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Is Systematic Risk Priced in Options?

Abstract

In this empirical study, we challenge the prevalent notion that systematic risk of the

underlying asset has no effect on option prices as long as the total risk remains fixed, a

long cherished prediction of the Black-Scholes option pricing theory. We do so by examining

two testable hypotheses relating both the level and slope of implied volatility curves to the

systematic risk of the underlying asset. Using daily option quotes on the S&P 100 index

and its 30 largest component stocks, we show that after controlling for the underlying asset’s

total risk, a higher amount of systematic risk leads to a higher level of implied volatility and

a steeper slope of the implied volatility curve. The findings are robust to various alternative

specifications and estimations. Our empirical conclusions turn out to be consistent with the

newly emerged GARCH option pricing theory.

JEL classification code: G10, G13



1 Introduction

Since the seminal work of Black and Scholes (1973), literally thousands of papers have been

written to apply or generalize the Black-Scholes option pricing theory and to empirically test

various option pricing models. The empirical evidence to date suggests that the Black-Scholes

model exhibits serious structural biases, which are (1) the Black-Scholes implied volatility

smile/smirk phenomenon, (2) the term structure of implied volatility and its flattening with

maturity, (3) the Black-Scholes implied volatilities being systematically higher than the

historical or realized volatility, (4) the risk-neutral return distribution’s negative skewness

being more pronounced than that of the physical return distribution, and (5) the index

options having more pronounced volatility smile/smirk than individual options. The first

three biases are well known, see for example, Dumas, Fleming and Whaley (1998). The

fourth and fifth biases are documented for the post 1987 crash markets in, for example,

Jackwerth (2000), Dennis and Mayhew (2002), and Bakshi, Kapadia and Madan (2003)

(BKM hereafter).

It turns out that the first two biases can be tackled by simply relaxing the geomet-

ric Brownian motion assumption; for example, one can introduce jumps and/or stochastic

volatility without altering the risk-neutral pricing premise of the Black-Scholes theory. The

last three biases, however, appear to be fundamentally at odd with the idea of risk-neutral

pricing. They indicate structural differences between the risk-neutral and physical return

distributions.

Our study is motivated by this realization. Particularly, since the risk-neutral return

distribution differs from the physical one by a risk premium term, we suspect that these

empirical regularities may be attributed in part to the systematic risk of the underlying

asset. The last empirical regularity is particularly suggestive because a broad-based equity

index is expected to have a higher systematic risk vis-à-vis individual stocks. We therefore

empirically examine whether the implied volatility pattern is related to the systematic risk

of the underlying asset. Our results demonstrate convincingly that the options’ implied

volatilities are indeed influenced by the systematic risk of the underlying asset. Specifically,

after controlling for the overall level of total risk, a higher amount of systematic risk leads to

a higher level of implied volatility and a steeper implied volatility curve. In short, systematic

risk is priced in options.

Despite the large body of empirical literature devoted to the analysis of the implied

volatility, we are only aware of Dennis and Mayhew (2002) that empirically established the

link between the risk-neutral skewness and the systematic risk of the underlying stock. The
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lack of attention on systematic risk is not at all surprising. The most cherished prediction

of the Black-Scholes theory is that the option price is independent of the systematic risk of

the underlying asset. If the total asset risk is fixed, the proportions of the systematic and

idiosyncratic risks will have no effect on the option price.

Researchers have long been pondering the causes for the aforementioned five empirical

regularities in option prices. Among them, there are several models that employ a gen-

eral equilibrium approach to jointly determining the stock and option prices. For example,

Grossman and Zhou (1996) constructed an insurer/non-insurer trading model to establish a

predication of volatility skew. David and Veronesi (2002) developed an incomplete informa-

tion model by assuming that investors do not know the drift rate of the dividend process.

Buraschi and Jiltsov (2005) created an incomplete-market model with heterogenous agents

disagreeing on the dividend growth rate. Although these model offer interesting insights,

they appear to offer no specific prediction as to how the option prices are directly linked

to the systematic risk of the underlying asset. Therefore, they are unlikely to satisfactorily

resolve the last three of the aforementioned five empirical regularities.

An alternative line of option pricing literature based on the GARCH model offers an

interesting perspective on the role of systematic risk.1 The local risk-neutral valuation theory

developed by Duan (1995) implies that the option price is a direct function of its underlying

asset’s risk premium for assets exhibiting a GARCH-type feature. Kallsen and Taqqu (1998)

and Duan (2001) showed that the same theoretical dependence on the underlying asset’s

risk premium also prevails in two different complete-market formulations of the GARCH

option pricing model, which in turn suggests that such a theoretical prediction need not

be restricted to models with incomplete market and/or asymmetric information. We will

show later that the GARCH option pricing approach can indeed explain all five empirical

regularities reported in the empirical option literature. In addition, it can be used to reconcile

the empirical findings reported in this paper.

BKM (2003) developed a theoretical relationship between the implied volatility and the

risk-neutral skewness and kurtosis, and empirically demonstrated that differential pricing of

individual stock options and options on the index is indeed related to their differences in the

risk-neutral skewness and kurtosis. Our study goes further in demonstrating that the pricing

of options depends on how much systematic risk is contained in the underlying asset’s total

1Heynen, Kemna and Vorst (1994), Duan (1995), Ritchken and Trevor (1999), Duan and Wei (1999),
Hardle and Hafner (2000), Heston and Nandi (2000), Hsieh and Ritchken (2000), Duan and Zhang (2001),
Lehar, Scheicher and Schittenkopf (2002), Lehnert (2003), Christoffersen and Jacobs (2004), Christoffersen,
Heston and Jacobs (2004), Duan and Pliska (2004), Duan, Ritchken and Sun (2005, 2006), and Stentoft
(2005) are some examples.
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risk. In fact, we argue that the implied volatility, risk-neutral skewness, and kurtosis are all

tied to the systematic risk. Thus, finding that the risk-neutral skewness and kurtosis are

capable of explaining variations in the implied volatility can be expected.

We use option quotes for the S&P 100 index and its 30 largest component stocks from

January 1, 1991 to December 31, 1995, a data set identical to the study by BKM (2003). The

key variable employed in our study is the systematic risk proportion, which is defined as the

ratio of the systematic variance over the total variance. We test two specific null hypotheses:

(1) the level of implied volatility is not related to the systematic risk proportion, and (2) the

slope of the implied volatility curve is not related to the systematic risk proportion. Both

hypotheses are strongly rejected, indicating that the systematic risk plays an important role

in determining option prices. Our empirical findings are robust in sub-samples and to differ-

ent specifications and estimations. Interestingly, these empirical results are consistent with

the GARCH option pricing model, which predicts that a higher systematic risk proportion

leads to (1) a higher level of implied volatility and (2) a steeper negative slope in the implied

volatility smile/smirk curve.

The remainder of this paper is organized as follows. Section 2 lays out the hypotheses

and testing procedures, and reports the main results. The data and test results are given in

three subsections. Various robustness checks are reported in Section 3. The GARCH option

pricing theory and its specific predictions concerning systematic risk are discussed in Section

4. Section 5 concludes the paper.

2 Empirical relation between systematic risk of the un-
derlying asset and option prices

According to the Black-Scholes (1973) option pricing theory, option prices do not depend

on how much systematic risk is contained in the underlying asset as long as its total risk

is fixed. To illustrate, imagine two stocks that are identical in every aspect except for the

level of systematic risk or risk premium. The prices of options on these two stocks must

be equal if the terms of the options are identical. When these option prices are converted

into implied volatilities, they should not be related to systematic risk at all.2 It is difficult

to find two stocks that are identical in every respect except for the systematic risk. In the

2Here we distinguish the general Black-Scholes option pricing theory from the specific Black-Scholes
formula which is valid only under the geometric Brownian motion assumption. In other words, one can
actually have the volatility smile/smirk phenomenon under the general Black-Scholes option pricing theory
by discarding the geometric Brownian motion assumption.
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empirical analysis, we must therefore control for the difference in total risk in studying the

option pricing behavior across different underlying stocks.

The key variable used in differentiating stocks in terms of systematic risk is the systematic

risk proportion. For the j-th stock, we define its systematic risk proportion bj as the ratio of

the systematic variance over the total variance. The two testable hypotheses based on the

general Black-Scholes option pricing theory are formalized as follows:

• Hypothesis 1: The implied volatility level of the options on the j-th stock is unrelated
to the systematic risk proportion bj.

• Hypothesis 2: The slope of the implied volatility smile/smirk curve of the options
on the j-th stock is unrelated to the systematic risk proportion bj.

Several empirical issues need to be sorted out before we proceed to the tests. To begin

with, how do we estimate the average volatility, or the overall level of total risk? Since we use

the Black-Scholes implied volatility to characterize the option pricing structure, it is natural

to use some versions of historical volatility to proxy the future average volatility. The key

issue is how far back we should go in estimating the historical volatility. Balancing between

estimation efficiency from a larger sample and the relatively shorter options maturities in

the data sample, we opt for a one-year (250 days) rolling window in calculating the volatility

on a daily basis. Later in the robustness checks, we repeat the tests using a five-year rolling

window and a weekly frequency.

Another issue is the empirical characterization of the implied volatility curve. BKM

(2003) assumed a constant slope on the logarithmic scale for the curve. While this strategy

greatly simplifies the testing procedures and enhances the testing power (by lumping more

observations together), it tends to mix the intricate features of the curve in different regions of

the moneyness spectrum. To reveal potentially different features for different moneyness re-

gions, we piecewise linearize the implied volatility curve into four distinct moneyness buckets,

i.e., K/S = [0.9, 0.95), [0.95, 1.0), [1.0, 1.05) and [1.05, 1.10], and conduct tests within each

bucket.

As discussed earlier, we use time series of daily returns to estimate the systematic risk

proportion. Specifically, we run daily, one-year rolling window, OLS regressions for stock j:

Rjt = αj + βjRmt + ξjt, (1)

from which the systematic risk and total risk can be calculated as β2jσ
2
m and σ

2
j . The system-

atic risk proportion is simply bj ≡ β2jσ
2
m/σ

2
j for a particular day, which can in this case be
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viewed as the regression R2. If we need a measure of systematic risk proportion for a period

of, say, 4 weeks, we need to somehow average the daily estimates. In our study, we first

average the daily variances over the period, and then calculate a bj. For robustness checks,

we later repeat the tests by first computing the daily proportions and then averaging them

over the period in question.

To test our hypotheses, we follow BKM (2003) and perform the Fama-MacBeth (1973)

type two-pass regressions. We need to obtain time series of estimates for the level and

slope of the implied volatility curve, which are used to run the cross-sectional regressions to

determine whether they are related to the systematic risk proportion. The cross-sectional

regression is repeated over time and the time-averaged regression coefficients are used to

determine whether a hypothesis is rejected or not.

In order to estimate the level and slope of the implied volatility curve in the first-pass

regressions, we need to decide on the length of non-overlapping regression windows. While a

weekly window provides sufficient number of options in the study by BKM (2003), we must

increase the window length because the option data have been further divided into four

moneyness buckets. This is particularly necessary in ensuring reasonable estimates for the

risk-neutral skewness and kurtosis. We adopt a window of one month (4 weeks). Thus, the

second-pass regression (for testing the effect of the systematic risk proportion on the level

and slope of the implied volatility curve) is performed on a monthly basis. The risk-neutral

skewness and kurtosis are estimated in the same way as in BKM (2003).

With the above in mind, we proceed with hypothesis testing as follows. In the first-pass

regression, for each stock and moneyness bucket, we lump all the observations in a four-week

period and repeat the following regression for the j-th stock:

σimp
jk − σhisj = a0j + a1j(yjk − ȳj) + εjk, k = 1, 2, ..., Ij, (2)

for 65 times (260 weeks divided by 4). In the above, Ij is the number of options in a particular

moneyness bucket for the j-th stock, yjk = Kjk/Sjk, and ȳj is the sample average of yjk.The

intercept α0j and regression coefficient a1j are measures of the level and the slope of the

implied volatility for a particular moneyness bucket, after adjusting for the j-th stock’s total

risk, σhisj .
3

In the second pass, we perform three versions of cross-section regressions for each of the 65

non-overlapping periods using the intercept from the first-pass regressions as the dependent

3Historical volatility for the j-th stock is actually day-specific. The time subscript is omitted to simplify
notation. The moneyness variable yjk is adjusted by its mean to ensure that the intercept α0j is the average
difference between the implied volatility and the historical volatility for each month/bucket.
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variable: for j = 1, 2, · · · , 31,

a0j = γ0 + γ1bj + ej (3)

a0j = γ0 + γ2Skew
(rn)
j + γ3Kurt

(rn)
j + ej (4)

a0j = γ0 + γ1bj + γ2Skew
(rn)
j + γ3Kurt

(rn)
j + ej (5)

The time-series of the regression coefficients, 65 in total, are then averaged and its corre-

sponding t-statistic is calculated with a first-order serial correlation correction. Regression

(3) is an unconditional test of Hypothesis 1, and we should not reject it if γ1 = 0. Regres-

sion (5) is a conditional test of Hypothesis 1, controlling for the effects of the risk-neutral

skewness and kurtosis, and we should obtain γ1 = 0 if the systematic risk proportion exerts

no effect once the influence of risk-neutral skewness and kurtosis is considered. Regression

(4) is performed purely for comparison purposes. BKM (2003) predicted that the slope of

the implied volatility curve should be positively related to the risk-neutral skewness and

kurtosis, although their theory does not have a prediction on the level per se.

