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A Bayesian Analysis of Return Dynamics with Stochastic Volatility and Lévy Jumps

ABSTRACT

We develop Bayesian Markov chain Monte Carlo methods for inferences of continuous-time models

with stochastic volatility and infinite-activity Lévy jumps using discretely sampled data. Simula-

tion studies show that (i) our methods provide accurate joint identification of diffusion, stochastic

volatility, and Lévy jumps, and (ii) affine jump-diffusion models fail to adequately approximate the

behavior of infinite-activity jumps. In particular, the affine jump-diffusion models fail to capture the

“infinitely many” small Lévy jumps which are too big for Brownian motion to model and too small

for compound Poisson process to capture. Empirical studies show that infinite-activity Lévy jumps

are essential for modeling the S&P 500 index returns.



The continuous-time finance literature in the past few decades has mainly relied on Brownian

motion and compound Poisson process as basic model building blocks. Sophisticated models based

solely on Brownian motion and compound Poisson process have been developed to capture impor-

tant stylized behaviors of asset prices. One prominent example of such models is the popular affine

jump-diffusion (hereafter AJD) models of Duffie, Pan, and Singleton (2000), in which affine diffu-

sions capture continuous movements in asset prices and compound Poisson processes capture large,

discontinuous jumps in asset prices.

Brownian motion and compound Poisson process, however, are only two special cases of a much

broader class of stochastic processes, namely Lévy processes. Roughly speaking, a Lévy process

is a continuous-time stochastic process with stationary and independent increments. Other than

Brownian motion and compound Poisson process, there are many other members of the Lévy family

that offer greater flexibility in modeling asset price dynamics. Specifically, the jump component of

a general Lévy process is much more flexible than a compound Poisson process. For example, the

so-called infinite-activity Lévy jumps have infinite jump arrival rates and can generate, in addition

to large jumps, an infinite number of small jumps within any finite time interval.

Lévy processes have become increasingly popular in recent years, and various Lévy models have

been developed in the asset pricing literature.1 The important work of Carr and Wu (2004) has

established Lévy processes as an attractive alternative to AJDs for modeling asset price dynamics.

For example, they show that one can easily incorporate stochastic volatility by applying a stochastic

time change to Lévy processes and obtain closed-form formulas (based on the characteristic function

approach) for a wide variety of derivative securities in Lévy models. Therefore, Lévy processes are

1These include the inverse Gaussian model of Barndorff-Nielsen (1998); the generalized hyperbolic class of Eberlein,

Keller, and Prause (1998); the variance-gamma model of Madan, Carr, and Chang (1998); the generalization of VG in

Carr, Geman, Madan, and Yor (2002); and the finite moment log-stable model of Carr and Wu (2003) among others.
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more flexible than AJDs for modeling purpose and are as tractable as AJDs for pricing purpose.

The recent developments of Lévy models, however, have raised some challenging theoretical and

empirical issues in the literature.2 The double-jump model of Eraker, Johannes, and Polson (2003)

(hereafter EJP), one of the most sophisticated AJD models for stock returns, includes stochastic

volatility, leverage effect, and compound Poisson jumps in both returns and volatility, and can

capture many important stylized behaviors of major U.S. stock market indices. Therefore, it is

not clear whether infinite-activity Lévy jumps, despite their theoretical appeals, have any significant

practical advantages over such flexible AJD models. Our paper demonstrates the advantages of Lévy

jump models by studying the following three closely related questions through numerical simulation

and empirical analysis.

The first question we address is whether econometrically it is possible to jointly identify diffu-

sion, stochastic volatility, and infinite-activity jumps using discretely sampled stock prices. This

question is key to econometric analysis of Lévy processes and AJD models, because without the

joint identification property it is not even possible to empirically compare the two classes of models.

Unfortunately, estimation of stochastic volatility models with Lévy jumps is rather complicated. The

probability densities of most Lévy processes are not known in closed form and for certain processes

not all moments exist. It is also computationally challenging to deal with the high-dimensional latent

volatility variables. We develop Bayesian Markov chain Monte Carlo (hereafter MCMC) methods

that overcome these difficulties. Simulation evidence suggests that our MCMC methods provide

accurate joint identification of diffusion, stochastic volatility, and Lévy jumps using discretely sam-

pled data. Therefore, our methodology makes it practically feasible to examine the incremental

contributions of Lévy jumps over existing AJD models.

The second question we study is whether AJD models can adequately approximate the behavior

2For example, Äıt-Sahalia and Jacod (2004) note that although Lévy processes have been increasingly used in the

literature, “relatively little is known about the(ir) inference problem, which is a difficult one.”
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of infinite-activity Lévy jumps through numerical simulation. We estimate AJD models using our

MCMC methods based on data simulated from infinite-activity Lévy jump models. We find that in

all simulations there are too many small movements in asset prices that cannot be captured by such

fitted AJD models. Our simulation results show that the “infinitely many” small Lévy jumps fill a

gap in AJD models by capturing price movements that are too large for Brownian motion to model

but too small for compound Poisson process to capture. Our results also suggest that the perception

that infinite-activity jumps should not be too much different from compound Poisson processes with

very high arrival rates does not seem to be appropriate. Instead, we find that the above unique

feature of infinite-activity Lévy jumps cannot be captured by even the most flexible AJD models.

The third question we investigate is whether Lévy jump models can outperform AJD models in

capturing the time series dynamics of the S&P 500 index returns. We estimate both AJD and Lévy

jump models using our MCMC methods based on daily returns of the S&P 500 index for the past

twenty years. We find similar patterns of misspecifications of AJD models using actual data as that

in our simulation studies. Even the most sophisticated AJD models cannot completely capture the

many small movements in index returns. On the other hand, stochastic volatility models with Lévy

jumps can capture the index returns very well.

Through our analyses of the three important questions, our paper has made methodological,

numerical, and empirical contributions to the fast-growing literature on econometric analysis of Lévy

processes. Although MCMC methods have been widely used in the existing literature, our paper is

one of the first that deals with infinite-activity and infinite-variation Lévy jumps, and hence will be

helpful for future developments of the literature.3 Our simulation results complement the theoretical

3Earlier studies, such as Jacquier, Polson, and Rossi (1994); Kim, Shephard, and Chib (1998); and Chib, Nardari,

and Shephard (2003), apply MCMC methods to estimate discrete-time stochastic volatility models. Other studies

that apply MCMC methods to continuous-time models for stock price or interest rate include Jones (1998, 2003a, b);

Elerian, Chib, and Shephard (2001); Eraker (2001, 2004); and EJP (2003), among others.
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works of Aı̈t-Sahalia (2004) and Äıt-Sahalia and Jacod (2004). Äıt-Sahalia (2004) shows through

theoretical analysis that maximum likelihood method can perfectly identify diffusion variance in the

presence of infinite-activity Cauchy jumps. Äıt-Sahalia and Jacod (2004) further show that jump

components with different power coefficients also can be separately identified as long as the power

coefficients are sufficiently different. Our simulation results extend their findings by showing that

the joint and accurate identifications of diffusion, stochastic volatility, and infinite-activity jumps are

feasible when the underlying price dynamics approximate the time-series behavior of index returns.

Our empirical results based on S&P 500 index returns also complement existing evidence that favors

Lévy jump models over AJD models based on option data.4 Overall, our results strongly suggest that

the infinite-activity Lévy jumps are not only theoretically more appealing than compound Poisson

jumps but also are empirically important for capturing financial data. Therefore, Lévy jumps can

enrich existing AJD models by capturing certain important features of the data that are difficult for

AJD models to capture.

This paper is organized as follows. In Section 1, we introduce pure Lévy jump processes and

several stochastic volatility models with Lévy jumps for stock return dynamics. In Section 2, we

develop MCMC methods for estimating model parameters and latent volatility and jump variables

of the Lévy jump models. Section 3 presents simulation evidence on the performance of our MCMC

methods in estimating Lévy jump models. Section 4 reports empirical results for the S&P 500 index

returns. Section 5 concludes the paper with some final remarks. The Appendix provides detailed

discussions of the implementations of the MCMC methods.

1. Return Dynamics with Lévy Jumps

1.1 Lévy Processes

Suppose the uncertainty of the economy is described by a probability space (Ω,F , P ) and a
4Existing empirical studies of Levy processes have mainly focused on option data. See, for example, Madan, Carr,

and Chang (1998); Carr, Geman, Madan, and Yor (2002); Huang and Wu (2003); Carr and Wu (2003) among others.
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filtration {Ft}. Let Xt be a scalar Lévy process with respect to the filtration {Ft}. Then Xt is

adapted to Ft, the sample paths ofXt are right-continuous with left limits, andXs−Xt is independent

of Ft and distributed as Xs−t for 0 ≤ t < s. Lévy processes include Brownian motion and compound

Poisson process as special cases. But they are much more general than the two because they allow

discontinuous sample paths, non-normal increments, and more flexible jump structures that have

(possibly) infinite arrival rates. Lévy processes are also semimartingales and are therefore suitable

for modeling asset prices. The independence property of Lévy increments further guarantee that the

underlying process is Markov and thus is consistent with the Efficient Market Hypothesis.

Although the probability densities of Lévy processes are generally not known in closed form, their

characteristic functions φXt(u) can be explicitly specified as follows,

φXt(u) = E
h
eiuXt

i
= e−tψx(u), t ≥ 0,

where ψx (u) is called the characteristic exponent and satisfies the following Lévy-Khintchine formula

(see Bertoin, 1996, p. 12)

ψx (u) ≡ −iμu+
σ2u2

2
+

Z
R0

³
1− eiux + iux1|x|<1

´
π (dx) ,

u ∈ R, μ ∈R, σ ∈R+, and π is a measure on R0 =R\ {0} (R less zero) with

Z
R0

min
³
1, x2

´
π(dx) <∞.

The Lévy-Khintchine formula suggests that a Lévy process consists of three independent com-

ponents: a linear deterministic drift part, a Brownian part, and a pure jump part. The triplet

¡
μ, σ2, π (·)

¢
, often called the characteristics of the Lévy process, completely describe the probabilis-

tic behavior of the process. The Lévy measure π(dx) dictates the jump behavior of the process. It

has the interpretation that π (E) , for any subset E ⊂ R, is the rate at which the process takes jumps

of size x ∈ E. In other words, π (E) measures the number of jumps whose jump sizes falling in E

per unit of time.
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Depending on its Lévy measure π (·) , a pure jump Lévy process can exhibit rich jump behaviors.

