDFs of two asset pricing models estimated using the ten hedge fund portfolios.  
 
Panel A and B contain time series plots of the estimated SDFs of the FF3+IP model and the OPT+IP model using the first and second HJ-distances, respectively. 
Panel C and D contain time series plots of the deviations of the estimated SDFs from true SDFs of the FF3+IP model and the OPT+IP model, respectively.  
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Panel B: Estimated H for OPT+IP
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Panel C: Estimated m-H for FF3+IP
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