To test Hypothesis 2, we simply repeat the regressions in (3), (4), and (5) by using the

intercept a1j from the first-pass regression as the dependent variable. The testing procedure

is the same as that for a0j. Since we have subtracted the historical volatility from the

implied volatility, the empirical finding obtained by BKM (2003) with regard to the slope

may potentially be affected.4

2.1 Data and preliminary investigations

The option data used in this study are identical to those in BKM (2003), covering the

period of January 1, 1991 to December 31, 1995 for a total of 260 weeks. We refer readers

to BKM (2003) for detailed descriptions. The data consist of triple-panel (stock, maturity

and exercise price) bid-ask quotes for options written on the 30 largest component stocks of

the S&P 100 index and on the S&P 100 index itself. The options are American style and

traded on the Chicago Board of Options Exchange. The data frequency is daily, and the

bid-ask quotes are the last quotes prior to 3:00pm (CST). Only out-of-the-money call and

put options are retained in this data set. Since out-of-the-money puts (calls) correspond to

in-the-money calls (puts), the data set effectively covers the whole moneyness spectrum.

4For all the monthly cross-section regressions, we require that there are at least 10 observations. This
screening criterion, although not binding most of the time, is necessary since the skewness and kurtosis
estimates (which require numerical integration over enough option prices) are not always available for every
stock within each month.
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As in BKM (2003), the data are screened on three fronts: 1) we only retain options

which have both bid and ask quotes, 2) we eliminate option prices that violate the arbitrage

conditions (i.e., the option price must be smaller than the stock price, but larger than

the stock price minus the present value of the exercise price and the dividends, and 3) we

eliminate the deep out-of-the-money puts (i.e., K/S < 0.9) and calls (i.e., K/S > 1.1) and

retain the moneyness range from 0.9 to 1.1. BKM (2003) cleansed the very short and very

long maturity options, and retained only those with more than 9 days and less than 120 days

to expiration. In our study, we extend the cut-off for the longer maturity to 180 days.5 In

addition, since we use a 4-week window for time-series regressions, we set a lower cut-off of

maturity to 20 days. Therefore, for our empirical study, we examine three maturity ranges:

short-term: 20− 70 days, medium-term: 71− 120 days, and long-term: 121− 180 days.
For each particular option, the implied volatility based on the Black-Scholes formula is

available. BKM (2003) showed that these implied volatilities are very close to their coun-

terparts backed out from the binomial tree. In other words, the difference between the

precise American style implied volatilities and the European style Black-Scholes volatilities

is negligible. In our study, the implied volatility based on the Black-Scholes formula is used.

The daily stock prices, downloaded from Yahoo! Finance, are used to calculate historical

volatilities and the proportion of systematic risk in the total risk. We use the S&P 500 index

as a proxy for the market portfolio.

Tables 1A, 1B, and 1C report summary statistics. Table 1A reports the number of obser-

vations grouped according to maturity and moneyness. It is seen that options on different

stocks tend to have different levels of liquidity, judging by the total number of observations.

For example, IBM and Xerox enjoy a much higher liquidity than MCI Communications and

Northern Telecom. Of course, options on the S&P 100 index have the highest liquidity. In

addition, within each maturity range, near-the-money options and options with lower ex-

ercise prices (i.e., out-of-the-money puts) are traded more often than options with higher

exercise prices (i.e., out-of-the-money calls). Moreover, short maturity options are generally

traded more often than medium or long maturity options.

Table 1B reports the average implied volatility for each maturity-moneyness group. It

also reports the average historical volatility and the average proportion of systematic risk

for each stock. Several observations are in order. First, the volatility smile/smirk is clearly

5As apparent in Table 1A, most of the index option observations concentrate in the short-term and
medium-term maturity ranges. This is the main reason why BKM (2003) omitted maturities beyond 120
days. We decide to include the long-term range since all individual stocks have enough observations in this
range.
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present for all stocks. The curve is downward sloping for most stocks when the option

maturity is medium-term (71 − 120 days) or long-term (121 − 180). However, for short-
term options (20− 70 days), the implied volatility tends to curve up in the last moneyness
bucket, K/S = 1.05− 1.10. Second, it is apparent that, within the same moneyness bucket,
the implied volatility is generally lower for longer term options. Third, the average implied

volatility and the average historical volatility are generally close, and the former is higher

than the latter for more than half of the stocks (19 out of 30), reinforcing the third bias

mentioned at the beginning of the paper, i.e., implied volatilities are usually higher than

the historical volatilities. The S&P 100 index has the highest volatility differential which is

0.0327. Finally, excluding the S&P 100 index, the systematic risk proportions range from

0.089 for MCI Communications to 0.380 for General Electric (GE). The average proportion

across all stocks excluding the S&P 100 index is 0.235.

To see the general association between the stocks’ key characteristics and the systematic

risk proportion, we sort the stocks into quintiles by their systematic risk proportions, and

calculate the average value of the characteristic variables for each quintile. The variables we

examine are the ones used for later tests, namely, a) the average implied volatility minus

the average historical volatility, b) the average slope of the implied volatility curve, c) the

average risk-neutral skewness, and d) the average risk-neutral kurtosis. Since the last two

variables do not change across moneyness, we only divide the sample into maturity buckets.

Given the magnitude of the S&P 100 index’s systematic risk proportion, we put it in a

separate group, quintile 5. The first quintile contains 6 stocks and the other three contain 8

stocks each. Since the estimations are done monthly as described before, the sorting is also

done monthly, and the average variables are calculated for each quintile. We then average

the monthly quantities for each quintile over 65 months. Table 1C contains the results.

The most striking is the association between the systematic risk proportion and the implied

volatility differential. A higher systematic risk proportion is associated with a higher implied

volatility differential. For the other three variables, although not entirely monotonic, we see

a clear positive association between the systematic risk proportion and the magnitude of the

slope of the implied volatility curve, the risk-neutral skewness and kurtosis.6 Therefore, the

sorting results already indicate a strong rejection of the two null hypotheses.

Finally, before proceeding to the formal tests, we carry out two preliminary investiga-

tions. First, we perform a crude parametric test of Hypothesis 1. Second, we demonstrate

why the systematic risk proportion is a better measure than beta for our tests. To this end,

6One should not be alarmed by the seemingly smaller skewness and kurtosis of the index for the long-term
maturity. This is mainly due to the lack of enough observations, as apparent in Table 1A.
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we first regress the difference between the average implied volatility and the average histori-

cal volatility on the average systematic risk proportion; we then do the same regression using

average beta as the explanatory variable. The average volatilities and systematic risk propor-

tions are from Table 1B. Average betas are calculated separately. OLS regressions are done

for the entire sample and for various moneyness and maturity buckets. For each bucket, we

run two versions of the regression: one with the S&P 100 index and the other without. The

results are reported in Table 2. The R2 and t-values overwhelmingly show that the adjusted

implied volatilities are positively related to the systematic risk proportions, while having no

statistical relation to betas. This observation applies to all moneyness/maturity buckets,

with or without the index. Thus, Hypothesis 1 is rejected with a high level of confidence.

The fact that beta is not a good measure of systematic risk for our purpose is not surprising.

A higher beta doesn’t always mean that the systematic risk accounts for most of the total

risk. By the same token, equal betas doesn’t mean equal systematic risk proportions. This

point can be illustrated by a simple example. Suppose the market volatility is σm = 0.2 and

there are two stocks, A and B, with σA = 0.4 and σB = 0.5. If the stocks’ correlations with

the market are ρA = 0.75 and ρB = 0.60, then the two stocks will have the same beta, 1.50,

yet very different systematic risk proportions, 0.563 versus 0.360.

2.2 Level effect tests

We now proceed to the formal tests. Table 3 reports the test results for the level effect,

i.e., tests pertaining to Hypothesis 1. To conserve space, we omit the intercepts from the

second-pass regressions. Panel A reveals a strong rejection of Hypothesis 1. The coefficient

γ1 is positive across all moneyness and maturity buckets, and all the corresponding t-values

save one are significant. In fact, almost all of them are significant at the 1% level. Not only

positive on average, the vast majority of the 65 γ1 estimates are positive, as indicated by the

percentages under γ1 > 0. Moving to Panel B where we control for the effects of the risk-

neutral skewness and kurtosis, the γ1 estimates are still significant for most of the moneyness

and maturity buckets. Comparing with the unconditional tests in Panel A, the significance

level for the lower moneyness range (K/S = 0.9− 1.0) goes down slightly. Nonetheless, just
as the unconditional tests in Panel A, only one t-value is insignificant, and almost all of

them are significant at the 1% level. Overall, the unconditional and conditional tests both

show a strong level effect. The implied volatility levels, controlling for the stock specific total

volatilities, are significantly and positively related to the systematic risk proportion of the

underlying stock.
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In terms of economic significance, the R2 shows that the systematic risk proportion does

a better job for the lower moneyness range in explaining the cross-sectional differences in

the level of implied volatilities. For the univariate regressions covering all maturities, the

systematic risk proportion alone explains 14.5%, 7.8%, 7.3% and 5.4% of the cross-sectional

variations in the implied volatility for the four moneyness buckets respectively. When the

risk-neutral skewness and kurtosis are added to the regressions, the corresponding numbers

are 24.8%, 18.8%, 17.9% and 15.2%. Obviously, the implied volatilities are also affected by

many other firm-specific variables not examined in this study, such as the ones examined

by Dennis and Mayhew (2002). The focus of this paper is to establish the linkage between

the option prices and the systematic risk. We therefore do not go further to exhaustively

investigate all the potential factors affecting the implied volatility.

The regression results also offer some other interesting insights. First of all, judging by

the magnitude and t-value of the regression coefficient γ1 as well as the percentage of positive

entries, we see that the effect of systematic risk proportion itself also takes a smirk pattern

across moneyness. The effect is much stronger for the lower moneyness buckets. As the

exercise price becomes higher, the level effect becomes weaker. This is consistent with the

pattern of the implied volatilities.

Second, in terms of maturities, it is clear that the effect is stronger for short-term (20−70
days) options, and it becomes weaker as the maturity gets longer. This is true for both the

unconditional and conditional tests. The fact that the long-term options see the weakest

effect is remarkably consistent with the predictions of the GARCH option pricing theory

(viz, the implied volatility curve flattens out for very long-term options), a point to be

addressed later in Section 4.

Finally, in both the unconditional and conditional tests, the coefficients for the risk-

neutral skewness and kurtosis are mostly insignificant and the signs are mixed. Nevertheless,

as shown in Panel B, the effect of the systematic risk proportion on the implied volatility

level remains significant, even after controlling for the risk-neutral skewness and kurtosis.

2.3 Slope effect tests

Table 4 reports the results for the slope effect tests, i.e., tests pertaining to Hypothesis 2.

The results are very similar to those in Table 2 in terms of rejecting the hypothesis. For most

parts, the slope of the implied volatility curve is related to the systematic risk proportion in

a statistically significant fashion. The bigger the systematic risk proportion, the steeper the

slope. The significance remains after controlling for the risk-neutral skewness and kurtosis.
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Therefore, Hypothesis 2 is also strongly rejected.

Other observations regarding moneyness and maturity are also similar to those in Table

3. The weakening of the systematic risk effect on the slope is especially pronounced with the

upper tail of the moneyness range, i.e., 1.05 - 1.10. This is due to the slight curving back of

the implied volatility curve in this region. As for maturity, we also observe a weaker effect

with long-term options. Again, this is consistent with the predictions of the GARCH option

pricing theory, which we will elaborate in Section 4.

BKM (2003) predicted positive coefficients for the risk-neutral skewness and kurtosis in

describing the slope of implied volatilities. We do observe positive (and sometimes signifi-

cant) γ2 and γ3 for the lower region of K/S. For the upper region, they are mostly negative,

although not always significant. When we combine the moneyness buckets and run a single

regression as in BKM (2003), we obtain the sign and significance as shown in BKM (2003).

This implies that it is very crucial to examine the properties of the implied volatility by

separating moneyness buckets.