For finite-activity jump processes, which have a finite number of jumps within any finite time interval,

π needs to be integrable, that is, Z
R0

π (dx) = λ <∞. (1)

The classical example of a finite-activity jump process is the compound Poisson jump process of

Merton (1976). In the Merton Jump (MJ) model, the integral in (1) defines the Poisson arrival

intensity λ. Conditional on one jump occurring, the MJ model assumes that the jump magnitude is

normally distributed with mean μy and variance σ
2
y . The Lévy measure of the MJ model is given by

πMJ (dx) = λ
1q
2πσ2y

exp

Ã
−(x− μy)

2

2σ2y

!
dx.

Obviously, one can choose any distribution, F (x) , for the jump size under the compound Poisson

framework and obtain the Lévy measure π (dx) = λdF (x) .

Unlike finite-activity jump processes, an infinite-activity jump process allows an (possibly) infinite

number of jumps within any finite time interval. The integral of the Lévy measure in (1) is no longer

finite. Within the infinite-activity category, the sample path of the jump process can exhibit either

finite or infinite variation, meaning that the aggregate absolute distance traveled by the process is

finite or infinite, respectively, over any finite time interval.

In our empirical analysis, we choose the relatively parsimonious variance-gamma (hereafter VG)

model of Madan, Carr, and Chang (1988) as a representative of the infinite-activity but finite vari-

ation jump model. The VG process is obtained by subordinating an arithmetic Brownian motion

with drift γ and variance σ by an independent gamma process with unit mean rate and variance rate

ν, Gν
t . That is,

XV G (t|σ, γ, ν) = γGν
t + σW (Gν

t )

where W (t) is a standard Brownian motion and is independent of Gν
t . The Lévy measure of the VG
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process is given by

πV G (dx) =
A2± exp

³
−A±

B±
|x|
´

B± |x|
(dx) ,

where A± =
1
ν

µq
γ2ν2

4 + σ2ν
2 ± γν

2

¶
and B± = A2±ν. The parameters with plus subscripts apply to

positive jumps and those with minus subscripts apply to negative jumps. If γ = 0, then the jump

structure is symmetric around zero and the subscripts are dropped. Note that as the jump size

approaches zero, the arrival rate approaches infinity. Thus, an infinite-activity model incorporates

(possibly) infinitely many small jumps. The Lévy measure of an infinite-activity jump process is

singular at a zero jump size.

Another example of infinite-activity jump model is the Lévy α-stable process. In this process,

jump sizes follow an α-stable distribution denoted as Sα (β, δ, γ) , with a tail index α ∈ (0, 2], a skew

parameter β ∈ [−1, 1] , a scale parameter δ ≥ 0, and a location parameter γ ∈ R. The parameter α

determines the shape of the distribution, while β determines the skewness of the distribution. Stable

densities are supported on either R or R+. The latter situation occurs only when α < 1 and β = ±1.

The characteristic function of an α-stable distribution S is given by

E
h
eiuS

i
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

¡
−δα |u|α

£
1− iβ

¡
tan πα

2

¢
(sign u)

¤
+ iγu

¢
α 6= 1

exp
³
−δ |u|

h
1 + iβ 2π (sign u) ln |u|

i
+ iγu

´
α = 1.

For a standardized α-stable distribution, denoted as Sα (β, 1, 0) , δ = 1 and γ = 0.

All α-stable processes are built upon a fundamental process called α-stable motion. A process Xt

is an α-stable motion if (i) X0 = 0 a.s., (ii) Xt has independent increments, and (iii) the increment

Xt −Xs (t > s) follows an α-stable distribution Sα
³
β, (t− s)

1
α , 0

´
. The role that α-stable motion

plays for α-stable processes is similar to that of Brownian motion for diffusion processes. Among

α-stable processes, we choose the finite moment log-stable (hereafter LS) process of Carr and Wu

(2003) in our analysis. We obtain this process by multiplying an α-stable motion by a constant σ.

Following Carr and Wu (2003), we set β = −1 to achieve finite moments for index levels and negative
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skewness in the return density, a feature that cannot be captured by either a Brownian motion or a

symmetric Lévy α-stable motion. We also restrict α ∈ (1, 2) so that the process has the support of

the whole real line. The α-stable process defined in this way is a Lévy process with infinite activity

and infinite variation and has a Lévy measure

πLS (dx) = c± |x|−α−1 dx,

where c− =
−σα sec πα

2
Γ(−α) . The parameters c± control both the scale and the asymmetry of the process.

In the LS model, c+ is set to zero so that only negative jumps are allowed in the Lévy measure.

However, it is important to point out that in addition to the pure jump part characterized by the Lévy

measure πLS (dx) , the LS process also has a deterministic drift part that compensates the negative

jumps so that the whole process is a martingale. For infinite-variation jumps, the compensation is so

much that the admissible domain of LS actually covers the whole real line, although there are only

negative jumps. As a result, the LS process has an α-stable distribution with infinite p-th moment

for p > α.

1.2 Return Dynamics with Stochastic Volatility and Lévy Jumps

To examine the incremental contributions of Lévy jumps, we consider stochastic volatility models

with either VG or LS jumps in returns. For comparison, we also consider some of the popular AJD

models for return dynamics in the existing literature.

Let Yt represent the logarithm of stock price, i.e., Yt = log (St) . Then all models considered in

our paper can be summarized by the following system of stochastic differential equations:⎛⎜⎜⎜⎝ dYt

dvt

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝ μ

κ (θ − vt)

⎞⎟⎟⎟⎠ dt+
√
vt−

⎛⎜⎜⎜⎝ 1 0

ρσv
p
(1− ρ2)σv

⎞⎟⎟⎟⎠ dWt +

⎛⎜⎜⎜⎝ dJyt

dJvt

⎞⎟⎟⎟⎠ , (2)

where Wt is a standard Brownian motion in R
2, Jyt and J

v
t represent jumps in returns and volatility,

respectively, μ measures the mean return, vt the instantaneous volatility of return, θ the long-run

mean of stochastic volatility, κ the speed of mean reversion of volatility, σv the so-called volatility of
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volatility variable, and ρ the correlation between returns and instantaneous volatility.

The above model nests some of the most important AJD models for equity returns. For example,

without jumps in returns and volatility, the above model reduces to the stochastic volatility model

of Heston (1993). With Merton jumps only in returns, we have the stochastic volatility and Merton

jump model of Bates (1996) and Andersen, Benzoni, and Lund (2002). With Merton jumps in both

returns and volatility, we have the double-jump models of EJP (2003). In our analysis, we allow VG

and LS jumps in returns in the above model.

To simplify our empirical analysis, we consider the first-order Euler discretized version of the

above continuous-time model at daily frequency. Simulation studies in EJP (2003) show that the

discretization bias of daily data is not significant. In total, we consider the following four discretized

models in our empirical analysis.

• Stochastic Volatility Model with Merton Jumps in Returns (SVMJ)

The discretized version of the SVMJ model, which allows Merton jumps in returns, is⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yt+1 = Yt + μ∆+

√
vt∆

y
t+1 + Jyt+1,

vt+1 = vt + κ(θ − vt)∆+ σv
√
vt∆

v
t+1,

(3)

where both y
t+1 and

v
t+1 follow N(0, 1) with corr( y

t+1,
v
t+1) = ρ; Jyt+1 = ξyt+1N

y
t+1, P (N

y
t+1 = 1) =

λy∆, ξ
y
t+1 ∼ N(μy, σ

2
y) and is independent of

y
t+1 and

v
t+1. For this process, we have observations

(Yt)
T
t=0; latent volatility variables (vt)

T
t=0, jump times (N

y
t )

T
t=1, and jump sizes (ξ

y
t )

T
t=1; and model

parameters Θ = {μ, κ, θ, σv, ρ, λy, μy, σy}.

• Stochastic Volatility Model with Correlated Merton Jumps in Returns and Volatility (SVCMJ)

The discretized version of the SVCMJ model (the preferred model of EJP (2003)) allows correlated
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compound Poisson jumps in returns and volatility, is⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yt+1 = Yt + μ∆+

√
vt∆

y
t+1 + Jyt+1,

vt+1 = vt + κ(θ − vt)∆+ σv
√
vt∆

v
t+1 + Jvt+1,

(4)

where both y
t+1 and

v
t+1 follow N(0, 1) with corr( y

t+1,
v
t+1) = ρ; Jyt+1 = ξyt+1Nt+1, J

v
t+1 = ξvt+1Nt+1,

P (Nt+1 = 1) = λ∆, ξvt+1 ∼ exp(μv), ξ
y
t+1|ξvt+1 ∼ N(μy + ρJξ

v
t+1, σ

2
y).

¡
ξyt+1, ξ

v
t+1

¢
is indepen-

dent of y
t+1 and

v
t+1. For this process, we have observations (Yt)

T
t=0; latent volatility variables

(vt)
T
t=0, jump times (Nt)

T
t=1, and jump sizes (ξ

y
t )

T
t=1 and (ξ

v
t )

T
t=1; and model parameters, Θ =

{μ, κ, θ, σv, ρ, λ, μv, μy, σy, ρJ}. Note that SVMJ is nested within SVCMJ.

• Stochastic Volatility Model with Variance-Gamma Jumps in Returns (SVVG)

In the SVVG model, we allow jumps in returns to follow a VG process. The discretized version

of the SVVG model is ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yt+1 = Yt + μ∆+

√
vt∆

y
t+1 + Jyt+1,

vt+1 = vt + κ(θ − vt)∆+ σv
√
vt∆

v
t+1,

(5)

where both y
t+1 and

v
t+1 follow N(0, 1) with corr( y

t+1,
v
t+1) = ρ. The jump process follows a VG

process whose discretized version, Jyt+1, is

Jyt+1 = γGt+1 + σ
p
Gt+1

J
t+1,

where J
t+1 ∼ N(0, 1) and Gt+1 ∼ Γ(∆ν , ν). J

t+1 and Gt+1 are independent of each other and are

independent of y
t+1 and

v
t+1. The parameterization of the Gamma distribution, Γ (α, β) , used in

this paper has density form 1
βαΓ(α)x

α−1ex/β . For this process, we have observations (Yt)Tt=0; latent

volatility variables (vt)
T
t=0, jump times/sizes (J

y
t )

T
t=1, and time-change variables (Gt)

T
t=1; and model

parameters Θ = {μ, κ, θ, σv, ρ, γ, σ, ν}.