In terms of economic significance, the R2 is lower than its level effect counterpart. For the

univariate regressions covering all maturities, the systematic risk proportions explain 4.7%,

4.8%, 5.5% and 1.6% of the cross-sectional variations in the slope for the four moneyness

buckets respectively. The numbers do improve to 13.9%, 13.4%, 12.0% and 11.3% when

the risk-neutral skewness and kurtosis are added to the regressions. Similar to the level

of implied volatilities, the slope is also affected by many factors other than the ones we

examine. For example, Peña, Rubio and Serna (1999, 2001) found that the curvature of

the volatility smile is positively and significantly related to the bid-ask spread; Ederington

and Guan (2002) investigated the link between the curvature of the volatility smile and the

hedging pressure; and Bollen and Whaley (2004) attributed the smile curvature to the net

buying pressure or asymmetrical demand and supply. We contribute to the literature by

showing that the slope is also explained by the systematic risk of the underlying.

3 Robustness checks

3.1 Alternative ways of calculating the systematic risk proportion

As described earlier, in the second pass regression, the monthly systematic risk proportion,

bj is calculated by using the average systematic and total risks within the 4-week period.

To see if our testing results are sensitive to how bj is calculated, we repeat the tests by

using the average b0js within the 4-week period. In other words, we first calculate the daily
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proportions, and then average them to obtain a single estimate for the 4-week period. The

results remain virtually the same, we therefore omit them for brevity. For completeness,

we have also repeated the tests by using
p
bj = |βjσmσj

| in the second-pass regressions. The
results are slightly weaker, but the statistical significance is retained in most cases. There

is an intuitive justification for using the variance ratio rather than the standard deviation

ratio. After all, variance is the natural measure of risk since it is additive for independent

risks.

3.2 Sub-sample results

The main purpose here is to see if the results hold up in different time periods and if the

general level of volatility matters. To this end, we first plot in Figure 1 the daily implied

and historical volatilities for the S&P 100 index. The daily implied volatility is simply the

average of the implied volatilities for all contracts on each day; the daily historical volatility

is the annualized standard deviation from the one-year rolling window (annualization is done

by multiplying
√
250 to the daily volatilities). It is clear that the two volatility series are

generally correlated. To be precise, the correlation coefficient is 0.644 over the entire sample

period. More importantly, the volatility has a rough dichotomy between the two halves of

the sample period, with the first half seeing a generally higher volatility than the second

half. We therefore perform the sub-sample tests by cutting the sample into equal halves.

To offset the reduction in the number of options in a sub-sample, we use two moneyness

buckets: [0.9, 1.0) and [1.0, 1.1]. Moreover, in order to make more meaningful comparisons,

we also re-run all regressions for the whole sample using the two moneyness buckets. Tables

5 and 6 report the sub-sample test results for the level and slope effects.

Table 5 indicates a very strong level effect for both sub-sample periods. The regression

coefficient γ1 is positive and significant (mostly at the 1% level) for all cases, regardless

of whether it is controlled for the risk-neutral skewness and kurtosis. The t-values for γ1
are bigger for the first half of the sample. This implies that the impact of the systematic

risk on option values is stronger when the overall total risk is high. Turning to the slope

effect, Table 6 reveals a similar significance level regarding the impact of the systematic risk.

The regression coefficient γ1 is negative for all cases and its t-value is highly significant for

almost all cases. Although the t-values are larger in the second sample with the univariate

regressions in the lower region of the moneyness range, an overall dichotomy between the

two sub-samples doesn’t appear to exist as far as the slope effect is concerned.

Other features observed in Tables 3 and 4 are also present in Tables 5 and 6. For instance,
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both the level and slope effects are weaker with long-term options and for the upper region

of the moneyness range (K/S = 1.0 − 1.1). Taken together, the sub-sample tests clearly
demonstrate that the impact of systematic risk on option prices are quite robust across

sub-sample periods.

3.3 Data frequency and sample size for the systematic risk esti-
mation

In estimating the historical volatility and its composition, we run the OLS regression in

(2) using a one-year rolling window with daily frequency. As mentioned before, our choice

of daily frequency and one-year rolling window is a balanced consideration of estimation

efficiency and the relatively short maturity of options. However, the shorter window and

higher data frequency raise the concern that the resulting risk estimates may be highly

time-varying and do not necessarily reflect changes in the systematic risk proportion. This

concern may be alleviated by realizing that the risk measure we use in the second pass

regression is the ratio of the systematic risk over the total risk and that this ratio may

be stable despite the variation in the two absolute risk measures. Nonetheless, in order

to assess the potential impact, we repeat the tests using a five-year rolling window at a

weekly frequency, a frequency used by such institutions as Datastream and Standard and

Poor’s when estimating betas. The weekly frequency is implemented by using data points

on Wednesdays. Once we obtain the weekly risk estimates, we match them back to the

original data and run the two-pass regressions as before. In other words, we still utilize all

available option data. To conserve space, we report the level and slope test results in one

table, Table 7. For brevity, we only report the regression coefficient and its t-value together

with the R2 for the univariate regression (with the systematic risk proportion being the only

explanatory variable) and the multivariate regression (with the risk-neutral skewness and

kurtosis as well as the systematic risk proportion as the explanatory variables). It is clear

from the table that the previous conclusions hold up for both the level effect and the slope

effect. Overall, the statistical significance weakens slightly, but this is by no means uniform.

In some cases, the t-values actually go up slightly. Since the longer window period and the

lower data frequency do not alter the qualitative conclusions, for consistency and ease of

comparison, we will continue to use the one-year rolling window at the daily frequency for

subsequent robustness checks.7

7We have also re-run the regressions using a five-year rolling window at daily frequency. The results are
virtually the same as those using a one-year rolling window. We omit the results for brevity.
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3.4 Exclusion of the S&P 100 index

Table 1B clearly shows that the S&P 100 index is an underlying asset with a substantially

higher systematic risk than ordinary stocks. Although Table 2 crudely demonstrates that the

general association between implied volatilities and the systematic risk proportion holds no

matter whether the index is included or not, it is useful to ascertain the precise influence of

the index on the overall conclusions. To this end, we repeat the tests by excluding all options

written on the index. Again, to conserve space, we report the results in Table 8 in the same

fashion as in Table 7. Comparing Panel A with Table 3, it is seen that the t-values for γ1
decrease slightly for most cases, but the significance remains in all cases. Therefore, the level

effect also holds strongly with stock options. Comparing Panel B of Table 8 with Table 4, we

see that the regression coefficient γ1 retains the right sign, but its significance has reduced

substantially. Some t-values are still significant and many have their magnitudes larger than

one. Thus, the slope effect is weaker among stock options. This is consistent with the well-

established empirical regularity: the slope of the implied volatility curve for stock options

is much flatter than that for index options. The flatter slope impedes the testing power in

our case. Nevertheless, the results in Table 8 demonstrate that our general conclusions hold

with or without index options. In fact, one may even argue that the stronger influence of the

index options actually reinforces our conclusions, since the index has the highest systematic

risk proportion and the largest difference between the implied and the historical volatilities,

as apparent in Table 1B. At any rate, for consistency and ease of comparison, we keep index

options in the analysis for subsequent robustness checks.

3.5 Panel regressions

In our two-pass regressions, we use an estimated parameter from the first pass as a dependent

variable for the second pass. This may give rise to several econometric issues such as the

asymptotic properties of the second-pass estimators, which in turn could cast doubt about

the statistical inferences we have drawn. To address this concern, we run a single-pass,

panel regression and test the two hypotheses therein. Specifically, we run the following

panel regression for each moneyness/maturity bucket:

σimp
ij − σhisij = [α0 + α1(bij − b̄i)] + [β0 + β1(bij − b̄i)](yij − ȳj) + εij

= α0 + α1(bij − b̄i) + β0(yij − ȳj) + β1(bij − b̄i)(yij − ȳj) + εij, (6)

where b̄i is the observation—weighted, cross-sectional average of the systematic risk proportion

for each day, ȳi is the sample average of moneyness for stock j or the index within the bucket.
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Broadly speaking, α0 can be understood as the average differential between the implied

volatility and the historical volatility over all stocks and the index within the entire sample

period. Similarly, β0 can be understood as the average slope of the implied volatility curve.

They are not exactly the said quantities due to the interaction term bij ∗ yij. The coefficient
α1 picks up the level effect. If the systematic risk proportion doesn’t affect the price level

or the adjusted implied volatility, then α1 should not be different from zero, statistically

speaking. A positive α1 would confirm the level effect. By the same token, the coefficient

β1 picks up the slope effect. If the systematic risk proportion does not affect the slope of

the implied volatility curve, then β1 should be zero. A negative β1 would imply that a stock

with a higher than average systematic risk proportion will have a slope steeper than the

average slope of all implied volatility curves, confirming the slope effect.

Table 9 contains the results. Judging by the t-values of the coefficient α1, Hypothesis 1

is rejected at an extraordinary level of significance, reaffirming the level effect. As for the

coefficient β1, except for three cases, the t-values are also significant and large for many

cases. Therefore, Hypothesis 2 is also rejected, confirming the slope effect. If anything, the

panel regression results indicate that our two-pass regression tests err on the conservative

side. We have also repeated the tests by calculating b̄i as the simple average of the stocks’

systematic risk proportions (i.e., not weighted by the number of observations). The results

are almost identical to those in Table 9.8

3.6 Systematic risk estimation using Fama-French factors

So far, all the tests use systematic risk estimates from a single factor model, the market

model. Insofar as different stocks may have different exposures to certain systematic risk

factors, it is imperative to ascertain if our results are robust to the multi-factor model. To

this end, we re-estimate the systematic risk by adding the two Fama-French factors, i.e., SMB

and HML, to the market factor.9 By definition, the systematic risk proportion estimated

with the two additional factors will be higher than the previous one. The question is, will

it increase proportionally across stocks so that our level and slope effects would hold up?

To this end, we repeat the two-pass regressions using the newly estimated systematic risk

8Incidentally, it is seen that the coefficient α0 is negative for the moneyness measure K/S beyond 1.0.
This should be intuitive given the downward sloping feature of a typical implied volatility curve: implied
volatilities in the moneyness range beyond 1.0 are lower than the average volatility at the mid-point or the
at-the-money point.

9The daily factors are downloaded from the web-page of Kenneth French.
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proportions, and report the results in Table 10.10 Once again, the table takes the same format

of Tables 7 and 8 to conserve space. Comparing Table 10 with Table 3 (level effect) and Table

4 (slope effect), we see that the results remain virtually the same. This is another indirect

support for the choice of the systematic risk proportion over the beta for our study. Since we

have controlled for the overall level of risk, what matters is the composition of the total risk,

not the absolute magnitude of the components. As long as the same estimation procedure

is applied to all stocks, the cross-sectional feature would manifest itself. Therefore, one may

also infer that our results are likely robust to more sophisticated estimation methods, e.g.,

a shrinkage Bayesian estimator or some sort of optimal estimator, for the systematic risk.

Incidentally, the more encompassing estimation of the systematic risk did not improve

the cross-sectional explanatory power either. Comparing with Tables 3 and 4, it is seen that

the R2 actually goes down slightly for the level tests, while remains more or less the same

for the slope tests.

4 Empirical results vs. predictions of the GARCH op-
tion pricing model

In this section, we offer a potential explanation for our empirical findings using the GARCH

option pricing theory of Duan (1995). We argue that the empirical findings concerning the

effect of systematic risk are in effect predicted by the GARCH option pricing theory.

We use a nonlinear asymmetric GARCH(1,1) process of Engle and Ng (1993) to illustrate

the main point. Using a different GARCH specification will not alter the basic conclusion.

The stock return with respect to the physical probability measure P is assumed to follow:

ln
St+1
St

= rt+1 + λt+1σt+1 − 1
2
σ2t+1 + σt+1εt+1

σ2t+1 = α0 + α1σ
2
t + α2σ

2
t (εt − θ)2 (7)

εt+1|φt Pv N(0, 1)

where φt is the information set containing all information up to and including time t; α0, α1,

α2, and θ are the GARCH parameters governing the variance process; and N(0, 1) denotes a

standard normal distribution. rt+1 is the risk-free interest rate and λt+1 is the risk premium

per unit of standard deviation, both of which can be stochastic but must be predictable

10Although not reported, we also calculated the average of the newly estimated systematic risk proportion
for each stock (i.e., the counter part of the last column of Table 1B). The correlation between the two
proportions is 0.985, and the average difference between the two proportions is 0.036.
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in the sense that they are measurable with respect to φt. We use a time subscript for the

interest rate and the risk premium to allow them to be potentially stochastic. The term

λt+1σt+1 captures the total risk premium.

Duan (1995) showed that the system in (7) can be converted, for the purpose of pricing

derivatives, to one that is locally risk-neutral with respect to the pricing measure Q:

ln
St+1
St

= rt+1 − 1
2
σ2t+1 + σt+1ξt+1

σ2t+1 = α0 + α1σ
2
t + α2σ

2
t (ξt − λt − θ)2 (8)

ξt+1|φt Qv N(0, 1)

where ξt = εt + λt. It is seen that the risk premium, λt plays a critical role in the GARCH

option pricing model. In contrast to the Black-Scholes theory and other generalizations, an

option’s value is a direct function of the stock’s expected return (via the risk premium λt).

Although it is intuitively clear that λt can be related to the systematic risk of the under-

lying asset, a formal relationship in the GARCH framework was first derived in Duan and

Wei (2005). In addition to the assumptions needed for the GARCH option pricing model,

they assumed the resulting stochastic discount factor follows a one-factor (the market port-

folio return) linear structure. They were able to express the risk premium per unit of return

standard deviation for the j-th asset as

λjt =
ctβjtσmt

σjt
(9)

where βjt = CovP
³
ln

Sjt
Sj(t−1)

, ln mt

mt−1
|φt−1

´
/σ2m,t, ln

mt

mt−1
and σ2m,t are the log return and

variance of the market portfolio, and ct can be time-varying but is the same across different

assets. Thus, the risk premium can be explicitly tied to the systematic risk βjt.

The above result implies that a higher systematic risk leads to a higher asset risk premium.

In particular, λ2j is directly proportional to the systematic risk proportion bj, a measure

employed in our empirical analysis. Therefore, rejection of both hypotheses 1 and 2 should

not be surprising in light of the GARCH option pricing model. More strikingly, the signs of

the coefficients for the level and slope tests turn out to be consistent with the prediction of the

GARCH option pricing model. Specifically, a higher systematic risk proportion leads to (1)

a higher level of implied volatility vis-à-vis the historical volatility and (2) more negatively

sloped volatility smile/smirk. We now elaborate on why the GARCH option pricing model

generates these two predictions.

Figure 2 can be used to develop an intuitive appreciation of the behavior of the Black-

Scholes implied volatility under the GARCH option pricing model. This figure provides
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three implied volatility curves by varying the level of the asset risk premium. The GARCH

parameters used to generate these graphs are α0 = 8 × 10−6, α1 = 0.85, α2 = 0.08 and

θ = 0.5. These parameter values imply a physical stationary return volatility of 20% per

annum. We assume that the initial conditional volatility is at this stationary level and then

let it evolve according to the GARCH system. We compute the option prices using 50,000

sample paths in a Monte Carlo simulation coupled with the empirical martingale adjustment

of Duan and Simonato (1998). We fix the maturity at 60 business days while varying the

strike price. Once the option prices are computed, they are converted to the Black-Scholes

implied volatilities. It is evident from these graphs that the GARCH option pricing model

yields the smile/smirk pattern typically observed for the exchange-traded option contracts.

These graphs show that a higher λ (due to a higher systematic risk without changing the

total physical risk) leads to a higher implied volatility curve across all strike prices, which

implies a positive level effect. A higher λ also makes the curve sloped more steeply, which is

clearly a negative slope effect.

The above predictions in effect reflect the fact that a higher risk premium simply leads

to higher volatility and kurtosis and more negative skewness for the risk-neutral cumulative

return distribution. Assuming a constant λ > 0 and leverage effect (θ > 0), Theorem 3.1

of Duan (1995) can be used to conclude that the risk-neutral stationary return variance is

α0/[1− α1 − α2(1 + (θ + λ)2)], an increase from α0/[1− α1 − α2(1 + θ2)] under measure P .

A higher risk-neutral volatility is actually due to the fact that the risk-neutral volatility is

governed by a larger persistence parameter α1 + α2(1 + (θ + λ)2) in comparison to the one

under measure P (i.e., α1+α2(1+θ2)). The risk-neutral volatility dynamic thus has a slower

mean-reversion, implying a slower flattening of the volatility smile/smirk. Furthermore, the

risk-neutral cumulative return becomes more skewed because the correlation between the

one-period return and volatility becomes −2α2(θ + λ) as opposed to −2α2θ under measure
P . The risk-neutral cumulative return also has fatter tails than the cumulative return under

the physical measure.

We illustrate these features in Figures 3-5 using the same parameter values as in Figure

2. In these plots, we compute the risk-neutral cumulative return’s volatility, skewness and

kurtosis for different maturities using the same simulation procedure as for Figure 2. The

volatilities in Figure 3 are annualized in the usual manner, i.e., dividing by the square root

of the maturity (in years). When λ = 0, the risk-neutral cumulative return volatility equals

the physical volatility. Since the initial conditional volatility is set to the physical stationary

volatility of 20%, it is not surprising to see it staying at 20% for different maturities. When
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λ > 0, the stationary risk-neutral volatility will be higher than the physical stationary

volatility. Naturally, the risk-neutral cumulative return volatility will be increasing with

maturity. If we had used an initial conditional volatility much higher than the stationary

level, these curves would be downward sloping but the curve corresponding to a higher λ

would continue to stay above the one under a lower λ. In short, the risk-neutral volatility is

monotonically increasing in λ for a given maturity.

Figure 4 indicates that the risk-neutral cumulative return’s skewness is a decreasing

function of λ, meaning the risk-neutral distribution becomes more negatively skewed when λ

is larger.11 Corresponding to a given λ, we see an interesting pattern in relation to maturity.

Since the one-period conditional return distribution is normal, the skewness has to start from

zero. The negative correlation between return and volatility leads to a negative skewness

for the cumulative return distribution. The skewness will, however, diminish with maturity,

a result due to the central limit theorem. Similarly, we observe the risk-neutral cumulative

return’s kurtosis increases with λ for a given maturity. If we fix λ and examine how the

kurtosis behaves in relation to maturity, it is clear that the risk-neutral kurtosis begins at

3, i.e., conditional normality, and then increases with maturity to a point (i.e., a maturity

of roughly 50 days). After that, it begins to decline toward 3, again due to the central limit

theorem.

Figures 4-5 suggest that under the GARCH option pricing theory, the risk-neutral skew-

ness and kurtosis are functions of λ, which is in turn a function of the systematic risk

proportion b. We now empirically verify this claim. We regress cross-sectionally the risk-

neutral skewness and kurtosis of 30 companies and the S&P100 index on their systematic

risk proportion. That is, for j = 1, · · · , 31,
Skew

(rn)
j = γ0 + γ1bj + ej (10)

Kurt
(rn)
j = γ0 + γ2bj + ej (11)

Again we run the cross-sectional regressions on a monthly basis as in Section 2 and report the

average regression coefficients over all months in our sample. The t-statistics are computed

from these monthly regression coefficients after taking into account their potential autocor-

relation. For the risk-neutral skewness, we find γ̂0 = −1.549 with a t-value of −26.834 and
γ̂1 = −1.336 with a t-value of −5.113. This result indicates that the risk-neutral return
distributions are on average negatively skewed and the degree of the negative skewness is

proportional to the systematic risk proportion. Our regression results for the risk-neutral
11Monte Carlo errors are more evident in Figures 4-5 in comparison with Figures 2-3. The difference in

the magnitude is of course due to the fact that skewness and kurtosis are of power 3 and 4.
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kurtosis are γ̂0 = 3.307 with a t-value of 10.323 and γ̂1 = 6.884 with a t-value of 3.892.

This finding suggests that the stocks in our sample have on average leptokurtic risk-neutral

return distributions and the kurtosis is increasing with the systematic risk proportion.12

In BKM (2003), the level and slope of the implied volatility curve have been found to

be related to the risk-neutral skewness and kurtosis. Our results suggest that the level and

slope of the implied volatility curve and the risk-neutral skewness and kurtosis are all largely

influenced by the systematic risk proportion.

5 Summary and Conclusions

In this study, we empirically examine the relationship between option prices and the sys-

tematic risk of the underlying asset. The study is motivated by the realization that the risk

premium or systematic risk of the underlying asset may play a role in determining the em-

pirically observed difference between the risk-neutral and physical return distributions. The

original Black-Scholes option pricing theory assumes a constant volatility which captures the

riskiness of the underlying. Although there have been many subsequent studies generalizing

the constant volatility assumption and the return distribution in general, almost all of the

studies stipulate that volatility is the only measure of the underlying asset’s risk profile. The

decomposition of the total risk into systematic and non-systematic risks plays no role in the

valuation of options. We empirically invalidates this point in the current study.

We show conclusively that option prices are related to the amount of systematic risk.

After controlling for the overall level of total risk, a higher amount of systematic risk leads

to a higher level of implied volatility and a steeper implied volatility curve. The effect remains

strong after controlling for the risk-neutral skewness and kurtosis. The results are also robust

to various alternative estimations of the variables and specifications of the tests. In summary,

we have shown that the implied volatility smile/smirk phenomenon is predictably related to

how the total risk is decomposed into systematic and non-systematic risks, a result that

is fundamentally contradictory to the essence of the general Black-Scholes option pricing

theory.

We offer a potential explanation to the findings using the recently emerged GARCH

option pricing theory. When volatility is stochastic and depends on the return innovation,

the underlying asset’s risk premium becomes an integral part of option valuation by entering

12The regressions are also repeated by excluding the index. For the skewness regression, γ̂0 = −1.592, t =
−13.068, γ̂1 = −0.943, t = −2.842; for the kurtosis regression, γ̂0 = 3.614, t = 6.855, γ̂1 = 4.460, t = 3.332.
The t-values do go down, but are still significant.
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into the return volatility dynamic under the locally risk-neutral pricing measure. In fact, the

GARCH option pricing theory specifically predicts that a higher systematic risk will increase

the risk-neutral volatility vis-à-vis the physical volatility and make the skewness and kurtosis

of the risk-neutral cumulative return distribution more pronounced. As a result, the level and

slope of the implied volatility curve are predictably linked to the systematic risk proportion

of the underlying asset.
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Table 1A: Summary statistics – number of observation 

All

Ticker Stock [0.90-0.95) [0.95-1.00) [1.00-1.05) [1.05-1.10] [0.90-1.10] [0.90-0.95) [0.95-1.00) [1.00-1.05) [1.05-1.10] [0.90-1.10] [0.90-0.95) [0.95-1.00) [1.00-1.05) [1.05-1.10] [0.90-1.10] Options
1. AIG American Int'l 1351 1635 1700 1096 5782 635 640 662 478 2415 706 753 781 547 2787 10984
2. AIT Ameritech 775 1039 1150 558 3522 409 413 455 371 1648 490 478 553 418 1939 7109
3. AN Amoco 761 902 1037 663 3363 442 397 448 399 1686 513 451 558 423 1945 6994
4. AXP American Express 677 745 686 610 2718 236 347 250 224 1057 382 321 336 317 1356 5131
5. BA Boeing Company 871 687 976 703 3237 401 298 454 321 1474 449 364 515 378 1706 6417
6. BAC BankAmerica Corp. 917 688 874 719 3198 328 264 319 302 1213 436 307 405 352 1500 5911
7. BEL Bell Atlantic 855 842 977 728 3402 343 363 346 362 1414 508 347 491 372 1718 6534
8. BMY Bristol-Myers 1103 1127 1252 932 4414 483 512 540 443 1978 610 557 663 559 2389 8781
9. CCI Citicorp 709 677 650 704 2740 258 278 230 274 1040 335 321 290 326 1272 5052
10. DD Du Pont 967 881 942 892 3682 381 387 349 380 1497 512 409 474 445 1840 7019
11. DIS Walt Disney 1205 1276 1271 1199 4951 511 520 524 513 2068 585 621 616 551 2373 9392
12. F Ford Moter 823 788 829 725 3165 393 394 360 380 1527 450 448 444 433 1775 6467
13. GE General Electric 1268 1331 1401 1125 5125 608 576 640 533 2357 706 688 758 614 2766 10248
14. GM General Motors 894 780 794 911 3379 419 334 362 424 1539 467 433 426 465 1791 6709
15. HWP Hewlett-Packard 1256 1254 1294 1121 4925 601 550 588 490 2229 667 642 663 564 2536 9690
16. IBM Int. Bus. Machines 1294 1300 1467 1287 5348 517 508 579 504 2108 663 625 684 606 2578 10034
17. JNJ Johnson & Johnson 1105 1017 1142 879 4143 459 406 435 360 1660 611 505 546 432 2094 7897
18. KO Coca Cola Co. 1052 952 952 892 3848 458 476 400 433 1767 600 464 502 536 2102 7717
19. MCD McDonald's Corp. 896 563 914 685 3058 379 284 392 334 1389 506 292 511 352 1661 6108
20. MCQ MCI Comm. 741 555 628 697 2621 290 258 218 299 1065 382 251 319 312 1264 4950
21. MMM Minn Mining 1268 1519 1548 1281 5616 568 598 603 549 2318 663 719 703 660 2745 10679
22. MOB Mobil Corp. 1037 1277 1376 901 4591 630 645 626 551 2452 741 690 758 676 2865 9908
23. MRK Merck & Co. 1189 1177 1178 889 4433 515 497 473 369 1854 610 542 529 425 2106 8393
24. NT Northern Telecom 659 576 675 565 2475 272 214 254 235 975 341 249 328 267 1185 4635
25. PEP PepsiCo Inc. 692 740 611 718 2761 252 285 240 288 1065 336 359 269 349 1313 5139
26. SLB Schlumberger Ltd. 893 1069 1119 907 3988 382 430 451 377 1640 444 507 492 463 1906 7534
27. T AT&T 969 739 992 807 3507 392 261 415 280 1348 459 362 416 435 1672 6527
28. WMT Wal-Mart 973 714 786 699 3172 508 285 398 300 1491 527 429 438 370 1764 6427
29. XON Exxon Corp. 1044 1000 1151 875 4070 462 427 414 435 1738 587 442 526 539 2094 7902
30. XRX Xerox Corp. 1333 1520 1569 1202 5624 563 584 599 521 2267 687 687 730 596 2700 10591
31. OEX S&P 100 Index 8206 8707 8766 3814 29493 5149 5997 6035 2597 19778 117 146 152 77 492 49763