• Stochastic Volatility Model with Log-Stable Jumps in Returns (SVLS)

10



In the SVLS model, we allow jumps in returns to follow a finite moment log-stable process. The

discretized version of the SVLS model is⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yt+1 = Yt + μ∆+

√
vt∆

y
t+1 + Jyt+1,

vt+1 = vt + κ(θ − vt)∆+ σv
√
vt∆

v
t+1,

(6)

where both y
t+1 and

v
t+1 follow N(0, 1) with corr( y

t+1,
v
t+1) = ρ. The jump size Jyt+1, independent

of y
t+1 and

v
t+1, follows a stable distribution with shape parameter α, skewness parameter −1,

zero drift, and scale parameter σ∆
1
α . That is, Jyt+1 ∼ Sα(−1, σ∆

1
α , 0). For this process, we have

observations (Yt)
T
t=0; latent volatility variables (vt)

T
t=0, and jump times/sizes (J

y
t )

T
t=1; and model

parameters Θ = {μ, κ, θ, σv, ρ, α, σ}.

2. Estimating Lévy Jump Models via Markov Chain Monte Carlo

We face several challenges in estimating the above models. Unlike Cauchy process, the likelihood

functions of VG and LS are not known in closed-form. For VG, the difficulty is that we need to

integrate out the latent time-change variable (Gt)
T
t=1 to obtain the likelihood based only on observ-

ables. For LS, the difficulty is that the density of an α-stable distribution is unknown. Moreover,

for LS, certain moments of asset returns do not even exist, which renders moment-based methods

inapplicable. It is also computationally challenging to integrate out other high-dimensional latent

variables, such as stochastic volatility, jump sizes, and jump times when implementing either like-

lihood or moment-based approaches. To overcome these difficulties, we develop a computational

Bayesian MCMC approach for estimating stochastic volatility models with Lévy jumps.

MCMC conducts inferences by simulating efficiently from (potentially complicated) posterior

distributions of model parameters and latent variables given the observed prices. MCMC samples

from the typically high-dimensional and complex posterior distribution by generating a Markov

Chain over parameters and latent variables whose equilibrium distribution is the desired posterior

distribution. The Monte Carlo method uses these samples for numerical integration for parameter

and state estimation. For a detailed discussion of MCMC, see Johannes and Polson (2003).
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Since MCMC analysis of SVMJ and SVCMJ has been considered in previous studies, such as EJP

(2003), we focus our discussions of MCMC methods on SVVG and SVLS. We mainly discuss how to

derive the joint posterior distributions of model parameters and latent variables for the two models

and briefly explain how to obtain posterior samples for individual parameters and latent variables

by simulating from the complicated joint posterior distributions. More detailed discussions of our

MCMC methods are provided in the appendix.

In SVVG, conditioning on vt and Jt+1, Yt+1−Yt and vt+1−vt follow a bivariate normal distribution⎛⎜⎜⎜⎝ Yt+1 − Yt

vt+1 − vt

⎞⎟⎟⎟⎠ |vt, Jt+1 ∼ N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ μ∆+ Jt+1

κ(θ − vt)∆

⎞⎟⎟⎟⎠ , vt∆

⎛⎜⎜⎜⎝ 1 ρσv

ρσv σ2v

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

Jt+1|Gt+1,Θ ∼ N(γGt+1, σ
2Gt+1) and Gt+1|Θ ∼ Γ(

∆

ν
, ν).

To simplify notation, we denote the index returns asY = {Yt}Tt=0 , the volatility variables asV = {vt}Tt=0 ,

the jump times/sizes as J = {Jt}Tt=1 , and the time-change variables as G = {Gt}Tt=1 . The joint pos-

terior distribution of parameters and latent variables, p (Θ,V,J,G|Y) , can be decomposed into

products of individual conditionals

p (Θ,V,J,G|Y) ∝ p(Y,V,J,G,Θ) = p(Y,V|J)p(J|G,Θ)p(G|Θ)p(Θ)

∝
T−1Y
t=0

1

σvvt∆
p
1− ρ2

exp

½
− 1

2(1− ρ2)

³¡ y
t+1

¢2 − 2ρ y
t+1

v
t+1 +

¡ v
t+1

¢2´¾

×
T−1Y
t=0

1

σ
√
Gt+1

exp

(
−(Jt+1 − γGt+1)

2

2σ2Gt+1

)
×

T−1Y
t=0

1

ν
∆
ν Γ(∆ν )

G
∆
ν
−1

t+1 exp{−Gt+1

ν
} × p(Θ),

where y
t+1 = (Yt+1 − Yt − μ∆− Jt+1) /

√
vt∆ and

v
t+1 = (vt+1 − vt − κ(θ − vt)∆) /

¡
σv
√
vt∆

¢
.

In SVLS, conditioning on vt and St+1, Yt+1−Yt and vt+1−vt follow a bivariate normal distribution⎛⎜⎜⎜⎝ Yt+1 − Yt

vt+1 − vt

⎞⎟⎟⎟⎠ |vt, St+1 ∼ N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ μ∆+ St+1

κ(θ − vt)∆

⎞⎟⎟⎟⎠ , vt∆

⎛⎜⎜⎜⎝ 1 ρσv

ρσv σ2v

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

St+1 ∼ Sα(−1, σ∆
1
α , 0).
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In SVLS, we model jumps using stable process which can exhibit skewness and heavier tails than

normal distributions. Unfortunately, the probability density of St+1, p (St+1|Θ) , is unknown. This

makes it difficult to explicitly write down the joint likelihood function of (Yt+1, vt+1, St+1) , because

p (Yt+1, vt+1, St+1|Θ) = p (Yt+1, vt+1|St+1,Θ) p (St+1|Θ) . Consequently, it is difficult to obtain the

joint posterior distribution for SVLS.

Buckle (1995) provides a representation of stable variable which makes it possible to estimate

parameters of stable distributions using MCMC. The basic observation of Buckle (1995) is that

although the density of a stable variable is generally unknown, the joint density of the stable variable

and a well-chosen auxiliary variable is explicitly known. This joint density in turn leads to known

joint posterior density of the stable variable and the auxiliary variable, which can be used in our

MCMC algorithm.

For the LS process we consider, we set α ∈ (1, 2], β = −1, γ = 0 and δ = σ∆
1
α . We denote

the index returns as Y = {Yt}Tt=0 , the volatility variables as V = {vt}Tt=0 , the jump times/sizes as

S = {St}Tt=1 , and the auxiliary variables as U = {Ut}Tt=1 . Based on Buckle’s (1995) result, we obtain

the joint posterior distribution of V, S, U and Θ as

p (Θ,V,S,U|Y) ∝ p(Y,V,S,U,Θ) = p(Y,V|S)p(S,U|Θ)p(Θ)

∝
T−1Y
t=0

1

σvvt∆
p
1− ρ2

exp

½
− 1

2(1− ρ2)

³¡ y
t+1

¢2 − 2ρ y
t+1

v
t+1 +

¡ v
t+1

¢2´¾

×( α

|α− 1|∆ 1
ασ
)T × exp

(
−

T−1X
t=0

| St+1

σ∆
1
∆ tα(Ut+1)

|
α

α−1

)
×

T−1Y
t=0

⎧⎨⎩| St+1

σ∆
1
α tα(Ut+1)

|
α

α−1
1

| St+1
σ∆

1
α
|

⎫⎬⎭
×

T−1Y
t=0

h
1St+1∈(−∞,0)∩Ut+1∈(− 1

2
,lα)
+ 1St+1∈(0,∞)∩Ut+1∈(lα, 12 )

i
× p(Θ)

where y
t+1 = (Yt+1 − Yt − μ∆− St+1) /

√
vt∆,

v
t+1 = (vt+1 − vt − κ(θ − vt)∆) /

¡
σv
√
vt∆

¢
, lα =

α−2
2α , and tα(Ut+1) = (

sin[παUt+1+
(2−α)π

2
]

cos[πUt+1]
)( cos[πUt+1]

cos[π(α−1)Ut+1+ (2−α)π
2

]
)(α−1)/α. We obtain joint posterior

samples of Θ,V, S, and U by simulating from the above joint posterior density. We then marginal-
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ize U out to obtain the samples for Θ,V, and S. That is, we simply throw away the observations of

U and retain the observations of Θ,V, and S.

In general, it is difficult to simulate directly from the above high-dimensional posterior distri-

butions. Instead, we derive the complete conditional distributions for each individual parameter

and latent variable and obtain posterior samples by simulating from these individual complete con-

ditionals iteratively following standard MCMC procedure. For example, for SVVG, we obtain the

posterior distribution p
³
Θi|Θ−i,J,G,V,Y

´
for i = 1, ..., k, where Θi is the i-th element of Θ and

Θ−i = (θ1, ..., θi−1, θi+1, ..., θk) , the posterior distribution for jump times p (Jt|Θ,G,V,Y) , jump

sizes p (Gt|Θ,J,V,Y) , and latent volatility variables p (vt|vt+1, vt−1,Θ,J,G,Y) , for all t. In esti-

mation, we draw posterior samples from the above complete conditional distributions and use the

means of the posterior samples as parameter estimates and the standard deviations of the posterior

samples as standard errors of the parameter estimates. The appendix provides the priors, the pos-

terior distributions, and the updating procedures for model parameters and latent variables for all

four models.

3. Bayesian Inferences of Lévy Jump Models: Simulation Evidence

In this section, through numerical simulations, we investigate two fundamental questions on

econometric analysis of Lévy processes. The first question is whether it is possible to jointly iden-

tify diffusion, stochastic volatility, and infinite-activity Lévy jumps using discretely sampled asset

prices. The second question is whether compound Poisson processes can adequately approximate the

behavior of infinite-activity Lévy jumps.

Our simulation studies in this section are closely related to Äıt-Sahalia (2004) and Äıt-Sahalia and

Jacod (2004). Äıt-Sahalia (2004) shows through theoretical analysis that maximum likelihood can

perfectly disentangle Brownian motion from infinite-activity Cauchy jumps using discretely sampled

data. Äıt-Sahalia (2004) shows that the intuition behind this result is that while there is an infinite
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number of small jumps in a Cauchy process, this “infinity” remains relatively small compared to the

number of Brownian movements, and while the jumps are infinitesimally small, they remain relatively

bigger than the increments of a Brownian motion during the same time interval. Äıt-Sahalia and

Jacod (2004) show that it is possible to distinguish not only the continuous part of a Lévy process

from its jump part, but also different types of jumps.

While Äıt-Sahlia (2004) focuses on estimating diffusion variance in the presence of Cauchy jumps,

we study the general problem of jointly identifying diffusion, stochastic volatility, and Lévy jumps

via numerical simulations. We also conduct simulation studies in which we fit AJD models to data

simulated from Lévy jump models. These simulation studies allow us to examine the advantages of

Lévy jumps over compound Poisson processes in the presence of stochastic volatility.

3.1 Joint Identification of Stochastic Volatility and Lévy Jumps

We first provide simulation evidence that the MCMC methods developed in the previous section

can accurately estimate stochastic volatility models with Lévy jumps. In our simulation studies, for

each of the following four models, SVMJ, SVCMJ, SVVG, and SVLS, we generate 100 samples of

twenty years of daily data. For comparison, we use similar procedures and parameters as that in EJP

(2003) to generate data from SVMJ and SVCMJ. Although the simulation of VG is straightforward,

it is quite difficult to simulate from LS because there are no standard random number generators

for stable distributions. We apply the method of Chambers, Mallows, and Stuck (1976) to simulate

stable random variables through a nonlinear transformation of two independent uniform random

variables. This method works for arbitrary characteristic exponent α (0 < α < 2) and skewness

parameter β (−1 ≤ β ≤ 1). When applying this method to the LS process, we set the skewness

parameter β = −1 and transform the simulated stable variables to our target stable variables, which

have a drift of zero and dispersion of σ∆
1
α .

For each of the four models, we obtain MCMC estimates of model parameters and latent variables
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using each of the 100 sample paths. In our estimation, we choose the initial values of model parameters

randomly within their respective permissible ranges. We set the initial values of all volatility variables

to 1 and the initial values of all jump variables of MJ and CMJ to zero, i.e., no jumps. We also choose

the initial values for VG and LS jumps and their associated latent variables randomly within their

respective permissible ranges.5 For each sample path, we conduct 50,000 iterations in our MCMC

procedure and use the means of the posterior samples after burn-in period (30,000 iterations) as

parameter estimates. Therefore, for each parameter of each model, we have 100 estimates from the

100 sample paths. The four panels of Table 1 report the true parameters, the average of the 100

estimates, and the RMSEs of the 100 estimates for the four models.

We obtain very similar results as that of EJP (2003) in our simulation studies of SVMJ and

SVCMJ models. Panels A and B of Table 1 show that our MCMC methods can accurately estimate

the parameters of both models. The mean estimates over the 100 samples of most parameters are

very close to the true parameters with small RMSEs. Similar to EJP (2003), we find that it is

generally more difficult to estimate the jump parameters than the diffusion parameters due to the

relative small jump intensity. Nonetheless, the jump parameters are still accurately estimated.

More important, Panels C and D of Table 1 show that our MCMC methods also can accurately

estimate the parameters of the two Lévy jump models. The mean estimates over the 100 samples

of most parameters are again very close to the true parameters with small RMSEs. This is true

for both the diffusion parameters and the jump parameters. Actually the RMSEs of Lévy jump

parameters are much smaller than that of MJ parameters. Given that the Lévy jumps occur more

frequently than compound Poisson jumps, we are able to identify the jump parameters more accu-

rately. Simulation studies show that our MCMC algorithm can reach the true values of α and σ of

5The initial values chosen in this way are generally very different from their corresponding true values, suggesting

that the excellent performance of our MCMC methods is not because we choose initial values that are too close to the

true values.
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SVLS very quickly even from initial values that are far from the true values. Once it reaches there,

the algorithm only makes small updates on the two parameters. As a result, we see relatively small

dispersions in the estimates of these two parameters. The RMSEs of some of the diffusion parameters

in SVVG and SVLS are slightly higher, but not substantially, than that of SVMJ and SVCMJ. This

suggests that the presence of infinite-activity jumps could make it more difficult to estimate diffusion

parameters. However, our MCMC methods can still separate the two with sufficient accuracy from

daily data. In results not reported here, we find that our MCMC algorithms can accurately estimate

the latent volatility and jump variables, even though their initial values are chosen to be far from

their corresponding true values.

The simulation results in this section show that our MCMC methods provide accurate joint

identification of diffusion, stochastic volatility, and infinite-activity jumps using only underlying

prices sampled at daily frequency. These simulation results strongly suggest that although the

main conclusions of Äıt-Sahalia (2004) are derived for Brownian motion with constant volatility

and Cauchy jumps, they should hold for a much broader class of models: Models with stochastic

volatility, an important feature of many financial time series, and models with other infinite-activity

Lévy jumps.

3.2 Can Compound Poisson Processes Approximate Lévy Jumps?

One common perception in the literature is that infinite-activity jumps should not be too much

different from compound Poisson processes with very high arrival rates. In this section, we examine

the important question whether AJD models can adequately approximate the behavior of infinite-

activity Lévy jumps via numerical simulations.

We conduct two sets of simulations. In the first set, we simulate data from models with Brownian

motion (constant drift and volatility), and Cauchy, VG, and LS jumps, respectively, and we fit both

the corresponding true model and the model with the same Brownian motion but Merton jump to
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each simulated dataset. In the second set, we simulate data from SVVG and SVLS and we fit each

dataset using the corresponding true model and SVMJ and SVCMJ models. For each model, we

generate 100 sample paths of 20-year daily data. After obtaining the estimates of model parameters

and latent variables for one sample path, the standardized residuals of a fitted model are calculated

as:

Yt+1 − Yt − μ∆− Jyt+1√
vt∆

= y
t+1 ∼ N (0, 1) .

Of course, for the first set of models, we replace vt by the estimated constant volatility of the

Brownian motion when calculating model residuals. Therefore, we obtain 100 sets of residuals from

the 100 samples for each model. If a model is correctly specified, its residuals should follow N(0, 1)

and we can use this fact to conduct specification analysis. If we fit AJD models to data simulated

from Lévy models, the residuals of the fitted models might appear too frequently around zero because

AJD models cannot capture the many small Lévy jumps.

Panels A and B of Figure 1 report the 95% confidence bands of kernel density estimators of

model residuals obtained from fitting Cauchy and MJ models to the 100 sample paths simulated

from Cauchy process, respectively. The 95% confidence bands are constructed based on the following

procedure. For each of the 100 sample paths, a set of residuals in returns y
t is computed based on

the estimated model parameters and latent variables. Kernel density estimator is computed for each

of the 100 sets of residuals. Then the interval (−4, 4) is equally divided into 800 grid points. At each

fixed grid point, we obtain a 95% confidence interval based on the 100 kernel density estimators at

that point. Repeating this step for all grid points, we obtain a 95% confidence band of kernel density

estimators of the residuals. We can see clearly from Panel A that the residuals of the Cauchy process

are very close to N (0, 1) . On the other hand, the residuals of the MJ model deviate from N (0, 1)

significantly. The residuals exhibit a much higher peak and thinner wings than N (0, 1) , suggesting

that there are too many small jumps remaining in the residuals that cannot be captured by the MJ
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model.

We repeat the above exercise for VG and LS and report the corresponding results in Figure 1 as

well. Panels C and D of Figure 1 report the 95% confidence bands of the kernel estimators of the

residuals of VG and MJ models estimated using data simulated from VG, respectively. It is clear that

the residuals of VG resemble N (0, 1) closely, while the residuals of MJ model exhibit a much higher

peak and thinner wings than N (0, 1) . We obtain slightly different results for LS in Panels E and F

on Figure 1: The residuals of MJ have not only a higher peak and thinner wings than N (0, 1), but

also are left skewed. This is consistent with the fact that the LS model under our parameterization

generates negatively skewed data.

In addition to graphical illustrations, we also formally test whether model residuals follow N (0, 1)

using the Kolmogorov-Smirnov test. For each of the 100 sets of residuals constructed above, the

Kolmogorov-Smirnov test compares the empirical cumulative distribution function (CDF) estimated

from data with the CDF of N (0, 1) and rejects the null hypothesis if the maximum distance between

the two CDFs is too big. Therefore, in total we have 100 test statistics and p-values for the 100 sets of

residuals. We report the average p-values and the percentage of rejections of the null hypothesis out

of the 100 residuals in Panel A of Table 2. The Kolmogorov-Smirnov test rejects the null hypothesis

of N (0, 1) for all 100 sets of residuals of the three estimated MJ models, and the average p-values

are all close to zero. In contrast, the Kolmogorov-Smirnov test fails to reject the null hypothesis of

N (0, 1) for residuals obtained by fitting corresponding true models to simulated data.

As most financial time series exhibit time varying volatility, we conduct simulation studies for

models with stochastic volatility and Lévy jumps. We generate data from SVVG and fit the simulated

data using the true model and two misspecified models, SVMJ and SVCMJ. The 95% confidence

bands of the residuals for the three fitted models are reported in Panels A, B, and C of Figure 2,

respectively. Similar as before, we find that the residuals of the true model follow closely N (0, 1) . On
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the other hand, the residuals of SVMJ and SVCMJ exhibit higher peaks, thinner wings, and heavier

left and right tails than N (0, 1) . This suggests that the data generated from VG are leptokurtic:

There are too many observations near the mean and at extreme tails. We repeat the same analysis

for SVLS by simulating data from SVLS and fitting the simulated data using the true model and

SVMJ and SVCMJ. Panels D, E, and F of Figure 2 report the residuals of the three fitted models,

respectively. Not surprisingly, the residuals of the true models follow N (0, 1) closely. Again the

residuals of SVMJ and SVCMJ have much higher peaks than N (0, 1) and are left skewed. This

again suggests that compared to SVVG, SVLS is more capable of generating negatively skewed data.