Total 37783 38077 40707 29784 146351 18244 18428 19059 14326 70057 16090 14409 15876 13859 60234 276642

Long-term Options: 121 - 180 days in Maturity
Moneyness, K/SMoneyness, K/S

Short-term Options: 20 - 70 days in Maturity Medium-term Options: 71 - 120 days in Maturity
Moneyness, K/S

 
 
Notes: This table reports the number of observations within each moneyness bucket under a particular maturity range for options on the 30 largest component 
stocks in the S&P100 index and on the S&P100 index itself. Each observation is the last quote prior to 3:00pm (CST). The far right column under each maturity 
range is simply the sum of the preceding four columns. The last column of the table contains the total number of observations for each firm. The last row 
contains the total of each column. The sample period is from January 1, 1991 to December 31, 1995. All options are American style. 
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Table 1B: Summary statistics – implied volatility, historical volatility and systematic risk proportion 
Average Average Systematic

Implied Historical Risk

[0.90-0.95) [0.95-1.00) [1.00-1.05) [1.05-1.10] [0.90-1.10] [0.90-0.95) [0.95-1.00) [1.00-1.05) [1.05-1.10] [0.90-1.10] [0.90-0.95) [0.95-1.00) [1.00-1.05) [1.05-1.10] [0.90-1.10] Volatility Volatility Proportion

1. AIG American Int'l 0.2371 0.2281 0.2125 0.2146 0.2231 0.2282 0.2277 0.2126 0.2125 0.2207 0.2253 0.2268 0.2109 0.2099 0.2187 0.2214 0.2093 0.275

2. AIT Ameritech 0.2226 0.2056 0.1710 0.1806 0.1941 0.2189 0.2176 0.1684 0.1664 0.1928 0.2233 0.2273 0.1602 0.1583 0.1923 0.1933 0.1824 0.229

3. AN Amoco 0.2197 0.1927 0.1717 0.1910 0.1920 0.2003 0.1978 0.1676 0.1715 0.1842 0.2020 0.2028 0.1660 0.1662 0.1841 0.1879 0.1922 0.127

4. AXP American Express 0.3140 0.2935 0.2868 0.3009 0.2986 0.3060 0.2962 0.2979 0.3064 0.3010 0.3047 0.2948 0.2898 0.2959 0.2966 0.2986 0.2995 0.207

5. BA Boeing Company 0.2734 0.2539 0.2372 0.2481 0.2528 0.2563 0.2537 0.2316 0.2343 0.2434 0.2528 0.2498 0.2302 0.2292 0.2401 0.2473 0.2408 0.165

6. BAC BankAmerica Corp. 0.3078 0.2924 0.2664 0.2662 0.2838 0.2977 0.2989 0.2632 0.2588 0.2792 0.2929 0.2877 0.2564 0.2515 0.2723 0.2800 0.2700 0.257

7. BEL Bell Atlantic 0.2324 0.2084 0.1794 0.1978 0.2038 0.2219 0.2160 0.1816 0.1788 0.1995 0.2227 0.2227 0.1796 0.1723 0.1995 0.2017 0.2076 0.214

8. BMY Bristol-Myers 0.2304 0.2143 0.1884 0.2039 0.2088 0.2157 0.2110 0.1801 0.1849 0.1979 0.2147 0.2170 0.1783 0.1800 0.1970 0.2031 0.2003 0.290

9. CCI Citicorp 0.3403 0.3156 0.3058 0.3045 0.3168 0.3326 0.3241 0.3105 0.3033 0.3177 0.3279 0.3123 0.3006 0.2982 0.3101 0.3153 0.3357 0.208

10. DD Du Pont 0.2512 0.2430 0.2188 0.2254 0.2347 0.2438 0.2451 0.2134 0.2151 0.2298 0.2433 0.2429 0.2117 0.2112 0.2273 0.2317 0.2211 0.261

11. DIS Walt Disney 0.2975 0.2820 0.2608 0.2603 0.2751 0.2921 0.2835 0.2629 0.2588 0.2743 0.2827 0.2807 0.2568 0.2547 0.2689 0.2733 0.2540 0.268

12. F Ford Moter 0.3200 0.3014 0.2807 0.2867 0.2974 0.3118 0.2974 0.2763 0.2752 0.2906 0.3089 0.3040 0.2723 0.2718 0.2895 0.2936 0.2928 0.237

13. GE General Electric 0.2402 0.2141 0.1849 0.1899 0.2073 0.2257 0.2187 0.1809 0.1788 0.2012 0.2253 0.2216 0.1789 0.1736 0.2002 0.2040 0.1862 0.380

14. GM General Motors 0.3125 0.2918 0.2880 0.2904 0.2960 0.3031 0.2846 0.2875 0.2852 0.2905 0.3008 0.2940 0.2869 0.2864 0.2921 0.2937 0.3010 0.234

15. HWP Hewlett-Packard 0.3323 0.3251 0.3095 0.3121 0.3199 0.3260 0.3232 0.3094 0.3094 0.3173 0.3127 0.3154 0.2935 0.2980 0.3051 0.3154 0.3230 0.212

16. IBM Int. Bus. Machines 0.2874 0.2675 0.2589 0.2616 0.2685 0.2787 0.2703 0.2527 0.2513 0.2630 0.2696 0.2647 0.2453 0.2452 0.2562 0.2642 0.2544 0.218

17. JNJ Johnson & Johnson 0.2531 0.2406 0.2243 0.2259 0.2363 0.2437 0.2425 0.2205 0.2153 0.2312 0.2416 0.2390 0.2135 0.2112 0.2274 0.2329 0.2336 0.303

18. KO Coca Cola Co. 0.2605 0.2382 0.2157 0.2142 0.2331 0.2403 0.2344 0.2096 0.1987 0.2216 0.2381 0.2334 0.2096 0.1951 0.2193 0.2267 0.2148 0.326

19. MCD McDonald's Corp. 0.2687 0.2416 0.2229 0.2287 0.2411 0.2504 0.2413 0.2236 0.2163 0.2328 0.2513 0.2448 0.2259 0.2219 0.2361 0.2378 0.2255 0.230

20. MCQ MCI Comm. 0.3574 0.3285 0.2983 0.3137 0.3255 0.3368 0.3253 0.2995 0.3051 0.3175 0.3311 0.3208 0.2980 0.3015 0.3134 0.3207 0.4037 0.089

21. MMM Minn Mining 0.2252 0.2044 0.1819 0.1883 0.1992 0.2147 0.2057 0.1761 0.1744 0.1928 0.2106 0.2057 0.1743 0.1721 0.1908 0.1956 0.1783 0.270

22. MOB Mobil Corp. 0.2079 0.1920 0.1675 0.1788 0.1856 0.1928 0.1933 0.1633 0.1625 0.1786 0.1969 0.1966 0.1572 0.1587 0.1773 0.1815 0.1777 0.122

23. MRK Merck & Co. 0.2710 0.2545 0.2392 0.2547 0.2549 0.2579 0.2552 0.2345 0.2413 0.2479 0.2530 0.2491 0.2309 0.2403 0.2439 0.2506 0.2332 0.356

24. NT Northern Telecom 0.3172 0.3013 0.2825 0.2902 0.2979 0.2955 0.2900 0.2766 0.2744 0.2843 0.3057 0.2937 0.2784 0.2809 0.2900 0.2930 0.2764 0.216

25. PEP PepsiCo Inc. 0.2732 0.2302 0.2258 0.2316 0.2404 0.2684 0.2375 0.2320 0.2194 0.2387 0.2533 0.2359 0.2118 0.2143 0.2297 0.2373 0.2438 0.272

26. SLB Schlumberger Ltd. 0.2567 0.2507 0.2344 0.2403 0.2451 0.2474 0.2484 0.2270 0.2241 0.2367 0.2459 0.2495 0.2227 0.2240 0.2356 0.2409 0.2506 0.118

27. T AT&T 0.2319 0.2035 0.1865 0.2019 0.2062 0.2185 0.2034 0.1839 0.1897 0.1990 0.2173 0.2020 0.1855 0.1836 0.1973 0.2024 0.1961 0.260

28. WMT Wal-Mart 0.3022 0.2819 0.2556 0.2698 0.2790 0.2818 0.2843 0.2524 0.2676 0.2716 0.2825 0.2778 0.2614 0.2556 0.2705 0.2749 0.2581 0.349

29. XON Exxon Corp. 0.1991 0.1710 0.1525 0.1649 0.1717 0.1831 0.1726 0.1425 0.1449 0.1613 0.1807 0.1770 0.1424 0.1377 0.1592 0.1661 0.1688 0.166

30. XRX Xerox Corp. 0.2715 0.2623 0.2361 0.2345 0.2512 0.2626 0.2630 0.2303 0.2263 0.2458 0.2612 0.2618 0.2203 0.2198 0.2412 0.2475 0.2333 0.180

31. OEX S&P 100 Index 0.1846 0.1470 0.1162 0.1171 0.1444 0.1716 0.1503 0.1209 0.1136 0.1421 0.1667 0.1523 0.1256 0.1188 0.1422 0.1435 0.1108 0.952

Long-term Options: 121 - 180 days in Maturity

Moneyness, K/SMoneyness, K/S

Short-term Options: 20 - 70 days in Maturity Medium-term Options: 71 - 120 days in Maturity

Moneyness, K/S

 
 
Notes: This table reports the average implied volatilities within each moneyness bucket under a particular maturity range for options on the 30 largest component 
stocks in the S&P100 index and on the S&P100 index itself. The third last column of the table contains the average implied volatility for the entire sample, while 
the second last column contains the average historical volatility over the sample period. The last column contains the average proportion of systematic variance 
over the total variance. 
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Table 1C: Sorting of stocks’ characteristics by systematic risk proportion  
Systematic Risk

Quintile Proportion Short-term Medium-term Long-term Overall
1 0.112 -0.009 -0.015 -0.019 -0.012
2 0.188 -0.001 -0.007 -0.008 -0.004
3 0.253 0.009 0.004 0.003 0.006
4 0.346 0.011 0.006 0.004 0.008
5 0.952 0.032 0.030 0.028 0.031

Systematic Risk
Quintile Proportion Short-term Medium-term Long-term Overall

1 0.112 -0.215 -0.220 -0.251 -0.224
2 0.188 -0.207 -0.221 -0.239 -0.216
3 0.253 -0.230 -0.213 -0.225 -0.225
4 0.346 -0.266 -0.250 -0.255 -0.258
5 0.952 -0.586 -0.497 -0.458 -0.550

Systematic Risk
Quintile Proportion Short-term Medium-term Long-term Overall

1 0.112 -1.573 -1.980 -1.693 -1.709
2 0.188 -1.750 -2.055 -1.698 -1.824
3 0.253 -1.744 -2.001 -1.637 -1.780
4 0.346 -1.919 -2.195 -1.823 -1.966
5 0.952 -3.479 -2.087 -1.551 -2.778

Systematic Risk
Quintile Proportion Short-term Medium-term Long-term Overall

1 0.112 3.449 5.495 4.017 4.115
2 0.188 4.313 6.047 4.258 4.766
3 0.253 4.275 5.798 4.060 4.588
4 0.346 5.052 6.595 4.714 5.383
5 0.952 14.716 4.738 2.551 9.691

Slope of implied volatility curve

Risk-Neutral Skewness

Risk-Neutral Kurtosis

Implied volatility  minus historical volatility

 
 