The Kolmogorov-Smirnov test in Panel B of Table 2 rejects the null hypothesis of N (0, 1) for all

100 sets of estimated SVMJ and SVCMJ residuals, and all p-values are close to zero. Again, the

Kolmogorov-Smirnov test fails to reject the null hypothesis of N (0, 1) for residuals obtained by fitting

corresponding true models to simulated data.

Our simulation results show that finite-activity jumps cannot adequately approximate the infinite-

activity jump behavior, even when finite-activity jump models are estimated using data simulated

from infinite-activity jump models. In particular, we find that in all our simulations there are too

many small movements in infinite-activity jumps that cannot be captured by AJD models. Our

simulation results suggest that the infinitely many small Lévy jumps have the potential to capture

asset price movements that are too big for Brownian motion to model and in the meantime are too

small for compound Poisson process to capture.

4. Bayesian Inferences of Lévy Jump Models: Empirical Results

Despite their theoretical advantages, it is not immediately clear that our Lévy jump models can

significantly outperform the sophisticated AJD models with stochastic volatility, leverage effect, and

compound Poisson jumps in returns and volatility in empirical applications. In this section, we

examine empirically the advantages of Lévy jump models over AJD models in modeling the return
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dynamics of the S&P 500 index.

Table 3 provides summary statistics of the continuously compounded returns of the S&P 500

index (the log difference of index levels) between January 2, 1980, and December 29, 2000. The

index is sampled at daily frequency, and in total we have about 5,000 observations. The mean

annual rate of return of the S&P 500 is 11. 995%, and the volatility is 16. 565%. The summary

statistics of the S&P 500 are very similar to that of EJP (2003) who consider daily S&P 500 returns

from January 2, 1980, to December 31, 1999. Figure 3 plots the level and log difference of the S&P

500 index. The sample period covers some major events in the history of the US stock market, such

as the stock market crash of 1987 and the long boom in the late 1990s. The S&P 500 index declined

dramatically in 1987 (-25% on October 19). The volatility of the index was low in the mid-1990s

and increased toward the end of the sample as the economic environment deteriorated.

We provide MCMC estimates of SVMJ, SVCMJ, SVVG, and SVLS models using daily S&P 500

returns. In our MCMC simulations, we discard the first 30,000 runs as “burn-in” period and use the

last 20,000 iterations to estimate model parameters. Specifically, we take the means and the standard

deviations of the posterior samples as parameter estimates and standard errors, respectively.

The parameter estimates of SVMJ (SVCMJ) in the second (third) column of Table 3 are quite

similar to that of EJP (2003). The long-run mean return in SVMJ (0.0405*252= 10. 206%) is close

to the summary statistics of mean return (11. 995%). The average annualized volatility of SVMJ

(
√
252 · θ =

√
252 ∗ 0.9012 = 15.07%) also is close to the summary statistics of volatility (16. 565%).

The estimates indicate strong negative correlations between instantaneous volatility and returns

(ρ = −0.5685 for SVMJ and ρ = −0.4656 for SVCMJ), which are close to those obtained from

option prices (Bakshi et al. 1997, Bates 2000, and Pan 2002). After allowing jumps in volatility, the

estimated volatility process has much higher κ and lower θ. Jumps in volatility helps capturing large

movements in volatility, and as a result the continuous part of the volatility process does not have
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to be as high as before. In both SVMJ and SVCMJ, jumps in both returns and volatility happen

infrequently; our estimates of λy suggest on average 0.0064*252= 1. 618 jumps per year. Jump sizes

in returns tend to be negative and quite large compared to day-to-day movements in prices.

The model residuals y
t should follow an N (0, 1) distribution if the model is correctly specified.

For each of the last 100 of the 50,000 iterations in our MCMC algorithm, we calculate one set of

residuals using the model parameters and volatility/jump variables in that iteration. Therefore, in

total we have 100 sets of residuals, based on which we construct the confidence band of the kernel

density estimator.

In Panel A of Figure 4, we compare the kernel density estimator of model residuals of SVMJ with

N (0, 1).6 Similar to our simulation evidence, we find that SVMJ performs quite poorly in capturing

the small movements in index returns: The density of the residuals have a higher peak around zero

and thinner wings than N (0, 1). Panel B of Figure 4 shows that SVCMJ is also severely misspecified.

The model residuals exhibit a higher peak and thinner wings than N (0, 1), suggesting that there are

still too many small movements in stock returns that cannot be captured by the model. To better

understand the tail behavior of the two models, we provide QQ plots for the residuals of the two

models in Panels C and D of Figure 4, respectively. It is clear that neither model can adequately

capture the left tail of the data, although SVCMJ has a slightly better performance. It seems that

the return data have heavier left tail than predicted by the two models.

In addition to graphical illustrations, we also formally test whether each of the 100 sets of residuals

constructed above follow N (0, 1) using the Kolmogorov-Smirnov test. We report the average p-value

and the percentage of rejections of the null hypothesis out of the 100 residuals for SVMJ and SVCMJ

in Table 5. For SVMJ, the Kolmogorov-Smirnov test fails to reject the null hypothesis of N (0, 1) for

6It is interesting to see that the 95% confidence bands of model residuals estimated using actual data are much

narrower than those using simulated data. This is because our simulations consider 100 different sample paths, which

have much bigger variations than the actual data with only one sample path.
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only one out of the 100 sets of residuals. The average p-value is as low as 0.014. The Kolmogorov-

Smirnov test in Table 5 rejects the null hypothesis of N (0, 1) for all 100 sets of SVCMJ residuals and

the average p-value is as low as 0.006. Collectively, the evidence in Figure 4 and Table 5 suggest that

there are too many small jumps in stock returns that cannot be captured by SVMJ and SVCMJ.

Next we consider SVVG and SVLS, models with infinite-activity Lévy jumps. Parameter es-

timates of SVVG and SVLS are reported in columns four and five of Table 4, respectively. The

estimates of the stochastic volatility parameters are very similar to that of SVMJ and SVCMJ. Pan-

els A and B of Figure 5 report the kernel density estimators of the residuals of SVVG and SVLS,

respectively. It is clear that the residuals of both SVVG and SVLS are very close to N (0, 1) . In

contrast to that of SVMJ and SVCMJ, the QQ plots of the residuals of SVVG and SVLS in Panels

C and D of Figure 5 show that both models capture the tails of return distribution quite well. Con-

sistent with these graphical illustrations, the Kolmogorov-Smirnov test in Table 5 rejects the null

hypothesis of N (0, 1) for only 15 out of the 100 sets of SVVG residuals and the average p-value is

about 0.23. Similarly, the Kolmogorov-Smirnov test rejects the null hypothesis of N (0, 1) for 36 out

of the 100 sets of SVLS residuals and the average p-value is about 0.10. The above results, however,

do not suggest that infinite-variation Lévy jumps in general do not perform as well as finite-variation

Lévy jumps. This could simply be due to the fact that we restrict β to be -1 in the LS model.

Finally, we examine the filtered latent volatility and jump variables for all four models. In

Figure 6, we see high volatilities around the stock market crash of 1987 and toward the end of the

sample period in all four models. The dramatic increases in filtered volatilities in October 1987

suggest that jumps in volatility might still be needed to completely capture the volatility dynamics.

Figure 7 presents filtered jump variables for all four models. We see significant downward jumps

in returns around the stock market crash of 1987 in all four models. There are also a few large

jumps in stochastic volatility which, by model design, coincide with jumps in returns in SVCMJ.
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The filtered jump sizes and times of the four models in Figure 7 also clearly illustrate the differences

between Lévy and compound Poisson jump models. While SVMJ and SVCMJ exhibit about 20 some

relatively large jumps in the twenty-year sample period, there are many more jumps in SVVG and

SVLS, which include both the large jumps identified in SVMJ and SVCMJ and many small jumps.

Although jumps in SVVG and SVLS are very similar to each other, there are still some differences

between the jumps in these two models.

The empirical analysis of the four models in this section clearly demonstrates the empirical

relevance of the infinite-activity Lévy jumps in modeling the S&P 500 index returns. Even some of

the most sophisticated AJD models, such as SVMJ and SVCMJ, still cannot completely capture the

leptokurtosis in index returns. In particular, there are too many small movements in index returns

that cannot be captured by the AJD models. The patterns of misspecifications of AJD models based

on actual data are similar to that in our simulation studies. These results strongly suggest that the

infinite-activity Lévy jumps capture some intrinsic features of the S&P 500 returns and naturally

fill a gap in AJD models. These results, however, do not suggest that we should abandon existing

AJD models. Instead they show that we can enrich existing AJD models by including Lévy jumps

to capture certain features of the data that are difficult for AJD models to capture.

5. Conclusion

Infinite-activity Lévy jumps have become increasingly popular in the continuous-time finance

literature as an alternative to Brownian motion and compound Poisson process for modeling asset

price dynamics. Our paper contributes to the fast-growing literature on Lévy processes by developing

a Bayesian MCMC-based approach for inferences of continuous-time models with stochastic volatility

and Lévy jumps using discretely sampled data. Through simulation studies and empirical analyses,

we show that (i) our MCMC methods provide accurate joint identification of diffusion, stochastic

volatility, and Lévy jumps, (ii) affine jump-diffusion (AJD) models fail to adequately approximate the
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behavior of infinite-activity Lévy jumps, and (iii) infinite-activity Lévy jumps are crucial for modeling

the S&P 500 index returns. Even though we consider only VG and LS jumps, the combination of

Äıt-Sahalia’s (2004) theoretical results and our simulation/empirical findings strongly suggest that

the advantages of VG and LS over compound Poisson jumps are likely to hold for other infinite-

activity Lévy jumps as well. The MCMC techniques developed in this paper are very general and

can be applied to a wide range of interesting problems in finance. To study the impact of Lévy

jumps on modeling interest rates and to estimate stock return dynamics using both the underlying

and option prices are two topics that will be addressed in future research.
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APPENDIX. Detailed Descriptions of MCMC Methods

A.1 Priors of Model Parameters

In this section, we provide the priors for parameters of all four models. To simplify our numer-

ical simulations, we choose standard conjugate priors whenever possible to obtain known posterior

distributions.

• Priors for parameters common to four models. We consider the following prior distribu-

tions: μ ∼ N(0, 1), κ ∼ N(0, 1) (truncated at zero), θ ∼ N(0, 1) (truncated at zero). Following

Jacquier, Polson, and Rossi (1994), we reparameterize (ρ, σv) as (φv, wv) , where φv = σvρ and

wv = σ2v(1 − ρ2), and choose the priors of the new parameters as φv|wv ∼ N
³
0, 12wv

´
and

wv ∼ IG (2, 200) .

• Priors for parameters common to SVMJ and SVCMJ. The priors for σy and λy are ex-

actly the same as that in EJP (2003): μy ∼ N(0, 100), σ2y ∼ IG(5, 1/20), and λy ∼ Beta(2, 40),

where IG and Beta represent the inverse gamma and beta distributions, respectively.

• Priors for parameters unique to SVCMJ. For μv and ρJ , we choose standard conjugate

priors, which are IG(10, 1/10) and N(0, 4), respectively.

• Priors for parameters unique to SVVG. We also choose standard conjugate priors for the

three parameters unique to SVVG: γ ∼ N(0, 1), σ2 ∼ IG(2.5, 5), and ν ∼ IG(10, 1/10).

• Priors for parameters unique to SVLS. For α and σ, we choose the following joint priors

to obtain known posterior distributions of σ: α ∼ Uniform(1, 2) and σ
α

α−1 |α ∼ IG(2.5, 10).

The priors of most parameters are proper priors, pretty uninformative, and have been used in

previous literature. In general, as the sample size becomes large, the information contained in the

likelihood function dominates that in the priors. As a result, we find the results computed later seem

to be relatively invariant to the choice of priors.
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A.2 MCMC Methods for SVMJ

In this section, we provide detailed expressions of the posterior distributions of model parameters

and latent variables for SVMJ as well as the updating algorithm used there. We first focus on the

posteriors of eight parameters of SVMJ, Θ = {μ, κ, θ, σv, ρ, λy, μy, σy}.

• Posterior of μ. The posterior of μ follows a normal distribution μ ∼ N
³
S
W , 1W

´
, where

W = ∆
(1−ρ2)

PT−1
t=0

1
vt
+ 1

M2 ,S = 1
(1−ρ2)

PT−1
t=0

1
vt
(Ct+1−ρDt+1

σv
)+ m

M2 , Ct+1 = Yt+1−Yt−Ny
t+1ξ

y
t+1,

Dt+1 = vt+1 + (κ∆− 1) vt − κθ∆, and m and M are the hyperparameters for the prior of μ

and equal to 0 and 1, respectively.

• Posterior for μy. The posterior of μy follows a normal distribution μy ∼ N
³
S
W , 1W

´
, where

W = T
σ2y
+ 1

M2 ,S =
PT−1

t=0
ξyt+1

σ2y
+ m

M2 , and m and M are the hyperparameters for the prior of μy

and equal to 0 and 10, respectively.

• Posterior for σy. The posterior of σy follows an inverse gamma distribution

σ2y ∼ IG

Ã
T

2
+m,

1
1
2

PT−1
t=0 (ξ

y
t+1 − μy)2 +

1
M

!
,

where m and M are the hyperparameters for the prior of σy and equal to 5 and 1/20, respec-

tively.

• Posterior for λy. The posterior of λy follows a beta distribution

λy ∼ Beta

Ã
T−1X
t=0

Ny
t+1 +m,T −

T−1X
t=0

Ny
t+1 +M

!
,

where m and M are the hyperparameters for the prior of λ and equal to 2 and 40, respectively.

• Posterior for θ. The posterior of θ follows a truncated normal distribution θ ∼ N( SW , 1W ) 1θ>0,

where W = κ2∆
σ2v(1−ρ2)

PT−1
t=0

1
vt
+ 1

M2 ,S = κ
(1−ρ2)σv

PT−1
t=0 (

Dt+1/σv−ρCt+1
vt

) + m
M2 , Ct+1 = Yt+1 −

Yt − μ∆ − Ny
t+1ξ

y
t+1, Dt+1 = vt+1 + (κ∆ − 1)vt, and m and M are the hyperparameters for

the prior of θ and equal to 0 and 1 respectively. We follow the steps below to sample from the
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truncated normal distribution. For the (g+1)-th iteration, (1) Generate u from uniform(0, 1);

(2) Get θ(g+1) = F−1((1−F (0))u+F (0)) where F (x) is cumulative distribution function (cdf)

of N( SW , 1W ) and F−1(x) is inverse cdf of N( SW , 1W ).

• Posterior for κ. The posterior of κ follows a truncated normal distribution κ ∼ N( SW , 1W ) 1κ>0,

where W = ∆
(1−ρ2)σ2v

PT−1
t=0

(θ−vt)2
vt

+ 1
M2 , S = 1

σv(1−ρ2)
PT−1

t=0

(θ−vt)(
Dt+1
σv

−ρCt+1)
vt

+ m
M2 , Ct+1 =

Yt+1 − Yt − μ∆−Ny
t+1ξ

y
t+1, Dt+1 = vt+1 − vt, and m and M are the hyperparameters for the

prior of κ and are equal to 0 and 1, respectively. Since the posterior is a truncated normal

distribution, we follow the same procedure as for θ in generating posterior samples for κ.

• Posteriors for σv and ρ. Following Jacquier, Polson, and Rossi (1994), we transform (ρ, σv)

to (φv, wv) where φv = σvρ and wv = σ2v(1 − ρ2). This transformation is motivated by the

observation that the volatility innovation can be written as σvρ t + σv
p
1− ρ2ηt where t and

ηt are two independent N(0, 1). The priors φv|wv ∼ N(0, 12wv) and wv ∼ IG(2, 200) induce

a diffuse distribution on ρ, ruling out very large correlations. Given this re-parameterization,

the joint posteriors of (φv, wv) are the conjugate of the priors:

wv ∼ IG(
T

2
+m,

1
1
2

PT−1
t=0 D2

t+1 +
1
M −

S2
2W
) and φv|wv ∼ N(

S
W ,

wv

W ),

where W =
PT−1

t=0 C2t+1+2, S =
PT−1

t=0 Ct+1Dt+1, Ct+1 =
¡
Yt+1 − Yt − μ∆−Ny

t+1ξ
y
t+1

¢
/
√
vt∆,

Dt+1 = (vt+1 − vt − κ (θ − vt)∆) /
√
vt∆, and m andM are the hyperparameters of wv and are

equal to 2 and 200, respectively. After drawing (φv, wv) from their joint posteriors, we obtain

draws of (ρ, σv) as σ
2
v = wv + φ2v, ρ =

φv
σv
. The draws from joint posteriors of (φv, wv) simplify

our analysis, because the individual posteriors of ρ and σv are not known distributions and

Metropolis type of methods have to be used.

Next we consider the posteriors of latent variables of jump size ξyt , jump time N
y
t , and stochastic

volatility vt.

32



• Posterior for ξyt+1. The posterior of ξ
y
t+1 follows a normal distribution ξ

y
t+1 ∼ N( SW , 1W ),where

W =
Ny2
t+1

(1−ρ2)vt∆ + 1
σ2y
,S =

Ny
t+1

(1−ρ2)vt∆(Ct+1 − ρDt+1/σv) +
μy
σ2y
, Ct+1 = Yt+1 − Yt − μ∆, and

Dt+1 = vt+1 − vt − κ(θ − vt)∆.

• Posterior for Ny
t+1. The posterior of N

y
t+1 follows N

y
t+1 ∼ Bernoulli( α1

α1+α2
), where α1 =

exp
n
− 1
2(1−ρ2) [A

2
1 − 2ρA1B]

o
λy, α2 = exp

n
− 1
2(1−ρ2) [A

2
2 − 2ρA2B]

o
(1− λy),

A1 =
¡
Yt+1 − Yt − μ∆− ξyt+1

¢
/
√
vt∆, A2 = (Yt+1 − Yt − μ∆) /

√
vt∆, and

B = (vt+1 − vt − κ(θ − vt)∆) /(σv
√
vt∆).

• Posterior for vt+1. For 0 < t+ 1 < T , the posterior of vt+1 equals

p(vt+1|·) ∝ exp

⎧⎨⎩−
h
−2ρ y

t+1
v
t+1 +

¡
v
t+1

¢2i
2(1− ρ2)

⎫⎬⎭× 1

vt+1
×exp

(
−
£
( y
t+2)

2 − 2ρ y
t+2

v
t+2 + (

v
t+2)

2
¤

2(1− ρ2)

)
,

where y
t+1 =

¡
Yt+1 − Yt − μ∆−Ny

t+1ξ
y
t+1

¢
/
√
vt∆, and

v
t+1 = (vt+1 − vt − κ(θ − vt)∆) /(σv

√
vt∆).

For t+1 = T , the above posterior only has the first exponential part because vT depends only

on vT−1. Similarly, the posterior of p(v0|·) depends on 1
v0
and the second exponential part.

The posterior distribution of vt is very complicated and difficult to simulate from. After con-

sidering a variety of updating methods, we choose the Adaptive Rejection Metropolitan Sampling

(ARMS) method of Gilks, Best, and Tan (1995) to update volatility variables one at a time in our

estimation of all four models. ARMS is a generalization of the Adaptive Rejection Sampling (ARS)

method of Gilks (1992), which is very efficient for sampling from posterior densities that are log-

concave. ARS works by constructing an envelope function of the log of the target density, which is

then used in rejection sampling (see, for example, Ripley, 1987). Whenever a point is rejected by

ARS, the envelope is updated to correspond more closely to the true log density, thereby reducing the

chance of rejecting subsequent points. To accommodate densities that are not log concave, ARMS

performs a Metropolis step on each point accepted at an ARS rejection step. In the Metropolis

step, the new point is weighed against the previous point sampled. If the new point is rejected, the
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previous point is retained as the new point. The procedure returns samples from the exact target

density, regardless of the degree of complexity of the log density (See Robert and Casella (2004)

for more detailed discussions of the method). Our simulation studies have shown that ARMS has

excellent performance in updating volatility variables. We also update ν and Gt using ARMS and

obtain excellent results.