Notes: This table summarizes the properties of five groups of individual stocks / index sorted by their systematic risk 
proportions. The four properties are a) the average implied volatility minus the average historical volatility, b) the 
average slope of the implied volatility curves, c) the average risk-neutral skewness, and d) the average risk-neutral 
kurtosis. The maturity ranges for short-term, medium-term and long-term options are, respectively, 20-70 days, 71-120 
days, and 121-180 days. The heading “Overall” is for all maturities combined. Given the magnitude of the S&P 100 
index’s systematic risk proportion, we put it in a separate group, quintile 5. The first quintile contains 6 stocks and the 
other three contain 8 stocks each. To be consistent with the estimation procedures described at the beginning of Section 
2, we estimate the variables monthly. Thus, the sorting is also done monthly, and the average variables are calculated 
for each quintile. We then average the monthly quantities for each quintile over 65 months.    
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Table 2: Preliminary tests for the relationship between implied volatility and the 
systematic risk 

systematic systematic
risk risk

proportion beta proportion beta

0.259 0.019 0.328 0.020
3.183 -0.757 3.694 -0.746

Moneyness, K / S 0.350 0.039 0.333 0.042
0.90 - 0.95 3.954 -1.079 3.746 -1.109

Moneyness, K / S 0.207 0.060 0.264 0.062
0.95 - 1.00 2.748 -1.361 3.169 -1.356

Moneyness, K / S 0.199 0.000 0.305 0.001
1.00 - 1.05 2.680 -0.149 3.504 -0.128

Moneyness, K / S 0.153 0.005 0.277 0.005
1.05 - 1.10 2.290 -0.376 3.271 -0.358

0.239 0.024 0.323 0.024
3.018 -0.850 3.657 -0.838

0.271 0.008 0.339 0.008
3.284 -0.496 3.791 -0.479

0.271 0.022 0.312 0.022
3.283 -0.808 3.566 -0.801Long maturity

Short maturity

With S&P100 Index Without S&P100 Index

Overall

Medium maturity

 
 
Notes: This table contains results for two univariate cross-sectional regressions under various sample constructions. In 
the first regression, the dependent variable is the average difference between the implied volatility and the historical 
volatility and the explanatory variable is the average systematic risk proportion, i.e., .10 jj

his
j

imp
j eb ++=− γγσσ  In the 

second regression, the explanatory variable is the average beta, i.e., .10 jj
his
j

imp
j e++=− βγγσσ  The averages are 

taken or calculated from Table 1B. The regressions are run for the entire sample first, which corresponds to the 
“Overall” case. We then run the regressions for each of the four moneyness buckets. Finally, we run the regressions for 
each of the three maturity ranges. For each particular sample construction, we run regressions either with or without the 

S&P 100 index. For each pair of numbers, the first number is the 2R , and the second number is the t-value (a negative 
t-value indicates that the regression coefficient is negative). The t-values in bold type are significant at least at the 10% 
level for two-tail tests. The maturity ranges for short-term, medium-term and long-term are, respectively, 20-70 days, 
71-120 days, and 121-180 days.  
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Table 3: Regression tests for the level effect 

Panel A: Separate Regressions on Systematic Risk Proportion, and Skewness and Kurtosis

avg. t γ1 > 0 R2
avg. t avg. t R2

All maturities 0.077 16.061 100.0% 0.145 -0.013 -1.644 -0.002 -1.067 0.111
Moneyness Short-term 0.074 16.233 100.0% 0.159 -0.014 -2.182 -0.001 -0.446 0.155

K/S Medium-term 0.064 14.245 100.0% 0.231 -0.030 -3.285 -0.006 -2.978 0.200
0.90 - 0.95 Long-term 0.104 3.978 79.6% 0.131 -0.009 -0.972 -0.003 -1.377 0.179

Moneyness All maturities 0.051 11.979 100.0% 0.078 -0.011 -1.353 -0.002 -1.207 0.095
K/S Short-term 0.044 11.920 98.5% 0.073 -0.004 -0.680 0.000 0.239 0.113

0.95 - 1.00 Medium-term 0.036 6.364 93.6% 0.083 -0.010 -0.953 -0.003 -1.162 0.213
Long-term 0.032 1.552 63.9% 0.077 -0.004 -0.343 -0.002 -0.767 0.268

Moneyness All maturities 0.047 5.424 98.5% 0.073 0.014 2.158 0.003 2.770 0.094
K/S Short-term 0.037 5.386 96.9% 0.056 0.018 3.235 0.004 3.737 0.120

1.00 - 1.05 Medium-term 0.027 4.786 90.9% 0.090 0.011 1.689 0.001 1.149 0.238
Long-term 0.093 4.164 78.6% 0.149 0.010 1.087 0.001 0.363 0.219

Moneyness All maturities 0.037 4.636 96.9% 0.054 0.014 2.070 0.003 2.507 0.082
K/S Short-term 0.024 4.061 78.5% 0.042 0.008 1.412 0.002 2.024 0.102

1.05 - 1.10 Medium-term 0.023 3.725 84.0% 0.055 0.003 0.265 0.000 0.136 0.197
Long-term 0.051 2.744 71.4% 0.110 0.017 2.742 0.003 1.585 0.236

γ1 γ2 γ3

 
Panel Β: Combined Regressions on Systematic Risk Proportion, Skewness and Kurtosis

avg. t γ1 > 0 avg. t avg. t R2

All maturities 0.088 10.044 100.0% -0.017 -1.521 -0.004 -1.652 0.248
Moneyness Short-term 0.085 4.905 89.2% -0.014 -1.780 -0.003 -1.312 0.287

K/S Medium-term 0.066 11.120 100.0% -0.010 -0.855 -0.001 -0.503 0.408
0.90 - 0.95 Long-term 0.102 3.802 81.8% -0.014 -1.464 -0.005 -1.986 0.301

Moneyness All maturities 0.067 5.536 96.9% -0.014 -1.244 -0.004 -1.640 0.188
K/S Short-term 0.057 3.902 87.7% -0.003 -0.478 -0.001 -0.684 0.191

0.95 - 1.00 Medium-term 0.037 6.363 93.6% -0.004 -0.365 -0.002 -0.639 0.301
Long-term 0.034 1.531 61.1% -0.003 -0.268 -0.002 -0.809 0.345

Moneyness All maturities 0.056 5.769 93.9% 0.010 1.167 0.002 0.904 0.179
K/S Short-term 0.045 3.455 81.5% 0.016 2.512 0.003 1.905 0.200

1.00 - 1.05 Medium-term 0.033 4.718 87.9% 0.021 3.181 0.004 2.666 0.343
Long-term 0.091 3.183 78.6% 0.012 1.515 0.002 0.825 0.364

Moneyness All maturities 0.049 5.257 87.7% 0.012 1.255 0.002 0.999 0.152
K/S Short-term 0.033 2.429 72.3% 0.010 1.373 0.002 1.267 0.177

1.05 - 1.10 Medium-term 0.034 6.165 88.0% 0.011 0.969 0.001 0.594 0.287
Long-term 0.058 2.237 60.0% 0.011 2.114 0.001 0.716 0.347

γ1 γ2 γ3

 
 
Notes: This table contains two-pass regression results for the level effect tests. In the first pass, for each firm, we 
regress the difference between the implied volatility and the historical volatility on moneyness for non-overlapping 
periods of one month (i.e., 4 weeks): .)(10 ii

his
i

imp
i yyaa εσσ +−+=−  We thus obtain a monthly time-series of the 

intercept 0a  and the slope coefficient 1a  for all firms including the S&P100 index. The moneyness variable is 
adjusted by the sample mean within the month so that the intercept 0a is the average of the difference between the 

implied volatility and the historical volatility. In the second pass, we cross-sectionally regress the intercept 0a  on the 
systematic risk proportion b , the risk-neutral skewness and kurtosis. This regression is done every month in three 

different forms: (1) ,100 jjj eba ++= γγ  (2) j
rn
j

rn
jj eKurtSkewa +++= )(

3
)(

200 γγγ and (3) 

.)(
3

)(
2100 j

rn
j

rn
jjj eKurtSkewba ++++= γγγγ  The monthly regression coefficients are then averaged, and the 

corresponding t-values calculated with a first-order serial correlation correction. The results for regressions (1) and (2) 
are reported in Panel A, while those for regression (3) are in Panel B. To conserve space, we omit the regression 
intercept and its t-value. The t-values in bold type are significant at least at the 10% level, for two-tailed tests. The 

entries under 01 >γ are percentages of the monthly coefficient 1γ  that are positive. The reported 2R is the average 
2R from monthly cross-sectional regressions. The risk-neutral skewness and kurtosis are estimated using the same 

procedure as in Bakshi, Kapadia and Madan (2003). The maturity ranges for short-term, medium-term and long-term 
are, respectively, 20-70 days, 71-120 days, and 121-180 days. The regressions are performed separately for four 
moneyness buckets. 
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Table 4: Regression tests for the slope effect 

Panel A: Separate Regressions on Systematic Risk Proportion, and Skewness and Kurtosis

avg. t γ1 < 0 R2
avg. t avg. t R2

All maturities -0.431 -5.394 86.2% 0.047 0.455 7.995 0.074 4.622 0.101
Moneyness Short-term -0.363 -5.123 78.5% 0.032 0.322 3.836 0.040 2.487 0.107

K/S Medium-term -0.411 -7.813 93.6% 0.100 0.257 3.838 0.045 2.679 0.153
0.90 - 0.95 Long-term -0.183 -1.099 54.6% 0.092 0.057 1.124 0.006 0.435 0.195

Moneyness All maturities -0.441 -6.163 92.3% 0.048 -0.016 -0.180 -0.013 -0.625 0.092
K/S Short-term -0.583 -10.989 95.4% 0.061 -0.081 -1.509 -0.037 -2.856 0.093

0.95 - 1.00 Medium-term -0.534 -14.137 100.0% 0.158 0.134 1.140 0.026 0.967 0.135
Long-term -0.212 -2.002 63.9% 0.056 0.060 1.139 0.012 1.109 0.139

Moneyness All maturities -0.557 -6.343 98.5% 0.055 0.015 0.240 -0.009 -0.583 0.073
K/S Short-term -0.612 -6.825 93.9% 0.060 -0.096 -1.082 -0.032 -1.655 0.098

1.00 - 1.05 Medium-term -0.500 -9.634 97.0% 0.167 0.108 1.277 0.034 1.910 0.223
Long-term -0.563 -2.629 73.8% 0.087 0.034 0.524 0.007 0.369 0.189

Moneyness All maturities 0.003 0.054 49.2% 0.016 -0.124 -1.583 -0.026 -1.388 0.090
K/S Short-term -0.053 -0.971 56.9% 0.021 -0.271 -2.747 -0.066 -2.816 0.114

1.05 - 1.10 Medium-term -0.158 -2.038 68.0% 0.060 -0.107 -1.258 -0.032 -2.337 0.149
Long-term -0.311 -1.633 54.3% 0.090 -0.154 -2.115 -0.045 -1.875 0.181

γ1 γ2 γ3

 
Panel B: Combined Regressions on Systematic Risk Proportion, Skewness and Kurtosis

avg. t γ1 < 0 avg. t avg. t R2

All maturities -0.349 -4.086 76.9% 0.453 7.511 0.079 5.022 0.139
Moneyness Short-term -0.250 -1.656 56.9% 0.347 3.861 0.049 2.838 0.144

K/S Medium-term -0.528 -6.436 93.5% 0.033 0.228 -0.008 -0.217 0.264
0.90 - 0.95 Long-term -0.276 -1.322 59.1% 0.027 0.438 -0.004 -0.249 0.302

Moneyness All maturities -0.433 -4.742 81.5% -0.040 -0.424 -0.007 -0.364 0.134
K/S Short-term -0.511 -5.847 78.5% -0.131 -2.340 -0.035 -2.626 0.140

0.95 - 1.00 Medium-term -0.556 -8.017 93.5% 0.017 0.175 0.003 0.119 0.281
Long-term -0.259 -2.244 63.9% 0.067 1.471 0.019 1.792 0.186

Moneyness All maturities -0.479 -5.326 86.2% -0.017 -0.320 -0.007 -0.530 0.120
K/S Short-term -0.518 -3.926 76.9% -0.127 -1.624 -0.029 -1.656 0.150

1.00 - 1.05 Medium-term -0.434 -6.625 90.9% -0.011 -0.144 0.011 0.695 0.361
Long-term -0.619 -2.248 69.0% 0.045 0.568 0.014 0.674 0.276

Moneyness All maturities -0.007 -0.099 52.3% -0.139 -1.734 -0.030 -1.537 0.113
K/S Short-term 0.052 0.515 50.8% -0.293 -2.823 -0.071 -2.907 0.148

1.05 - 1.10 Medium-term -0.160 -1.788 64.0% -0.154 -1.269 -0.045 -1.816 0.224
Long-term -0.376 -1.556 57.1% -0.128 -1.574 -0.040 -1.430 0.280

γ1 γ2 γ3

 
 