Other methods we consider for updating volatility variables include Random Walk Metropolis,

Accept-Reject method of Tierney (1994), and Kalman filter block updating of Carter and John (1994)

and Kim, Shephard, and Chib (1998). We find that Random Walk Metropolis is very sensitive to

initial values of volatility and the variance of the independent error term used to generate the

candidate draws. We also find that it is difficult to obtain good blanket proposal densities for the

posterior densities of volatility variables and as a result the Accept-Reject method tend to converge

very slowly. It is also quite difficult to apply the Kalman filter block updating method to the square-

root volatility process which is neither linear nor Gaussian and is negatively correlated with returns.

A.3 MCMC Methods for SVCMJ

The common parameters and latent variables between SVMJ and SVCMJ have similar posterior

distributions. So in this section, we focus on the posterior distributions of the additional parameters

and latent variables that are unique to SVCMJ.

• Posterior for μv. The posterior of μv follows an inverse gamma distribution

μv ∼ IG

Ã
T +m,

1PT−1
t=0 ξvt+1 +

1
M

!
,

where m and M are the hyperparameters of the prior of μv and equal to 10 and 1/10, respec-

tively.

• Posterior for ρJ . The posterior for ρJ follows a normal distribution ρJ ∼ N( SW , 1W ),where

W =

PT−1
t=0

(ξvt+1)
2

σ2y
+ 1

M2 , S =
PT−1

t=0
ξvt+1Ct+1
σ2y

+ m
M2 , Ct+1 = ξyt+1 − μy, and m and M are the

hyperparameters of the prior of ρJ and equal to 0 and 2, respectively.
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• Posteriors for ξyt+1 and ξvt+1. Since ξy and ξv are correlated, it is more efficient to draw

(ξyt+1, ξ
v
t+1) from their joint posterior distribution, ξvt+1 ∼ N( S2W2

, 1
W2
) 1ξvt+1>0, ξ

y
t+1|ξvt+1 ∼

N( S1W1
, 1
W1
),where W2 =

N2
t+1

(1−ρ2)σ2vvt∆
+

ρ2J
σ2y
− B2

W1
, S2 = Nt+1

(1−ρ2)σvvt∆(−ρCt+1 +
Dt+1

σv
) − μyρJ

σ2y
−

1
μv
+ AB

W1
, W1 =

N2
t+1

(1−ρ2)vt∆ + 1
σ2y
, S1 = A + Bξvt+1, A = Nt+1

(1−ρ2)vt∆(Ct+1 − ρDt+1

σv
) +

μy
σ2y
, B =

ρN2
t+1

(1−ρ2)σvvt∆ +
ρJ
σ2y
, and Ct+1 = Yt+1 − Yt − μ∆,Dt+1 = vt+1 − vt − κ (θ − vt)∆. The posterior of

ξvt is a truncated normal distribution, because ξ
v
t is constrained to be positive to ensure that

volatility process does not turn negative. We follow the same algorithm discussed before to

simulate jumps in volatility from its truncated normal posterior.

A.4 MCMC Methods for SVVG

The common parameters and latent variables between SVMJ and SVVG have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVVG.

• Posterior for γ. The posterior of γ is γ ∼ N( SW , 1W ), where W = 1
σ2
PT−1

t=0 Gt+1 +
1
M2 ,

S = 1
σ2
PT−1

t=0 Jt+1+
m
M2 , and m and M are the hyperparameters of the prior of γ and equal to

0 and 1, respectively.

• Posterior for σ. The posterior of σ is σ2 ∼ IG(T2 +m, 1
1
2

PT−1
t=0

(Jt+1−θGt+1)2
Gt+1

+ 1
M

), where m and

M are the hyperparameters of the prior of σ and equal to 2.5 and 5, respectively.

• Posterior for ν. The posterior of ν is

p(ν|·) ∝

⎛⎝ 1

ν
∆
ν Γ(∆ν )

⎞⎠T Ã
T−1Y
t=0

Gt

!∆
ν

exp

(
−1
ν
(
T−1X
t=0

Gt +
1

M
)

)
(
1

ν
)m+1,

wherem andM are the hyperparameters of the prior of ν and equal to 10 and 1/10, respectively.

This posterior distribution is quite complicated, and our simulation studies show that ARMS

has a very good performance in drawing from this distribution.
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• Posterior for Jt+1. The posterior of Jt+1 follows a normal distribution Jt+1 ∼ N( SW , 1W ),

where W = 1
(1−ρ2)vt∆ +

1
σ2Gt+1

, S = 1
(1−ρ2)vt∆(Ct+1 − ρDt+1

σv
) + γ

σ2
, Ct+1 = Yt+1 − Yt − μ∆, and

Dt+1 = vt+1 − vt − κ(θ − vt)∆.

• Posterior for Gt+1. The posterior of Gt+1 is

p(Gt+1|·) ∝ G
∆
ν
−3
2

t+1 exp

(
− J2t
2σ2

1

Gt+1

)
exp

(
−
Ã

γ2

2σ2
+
1

ν

!
Gt+1

)
.

Again ARMS has a very good performance in updating this posterior distribution. In our

ARMS algorithm, we set the left bound to zero, because Gt+1 follows a Gamma process.

A.5 MCMC Methods for SVLS

The common parameters and latent variables between SVMJ and SVLS have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVLS.

• Posterior for σ. We choose the prior of σ conditioning on α is σ
α

α−1 ∼ IG(m,M), then the

posterior of σ is

p(σ|·) ∝
"µ
1

σ

¶ α
α−1

#(T+m+1)
exp

(
−
µ
1

σ

¶ α
α−1

Ã
T−1X
t=0

| St+1

∆
1
α tα(Ut+1)

|
α

α−1 +
1

M

!)
,

or alternative σ
α

α−1 ∼ IG(T+m, 1PT−1
t=0

| St+1

∆
1
α tα(Ut+1)

|
α

α−1+ 1
M

), wherem andM are the hyperparameters

of the prior of σ and equal to 2.5 and 10, respectively. In each iteration, a sample τ is generated

from the above inverse gamma distribution, then the current draw of σ is τ
α−1
α which depends on

the most updated sample of α.

• Posterior for α. The posterior of α is

p(α|·) ∝ ( α
α−1)

T exp

½
−PT−1

t=0 |
St+1

σ∆
1
α tα(Ut+1)

|
α

α−1

¾
×QT−1

t=0 |
St+1

σ∆
1
α tα(Ut+1)

|
α

α−1

×
h
( 1σ )

α
α−1

im+1
exp{−( 1σ )

α
α−1 1

M } × 1(α)α∈[1.01,2],
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where m andM are the hyperparameters of the prior of σ and equal to 2.5 and 10, respectively.

As pointed out by Buckle (1995), we tend to have computer overflow problems when α is very

close to 1 because of the term ( α
α−1)

T in all the conditional posterior densities. As a result,

we choose a uniform prior of α over [1.01, 2] in our implementation of the MCMC methods.

It is notoriously difficult to estimate the shape parameter of a stable distribution since the

complete conditional distribution for α does not have a standard form. Motivated by the idea

in Qiou and Ravishanker (2004), we use the Metropolis-Hastings Algorithm with a linearly

transformed Beta distribution as the proposal density. This is mainly because α is bounded

from both above and below and its density appears to be unimodal. We choose the parameters

of the proposal beta density, a and b, such that the previous draw α(g) is the mode of this

density and a+ b = 5log(T ), a constant suggested by Buckle (1995). Define

g(α|a, b) = Γ(a+ b)

Γ(a)Γ(b)
(
α− 1.01
0.99

)α−1(
2− α

0.99
)b−1.

Then, the algorithm works in the following way:

1. Calculate ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1 = (

α(g)−1.01
0.99 )(5log(T )− 2) + 1

b1 = 5log(T )− a1

and then draw τ from Beta(a1, b1) and set α
(g+1) = 0.99τ + 1.01;

2. Calculate ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a2 = (

α(g+1)−1.01
0.99 )(5log(T )− 2) + 1

b2 = 5log(T )− a2

;

3. Draw u from Uniform(0, 1);

4. Accept α(g+1) if u > min(p(α
(g+1))

p(α(g))
× g(α(g)|a2,b2)

g(α(g+1)|a1,b1)
, 1), otherwise keep the previous draw.

• Posterior for St+1. The posterior of St+1 is

p(St+1|·) ∝ exp
½
− St+1
2(1− ρ2)vt∆

[St+1 − 2(Ct+1 −
ρ

σv
Dt+1)]

¾
×exp

(
−| St+1

σ∆
1
α tα(Ut+1)

|
α

α−1

)
|St+1|

1
α−1 ,
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where Ct+1 = Yt+1 − Yt − μ∆ and Dt+1 = vt+1 − vt − κ(θ − vt)∆. Simple algebra shows this

posterior is log-concave. So it is very efficient to use the ARS algorithm of Gilks (1992) to

sample from this posterior distribution.

• Posterior for Ut+1. The posterior of Ut+1 is

p(Ut+1|·) ∝ exp
(
−| St+1

σ∆
1
α tα(Ut+1)

|
α

α−1 + 1

)
| St+1

σ∆
1
α tα(Ut+1)

|
α

α−1

| {z }
g(Ut+1)

×[1St+1∈(−∞,0)∩Ut+1∈(− 1
2
,lα)
+ 1St+1∈(0,∞)∩Ut+1∈(lα, 12 )

].