Notes: This table contains two-pass regression results for the slope effect tests. In the first pass, for each firm, we 
regress the difference between the implied volatility and the historical volatility on moneyness for non-overlapping 
periods of one month (i.e., 4 weeks): .)(10 ii

his
i

imp
i yyaa εσσ +−+=− We thus obtain a monthly time-series of the 

intercept 0a  and the slope coefficient 1a  for all firms including the S&P100 index. The moneyness variable is 
adjusted by the sample mean within the month so that the intercept 0a is the average of the difference between the 
implied volatility and the historical volatility. In the second pass, we cross-sectionally regress the slope 1a  on the 
systematic risk proportion b , the risk-neutral skewness and kurtosis. This regression is done every month in three 

different forms: (1) ,101 jjj eba ++= γγ  (2) j
rn
j

rn
jj eKurtSkewa +++= )(

3
)(

201 γγγ and (3) 

.)(
3

)(
2101 j

rn
j

rn
jjj eKurtSkewba ++++= γγγγ  The monthly regression coefficients are then averaged, and the 

corresponding t-values calculated with a first-order serial correlation correction. The results for regressions (1) and (2) 
are reported in Panel A, while those for regression (3) are in Panel B. To conserve space, we omit the regression 
intercept and its t-value. The t-values in bold type are significant at least at the 10% level, for two-tailed tests. The 

entries under <1γ are percentages of the monthly coefficient 1γ  that are negative. The reported 2R is the average 
2R from monthly cross-sectional regressions. The risk-neutral skewness and kurtosis are estimated using the same 

procedure as in Bakshi, Kapadia and Madan (2003). The maturity ranges for short-term, medium-term and long-term 
are, respectively, 20-70 days, 71-120 days, and 121-180 days. The regressions are performed separately for four 
moneyness buckets. 
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Table 5: Sub-sample regression tests for the level effect 
Panel A: Regressions on Systematic Risk Proportion

avg. t γ1 > 0 avg. t γ1 > 0 avg. t γ1 > 0
All maturities 0.067 12.683 100.0% 0.103 0.070 13.825 100.0% 0.107 0.065 6.468 100.0% 0.099

Moneyness Short-term 0.066 11.814 100.0% 0.098 0.067 12.080 100.0% 0.100 0.064 6.490 100.0% 0.095
K/S Medium-term 0.060 12.727 100.0% 0.169 0.063 9.175 100.0% 0.165 0.058 8.939 100.0% 0.172

0.90 - 1.00 Long-term 0.077 6.001 83.1% 0.119 0.079 6.784 87.5% 0.113 0.075 3.245 78.8% 0.125

Moneyness All maturities 0.045 5.114 96.9% 0.064 0.059 6.337 96.9% 0.099 0.031 3.249 97.0% 0.029
K/S Short-term 0.038 4.910 96.9% 0.048 0.053 6.584 96.9% 0.078 0.024 2.421 97.0% 0.019

1.00 - 1.10 Medium-term 0.039 8.910 95.1% 0.102 0.051 8.138 93.1% 0.125 0.029 5.910 96.9% 0.081
Long-term 0.082 5.826 84.6% 0.127 0.098 9.478 90.6% 0.176 0.067 2.528 78.8% 0.080

γ1 γ1 γ1

Whole Sample, 01/01/91 - 31/12/95 Sub-sample, 01/01/91 - 30/06/93 Sub-sample, 01/07/93 - 31/12/95

R2 R2R2

 

avg. t avg. t avg. t avg. t avg. t avg. t
All maturities -0.012 -1.541 -0.002 -1.143 0.091 -0.005 -0.535 -0.002 -0.971 0.067 -0.018 -1.516 -0.002 -0.600 0.115

Moneyness Short-term -0.011 -2.213 -0.001 -0.733 0.110 -0.005 -0.755 0.000 -0.211 0.061 -0.018 -2.298 -0.001 -0.644 0.156
K/S Medium-term -0.021 -3.208 -0.005 -3.417 0.171 -0.016 -1.544 -0.004 -2.101 0.192 -0.025 -3.208 -0.005 -2.680 0.152

0.90 - 1.00 Long-term -0.018 -2.369 -0.007 -3.135 0.136 -0.019 -1.469 -0.008 -2.201 0.165 -0.018 -2.105 -0.005 -2.505 0.108

Moneyness All maturities 0.014 2.058 0.003 2.480 0.082 0.023 3.873 0.004 2.622 0.075 0.005 0.418 0.003 1.126 0.089
K/S Short-term 0.014 2.729 0.003 3.358 0.081 0.024 5.049 0.005 5.142 0.070 0.004 0.566 0.002 1.190 0.091

1.00 - 1.10 Medium-term 0.002 0.322 0.000 -0.173 0.169 0.003 0.302 -0.001 -0.356 0.204 0.001 0.129 0.000 0.159 0.137
Long-term 0.007 1.370 0.001 0.449 0.154 0.009 1.028 0.001 0.248 0.173 0.005 0.890 0.001 0.476 0.136

γ2
R2 R2 R2

Panel B:    Regressions on Skewness and Kurtosis

γ3

Whole Sample, 01/01/91 - 31/12/95 Sub-sample, 01/01/91 - 30/06/93 Sub-sample, 01/07/93 - 31/12/95
γ2γ2 γ3 γ3

 

γ2 γ3 γ2 γ3 γ2 γ3
t γ1 > 0 t t t γ1 > 0 t t t γ1 > 0 t t

All maturities 7.945 100.0% -1.500 -1.742 0.200 15.112 100.0% -0.685 -1.490 0.194 3.934 100.0% -1.199 -1.050 0.206
Moneyness Short-term 5.436 90.8% -1.967 -1.714 0.201 10.507 100.0% -0.401 -1.266 0.165 2.514 81.8% -2.069 -1.298 0.235

K/S Medium-term 17.608 100.0% -1.999 -2.242 0.300 10.732 100.0% -1.282 -1.717 0.322 15.554 100.0% -1.505 -1.364 0.280
0.90 - 1.00 Long-term 6.000 86.2% -2.053 -2.681 0.253 7.276 93.8% -1.355 -2.163 0.275 3.156 78.8% -1.662 -1.857 0.231

Moneyness All maturities 5.759 93.9% 1.055 0.791 0.158 8.435 100.0% 2.470 1.109 0.191 2.929 87.9% 0.059 0.218 0.126
K/S Short-term 3.553 81.5% 1.962 1.526 0.146 9.420 100.0% 4.952 3.056 0.165 1.116 63.6% 0.154 0.258 0.128

1.00 - 1.10 Medium-term 11.217 96.7% 1.199 0.773 0.275 8.502 96.6% 0.507 0.030 0.317 8.412 96.9% 1.284 1.148 0.238
Long-term 5.701 81.5% 1.138 0.570 0.278 11.537 90.6% 0.665 -0.022 0.335 2.394 72.7% 0.961 1.247 0.223

R2 R2

Panel C:  Combined Regressions on Systematic Risk Proportion, Skewness and Kurtosis

γ1 γ1

Whole Sample, 01/01/91 - 31/12/95 Sub-sample, 01/01/91 - 30/06/93 Sub-sample, 01/07/93 - 31/12/95
γ1

R2

 
 
Notes: This table contains two-pass regression results for the level effect tests. The regressions are run for the whole sample (01/01/91-31/12/95) as well as two sub-samples: 
(01/01/91-30/06/93) and (01/07/93-31/12/95). In the first pass, for each firm, we regress the difference between the implied volatility and the historical volatility on moneyness for 
non-overlapping periods of one month (i.e., 4 weeks): .)(10 ii

his
i

imp
i yyaa εσσ +−+=− We thus obtain a monthly time-series of the intercept 0a  and the slope coefficient 1a  

for all firms including the S&P100 index. The moneyness variable is adjusted by the sample mean within the month so that the intercept 0a is the average of the difference 

between the implied volatility and the historical volatility. In the second pass, we cross-sectionally regress the intercept 0a  on the systematic risk proportion b , the risk-neutral 

skewness and kurtosis. This regression is done every month in three different forms: (1) ,100 jjj eba ++= γγ  (2) j
rn
j

rn
jj eKurtSkewa +++= )(

3
)(

200 γγγ and (3) 

.)(
3

)(
2100 j

rn
j

rn
jjj eKurtSkewba ++++= γγγγ  The monthly regression coefficients are then averaged, and the corresponding t-values calculated with a first-order serial 

correlation correction. The results for regressions (1), (2) and (3) are reported in Panels A, B and C, respectively. To conserve space, we omit the regression intercept and its t-
value. The t-values in bold type are significant at least at the 10% level, for two-tailed tests. In Panel C, the coefficients are omitted for brevity. The entries under 01 >γ (in Panels 

A and C) are percentages of the monthly coefficient 1γ  that are positive. The reported 2R is the average 2R from monthly cross-sectional regressions. The risk-neutral skewness 
and kurtosis are estimated using the same procedure as in Bakshi, Kapadia and Madan (2003). The maturity ranges for short-term, medium-term and long-term are, respectively, 
20-70 days, 71-120 days, and 121-180 days. The regressions are performed separately for two moneyness buckets. 



 31

Table 6: Sub-sample regression tests for the slope effect 
 

Panel A: Regressions on Systematic Risk Proportion

avg. t γ1 < 0 avg. t γ1 < 0 avg. t γ1 < 0
All maturities -0.450 -8.994 93.9% 0.100 -0.304 -4.823 87.5% 0.078 -0.592 -22.074 100.0% 0.121

Moneyness Short-term -0.439 -7.697 89.2% 0.064 -0.284 -4.858 78.1% 0.046 -0.589 -10.568 100.0% 0.083
K/S Medium-term -0.453 -13.044 95.2% 0.207 -0.346 -8.111 90.0% 0.193 -0.553 -19.904 100.0% 0.221

0.90 - 1.00 Long-term -0.232 -3.264 66.2% 0.103 -0.118 -1.491 65.6% 0.082 -0.343 -3.871 66.7% 0.123

Moneyness All maturities -0.392 -10.920 96.9% 0.064 -0.404 -6.357 93.8% 0.081 -0.380 -10.449 100.0% 0.049
K/S Short-term -0.461 -14.048 100.0% 0.056 -0.506 -10.184 100.0% 0.072 -0.418 -9.036 100.0% 0.041

1.00 - 1.10 Medium-term -0.394 -12.904 98.4% 0.130 -0.374 -7.760 96.6% 0.119 -0.412 -9.708 100.0% 0.140
Long-term -0.382 -5.637 78.5% 0.090 -0.305 -4.943 81.3% 0.073 -0.456 -3.831 75.8% 0.106

γ1 γ1 γ1

Whole Sample, 01/01/91 - 31/12/95 Sub-sample, 01/01/91 - 30/06/93 Sub-sample, 01/07/93 - 31/12/95

R2 R2 R2

 

avg. t avg. t avg. t avg. t avg. t avg. t
All maturities 0.206 7.295 0.025 3.562 0.124 0.213 5.230 0.036 3.338 0.089 0.200 4.878 0.015 1.690 0.159

Moneyness Short-term 0.201 5.938 0.025 3.746 0.105 0.180 3.367 0.031 2.978 0.078 0.221 5.031 0.020 2.300 0.132
K/S Medium-term 0.235 4.655 0.043 3.773 0.158 0.135 2.939 0.026 2.690 0.115 0.329 4.409 0.058 3.141 0.199

0.90 - 1.00 Long-term 0.114 5.108 0.030 2.919 0.102 0.095 3.628 0.021 2.518 0.093 0.133 3.868 0.039 2.138 0.110

Moneyness All maturities 0.019 0.550 -0.004 -0.554 0.066 0.037 0.627 0.007 0.584 0.062 0.002 0.050 -0.015 -1.938 0.070
K/S Short-term -0.077 -1.883 -0.030 -4.203 0.089 -0.068 -1.008 -0.027 -2.104 0.083 -0.085 -1.747 -0.034 -4.567 0.095

1.00 - 1.10 Medium-term 0.044 1.260 0.009 1.058 0.118 0.029 0.803 0.012 1.623 0.118 0.057 0.972 0.007 0.426 0.118
Long-term 0.022 0.856 0.003 0.410 0.096 0.004 0.127 -0.003 -0.280 0.092 0.038 1.045 0.009 0.858 0.099

R2

Panel B:  Regressions on Skewness and Kurtosis

γ3

Whole Sample, 01/01/91 - 31/12/95 Sub-sample, 01/01/91 - 30/06/93 Sub-sample, 01/07/93 - 31/12/95
γ2γ2 γ3 γ3 γ2

R2 R2

 

γ2 γ3 γ2 γ3 γ2 γ3
t γ1 < 0 t t t γ1 < 0 t t t γ1 < 0 t t

All maturities -9.204 0.877 6.317 3.913 0.189 -6.090 0.844 4.353 3.509 0.155 -7.061 0.909 4.361 2.044 0.222
Moneyness Short-term -6.563 0.800 6.096 5.208 0.141 -4.774 0.688 3.159 3.350 0.111 -5.354 0.909 5.681 3.770 0.170