Due to the monotonicity of tα(Ut+1), we know that p(Ut+1|·) has a global maximum which

equals 1 at tα(Ut+1) =
St+1

σ∆
1
α
. The knowledge of this maximum makes the Rejection algorithm

of Devroye (1986) or Ripley (1987) a suitable method to sample from p(Ut+1|·). This algorithm

works in the following way:

1. Draw

U
(g+1)
t+1 ←−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Uniform(−12 , lα) if St+1 < 0

Uniform(lα,
1
2) if St+1 > 0

;

2. Draw u from Uniform(0, 1);

3. Accept Ut+1 if u < g(U
(g+1)
t+1 ), otherwise return to 1.
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Table 1. Simulation Results on the Accuracy of MCMC Estimators of Model Parameters 
 
This table reports simulation results on the accuracy of MCMC estimators of parameters of SVMJ, 
SVCMJ, SVVG, and SVLS models. We simulate 100 sample paths of data with length of 20 years of 
daily data from each of the four models. Then we estimate parameters of each model for each sample 
path. In each panel below, we report the true model parameters used in simulation, the mean of the 
estimated parameters from the 100 sample paths, and the dispersion of such estimates measured by 
RMSE. We use 50,000 iterations in our MCMC estimation. 
  
Panel A. SVMJ Model 
 

 μ κ θ σv ρ μy σy λy 
True 0.05 0.015 0.8 0.1 -0.4 -3.0 3.5 0.015 
Mean 0.0509 0.0155 0.8088 0.1000 -0.3959 -3.0328 3.2446 0.0157 
RMSE 0.0103 0.0024 0.0822 0.0021 0.0228 0.6964 0.4330 0.0029 

 
Panel B. SVCMJ Model 
 

 μ κ θ σv ρ μy σy λ μv ρJ 

True 0.05 0.015 0.8 0.1 -0.4 -3.0 3.5 0.015 1.0 -0.4 
Mean 0.0497 0.0152 0.7929 0.0983 -0.4094 -3.0657 3.2003 0.0162 0.9966 -0.3734 
RMSE 0.0141 0.0018 0.1045 0.0064 0.0583 0.8840 0.4413 0.0031 0.1378 0.5086 
 
Panel C. SVVG Model 
 

 μ κ θ σv ρ γ σ ν 
True 0.05 0.015 0.8 0.1 -0.4 -0.01 0.4 3.0 
Mean 0.0487 0.0159 0.8073 0.0981 -0.3796 -0.0115 0.3808 3.0802 
RMSE 0.0212 0.0033 0.0801 0.008 0.0713 0.0229 0.0341 0.1176 

 
Panel D. SVLS Model 
 

 μ κ θ σv ρ Α σ 
True 0.05 0.015 0.8 0.1 -0.4 1.8 0.3 
Mean 0.0491 0.0154 0.8153 0.099 -0.3975 1.807 0.2994 
RMSE 0.0114 0.0029 0.0861 0.006 0.0506 0.0073 0.0019 

 



Table 2. Kolmogorov-Smirnov Goodness-of-Fit Test for Simulation Analysis 
 

Panel A. Simulation Results for Pure Jump Models 
 
We simulate 100 sample paths of 20 years of daily data from Cauchy, VG, and LS models and fit each 
sample path using the corresponding true model and the Merton Jump (MJ) model. For each sample path, 
we obtain one set of model residuals y

tε based on the estimated model parameters and latent variables. 
Then we test whether each of the 100 sets of residuals follow N(0,1) using the Kolmogorov-Smirnov test 
at the 5% critical value. We report the percentage of the 100 sets of residuals for which the null 
hypothesis of N(0,1) is rejected. We also report the average p-values of the 100 sets of residuals.  
 

 Percentage of rejection Mean p-values 

Cauchy fitted by Cauchy 
Cauchy fitted by MJ 

7% 
100% 

0.2961 
~0.0 

VG fitted by VG 
VG fitted by MJ 

20% 
100% 

0.1616 
~0.0 

LS fitted by LS 
LS fitted by MJ 

8% 
100% 

0.4146 
~0.0 

 
 

Panel B. Simulation Results for Stochastic Volatility and Jump Models 
 
We simulate 100 sample paths of 20 years of daily data from SVVG and SVLS models and fitted each 
sample path using the corresponding true model and SVMJ and SVCMJ. For each sample path, we obtain 
one set of model residuals y

tε based on the estimated model parameters and latent variables. Then we test 
whether each of the 100 sets of residuals follow N(0,1) using the Kolmogorov-Smirnov test at the 5% 
critical value. We report the percentage of the 100 sets of residuals for which the null hypothesis of 
N(0,1) is rejected. We also report the average p-values of the 100 sets of residuals. 
  

 Percentage of rejection Mean p-values 

SVVG fitted by SVVG 
SVVG fitted by SVMJ 

SVVG fitted by SVCMJ 

24% 
100% 
100% 

0.346 
~0.0 
~0.0 

SVLS fitted by SVLS 
SVLS fitted by SVMJ 

SVLS fitted by SVCMJ 

17% 
100% 
100% 

0.2528 
~0.0 
~0.0 

 



 
Table 3. Summary of Continuously Compounded Returns of S&P 500 Index  

 
This table provides summary statistics of continuously compounded returns of S&P 500 index from 
January 2, 1980, to December 29, 2000. The continuously compounded returns are calculated as the log 
difference of S&P 500 index levels.    
 

 Mean Volatility Skewness Kurtosis Min Max 
S&P 500 0.0476 1.0435 -2.3584 55.6080 -22.8997 8.7089 

 
Table 4. MCMC Estimates of Model Parameters 

 
This table provides MCMC estimates of model parameters using S&P 500 index returns from 01/02/1980 
to 12/29/2000. Parameter estimates and standard errors (in parentheses) are the mean and standard 
deviation of posterior distributions of model parameters, respectively.  In MCMC simulation, we discard 
the first 30,000 simulations as burn-in period and use the next 20,000 simulations in estimation. 

 
 SVMJ SVCMJ SVVG SVLS 
μ 0.0405 

(0.0099) 
0.0447 

(0.0107) 
0.0753 

(0.0102) 
0.0731 

(0.0085) 
κ 0.0150 

(0.0022) 
0.0233 

(0.0044) 
0.0143 

(0.0023) 
0.0162 

(0.0022) 
θ 0.9012 

(0.0924) 
0.7351 

(0.0604) 
0.8427 

(0.1004) 
0.8465 

(0.0927) 
σv 0.1053 

(0.0011) 
0.1085 

(0.0088) 
0.1101 

(0.0030) 
0.1170 

(0.0011) 
ρ -0.5685 

(0.0136) 
-0.4656 
(0.0565) 

-0.5839 
(0.0230) 

-0.6001 
(0.0080) 

μy -1.3881 
(1.0720) 

-1.5377 
(1.2142) 

-- -- 

σy 5.9309 
(0.770) 

6.1054 
(0.7924) 

-- -- 

λy 0.0064 
(0.0011) 

0.0064 
(0.0011) 

-- -- 

μv -- 0.5188 
(0.1548) 

-- -- 

ρJ -- 0.0209 
(0.9924) 

-- -- 

γ -- - -0.0450 
(0.0072) 

-- 

σ -- -- 0.3863 
(0.0202) 

0.2787 
(0.0064) 

ν -- -- 6.4858 
(0.0965) 

-- 

α -- -- -- 1.7629 
(0.0004) 



 
Table 5. Kolmogorov-Smirnov Goodness-of-Fit Test for Empirical Analysis 

 
In our estimates of SVMJ, SVCMJ, SVVG, and SVLS models using the S&P 500 index returns, 
we conduct 50,000 iterations in our MCMC algorithms. For each of the final 100 iterations, we 
obtain one set of model residuals y

tε based on the estimated model parameters and latent 
variables of that iteration. Then we test whether each of the 100 sets of residuals follow N(0,1) 
using the Kolmogorov-Smirnov test at the 5% critical value. We report the percentage of the 100 
sets of residuals for which the null hypothesis of N(0,1) is rejected. We also report the average p-
values of the 100 sets of residuals.  

 
 Percentage of rejection Mean p-values 

SVMJ 99% 0.014 
SVCMJ 100% 0.0060 
SVVG 15% 0.23 
SVLS 36% 0.098 

 



Figure 1. Residuals of pure Levy jump models (Cauchy, VG, and LS) and MJ models estimated using data simulated from corresponding 
Levy jump models. Panels A and B report the 95% confidence bands of kernel density estimators of model residuals obtained from fitting Cauchy 
and MJ models to the 100 sample paths simulated from Cauchy process, respectively. Panels C and D report the 95% confidence bands of kernel 
density estimators of model residuals obtained from fitting VG and MJ models to the 100 sample paths simulated from VG process, respectively. 
Panels E and F report the 95% confidence bands of kernel density estimators of model residuals obtained from fitting LS and MJ models to the 
100 sample paths simulated from LS process, respectively.
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Figure 2. Residuals of models with stochastic volatility, Levy, and Merton jumps estimated using data simulated from models with 
stochastic volatility and Levy jumps. Panels A , B, and C report the 95% confidence bands of kernel density estimators of model residuals 
obtained from fitting SVVG, SVMJ, and SVCMJ models to the 100 sample paths simulated from SVVG process, respectively. Panels D , E, and F 
report the 95% confidence bands of kernel density estimators of model residuals obtained from fitting SVLS, SVMJ, and SVCMJ models to the 
100 sample paths simulated from SVLS process, respectively. 
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Figure 3. Level and log changes of the S&P 500 index from January 2, 1980, to December 29, 2000. 
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Figure 4. Kernel density and QQ plots of the residuals of SVMJ and SVCMJ estimated using daily returns of the S&P 500 index between 
January 2, 1980, and December 29, 2000. Panels A and B report the 95% confidence bands of kernel density estimators of the residuals of the 
estimated SVMJ and SVCMJ models, respectively. Panels C and D report the QQ plots of the residuals of the estimated SVMJ and SVCMJ 
models, respectively. 
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Figure 5. Kernel density and QQ plots of the residuals of SVVG and SVLS estimated using daily returns of the S&P 500 index between 
January 2, 1980, and December 29, 2000. Panels A and B report the 95% confidence bands of kernel density estimators of the residuals of the 
estimated SVVG and SVLS models, respectively. Panels C and D report the QQ plots of the residuals of the estimated SVVG and SVLS models, 
respectively. 
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Figure 6. Filtered volatility variables of SVMJ, SVCMJ, SVVG, and SVLS models using daily returns of the S&P 500 index between 
January 2, 1980, and December 29, 2000. 
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Figure 7. Filtered jump variables of SVMJ, SVCMJ, SVVG, and SVLS models using daily returns of the S&P 500 index between January 
2, 1980, and December 29, 2000. 
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