K/S Medium-term -15.379 0.936 3.275 2.324 0.314 -7.942 0.867 2.228 1.650 0.304 -18.827 1.000 2.654 1.804 0.324
0.90 - 1.00 Long-term -2.164 0.631 4.007 2.095 0.193 -0.519 0.594 3.229 1.974 0.165 -2.829 0.667 2.456 1.415 0.220

Moneyness All maturities -6.948 0.892 0.163 -0.210 0.118 -6.062 0.938 0.208 0.553 0.132 -4.297 0.849 0.028 -0.781 0.103
K/S Short-term -6.156 0.800 -2.278 -3.415 0.130 -9.398 0.938 -1.427 -1.656 0.141 -2.480 0.667 -1.829 -4.103 0.119

1.00 - 1.10 Medium-term -10.119 0.934 -0.376 -0.255 0.236 -7.257 0.897 0.670 1.274 0.223 -6.853 0.969 -0.759 -0.808 0.248
Long-term -4.632 0.769 0.554 -0.021 0.173 -3.288 0.750 0.466 -0.145 0.162 -3.464 0.788 0.308 0.127 0.184

R2 R2

Panel C:  Combined Regressions on Systematic Risk Proportion, Skewness and Kurtosis

γ1 γ1

Whole Sample, 01/01/91 - 31/12/95 Sub-sample, 01/01/91 - 30/06/93 Sub-sample, 01/07/93 - 31/12/95
γ1

R2

 
 
Notes: This table contains two-pass regression results for the slope effect tests. The regressions are run for the whole sample (01/01/91-31/12/95) as well as two sub-samples: 
(01/01/91-30/06/93) and (01/07/93-31/12/95). In the first pass, for each firm, we regress the difference between the implied volatility and the historical volatility on moneyness for 
non-overlapping periods of one month (i.e., 4 weeks): .)(10 ii

his
i

imp
i yyaa εσσ +−+=−  We thus obtain a monthly time-series of the intercept 0a  and the slope coefficient 1a  

for all firms including the S&P100 index. The moneyness variable is adjusted by the sample mean within the month so that the intercept 0a is the average of the difference 
between the implied volatility and the historical volatility. In the second pass, we cross-sectionally regress the slope 1a  on the systematic risk proportion b , the risk-neutral 

skewness and kurtosis. This regression is done every month in three different forms: (1) ,101 jjj eba ++= γγ  (2) j
rn
j

rn
jj eKurtSkewa +++= )(
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201 γγγ and (3) 
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rn
jjj eKurtSkewba ++++= γγγγ  The monthly regression coefficients are then averaged, and the corresponding t-values calculated with a first-order serial 

correlation correction. The results for regressions (1), (2) and (3) are reported in Panels A, B and C, respectively. To conserve space, we omit the regression intercept and its t-
value. The t-values in bold type are significant at least at the 10% level, for two-tailed tests. In Panel C, the coefficients are omitted for brevity. The entries under 01 <γ (in Panels 

A and C) are percentages of the monthly coefficient 1γ  that are negative. The reported 2R is the average 2R from monthly cross-sectional regressions. The risk-neutral skewness 
and kurtosis are estimated using the same procedure as in Bakshi, Kapadia and Madan (2003). The maturity ranges for short-term, medium-term and long-term are, respectively, 
20-70 days, 71-120 days, and 121-180 days. The regressions are performed separately for two moneyness buckets. 
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Table 7: Level and slope effect tests using an alternative estimation of the systematic risk proportion  

avg. t R2 avg. t avg. t avg. t R2

All maturities 0.392 4.480 0.050 0.327 4.106 -0.384 -7.952 -0.069 -5.263 0.135
Moneyness Short-term 0.273 3.033 0.034 0.113 0.921 -0.260 -3.669 -0.033 -2.533 0.139

K/S Medium-term 0.405 8.166 0.123 0.476 10.991 -0.125 -1.568 -0.017 -0.801 0.268
0.90 - 0.95 Long-term 0.109 1.644 0.065 0.129 1.344 -0.023 -0.508 0.002 0.133 0.256

Moneyness All maturities 0.432 7.307 0.064 0.389 4.785 0.045 0.513 0.009 0.460 0.146
K/S Short-term 0.512 8.165 0.061 0.381 3.831 0.094 1.572 0.030 2.090 0.158

0.95 - 1.00 Medium-term 0.517 8.574 0.162 0.543 6.182 -0.065 -0.713 -0.021 -0.808 0.279
Long-term 0.142 1.732 0.078 0.213 2.617 -0.014 -0.249 -0.005 -0.462 0.204

Moneyness All maturities 0.545 4.753 0.068 0.484 4.351 0.056 1.110 0.013 1.043 0.133
K/S Short-term 0.610 4.446 0.071 0.489 3.010 0.192 2.461 0.042 2.296 0.156

1.00 - 1.05 Medium-term 0.584 9.157 0.186 0.543 6.341 0.003 0.035 -0.013 -0.866 0.364
Long-term 0.607 4.549 0.150 0.573 4.256 0.015 0.191 0.002 0.078 0.332

Moneyness All maturities 0.042 0.500 0.032 0.047 0.457 0.193 2.207 0.042 2.045 0.121
K/S Short-term 0.191 2.430 0.036 0.110 1.115 0.337 2.982 0.080 3.233 0.153

1.05 - 1.10 Medium-term 0.197 2.592 0.075 0.233 2.890 0.168 1.470 0.043 2.034 0.219
Long-term 0.339 3.433 0.098 0.235 2.013 0.209 2.470 0.054 2.212 0.277

Multivariate RegressionsUnivariate Regressions
Panel A: Level Effects

γ1 γ2 γ3γ1

 

avg. t R2 avg. t avg. t avg. t R2

All maturities -0.347 -3.701 0.044 -0.268 -3.144 0.412 7.629 0.073 4.907 0.129
Moneyness Short-term -0.226 -2.299 0.031 -0.051 -0.387 0.279 3.682 0.037 2.571 0.136

K/S Medium-term -0.388 -7.331 0.114 -0.467 -9.181 0.117 1.411 0.013 0.624 0.258
0.90 - 0.95 Long-term -0.092 -1.348 0.060 -0.118 -1.151 0.011 0.215 -0.008 -0.564 0.256

Moneyness All maturities -0.402 -6.389 0.061 -0.349 -4.006 -0.041 -0.469 -0.009 -0.474 0.145
K/S Short-term -0.514 -8.385 0.059 -0.376 -3.657 -0.092 -1.538 -0.030 -2.098 0.156

0.95 - 1.00 Medium-term -0.527 -9.938 0.161 -0.556 -6.895 0.079 0.862 0.022 0.863 0.275
Long-term -0.184 -2.191 0.081 -0.249 -2.813 0.031 0.604 0.009 0.785 0.208

Moneyness All maturities -0.483 -4.362 0.061 -0.419 -3.899 -0.031 -0.614 -0.009 -0.688 0.125
K/S Short-term -0.572 -4.194 0.068 -0.456 -2.840 -0.166 -2.178 -0.037 -2.068 0.152

1.00 - 1.05 Medium-term -0.578 -9.055 0.189 -0.535 -6.438 0.025 0.280 0.018 1.073 0.372
Long-term -0.572 -4.495 0.147 -0.537 -4.211 -0.002 -0.031 0.000 0.003 0.326

Moneyness All maturities 0.003 0.043 0.031 0.006 0.068 -0.153 -1.917 -0.034 -1.798 0.120
K/S Short-term -0.158 -2.179 0.035 -0.076 -0.845 -0.296 -2.912 -0.071 -3.170 0.151

1.05 - 1.10 Medium-term -0.165 -2.197 0.080 -0.196 -2.364 -0.142 -1.225 -0.037 -1.713 0.223
Long-term -0.280 -3.076 0.092 -0.188 -1.807 -0.181 -2.347 -0.049 -2.082 0.280

Univariate Regressions
Panel B: Slope Effects

Multivariate Regressions
γ1 γ1 γ2 γ3

 
 
Notes: This table contains two-pass regression results for the level and slope effect tests using an alternative estimation of the systematic risk proportion. Instead of running the 
daily, one-year rolling window OLS regressions in estimating the systematic and total risks, we now run weekly, five-year rolling window regressions. In other words, the data 
frequency is weekly (Wednesday to Wednesday) and the sample period is five years. The weekly estimates are annualized and merged with the option data. The two-pass 
regressions are then run in the same fashion as in Table 3 and Table 4. Panel A corresponds to Table 3 and Panel B corresponds to Table 4. Please refer to those tables for further 
explanations. Here, to conserve space, we only report the regression coefficients together with their t-values and the average 2R .  For brevity, we also omit the results for 
regressions whose explanatory variables are only the skewness and kurtosis. The t-values in bold type are significant at least at the 10% level, for two-tailed tests.  
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Table 8: Level and slope effect tests without the index     

avg. t R2 avg. t avg. t avg. t R2

All maturities 0.102 3.513 0.099 0.119 4.078 -0.022 -1.979 -0.005 -2.261 0.215
Moneyness Short-term 0.102 4.033 0.120 0.109 4.054 -0.018 -2.165 -0.003 -1.780 0.257

K/S Medium-term 0.087 2.912 0.138 0.113 3.700 -0.007 -0.448 -0.001 -0.356 0.348
0.90 - 0.95 Long-term 0.104 3.978 0.131 0.102 3.802 -0.014 -1.464 -0.005 -1.986 0.301

Moneyness All maturities 0.090 4.196 0.084 0.102 4.656 -0.017 -1.602 -0.005 -2.142 0.196
K/S Short-term 0.078 5.375 0.076 0.079 4.787 -0.005 -0.607 -0.001 -0.897 0.193

0.95 - 1.00 Medium-term 0.087 2.376 0.084 0.097 2.213 0.002 -0.142 -0.001 -0.289 0.335
Long-term 0.031 1.512 0.078 0.033 1.511 -0.003 -0.252 -0.002 -0.782 0.346

Moneyness All maturities 0.087 3.200 0.098 0.096 3.799 0.006 -0.595 0.000 0.249 0.204
K/S Short-term 0.072 3.620 0.091 0.079 3.978 0.013 -2.033 0.002 -1.374 0.233

1.00 - 1.05 Medium-term 0.045 1.913 0.104 0.068 2.457 0.014 -1.191 0.002 -0.721 0.382
Long-term 0.093 4.164 0.149 0.091 3.183 0.012 -1.515 0.002 -0.825 0.364

Moneyness All maturities 0.076 2.909 0.097 0.087 3.099 0.008 -0.792 0.001 -0.502 0.193
K/S Short-term 0.057 2.756 0.101 0.057 2.533 0.006 -0.711 0.001 -0.375 0.244

1.05 - 1.10 Medium-term 0.117 2.659 0.139 0.147 2.647 0.006 -0.357 0.001 -0.230 0.363
Long-term 0.051 2.744 0.110 0.058 2.237 0.011 -2.114 0.001 -0.716 0.347

Multivariate RegressionsUnivariate Regressions
Panel A: Level Effects

γ1 γ2 γ3γ1

 

avg. t R2 avg. t avg. t avg. t R2

All maturities -0.145 -0.643 0.049 -0.148 -0.625 0.407 6.458 0.067 3.948 0.147
Moneyness Short-term -0.261 -1.050 0.054 -0.129 -0.410 0.319 2.964 0.036 1.525 0.175

K/S Medium-term -0.274 -0.817 0.105 -0.271 -0.730 0.046 0.436 -0.010 -0.359 0.276
0.90 - 0.95 Long-term -0.183 -1.099 0.092 -0.276 -1.322 0.027 0.438 -0.004 -0.249 0.302

Moneyness All maturities 0.071 0.478 0.031 0.056 0.358 -0.032 -0.321 -0.005 -0.208 0.123
K/S Short-term -0.082 -0.648 0.032 -0.066 -0.464 -0.105 -1.471 -0.026 -1.389 0.120

0.95 - 1.00 Medium-term -0.164 -0.625 0.087 -0.023 -0.084 0.098 0.428 0.033 0.644 0.257
Long-term -0.205 -1.932 0.057 -0.248 -2.120 0.065 1.428 0.018 1.675 0.187

Moneyness All maturities -0.551 -3.395 0.045 -0.506 -2.609 -0.051 -0.868 -0.014 -0.941 0.114
K/S Short-term -0.758 -3.448 0.068 -0.784 -3.156 -0.163 -1.798 -0.036 -1.772 0.167

1.00 - 1.05 Medium-term 0.263 1.036 0.114 0.309 0.991 0.003 0.031 0.007 0.415 0.331
Long-term -0.563 -2.629 0.087 -0.619 -2.248 0.045 0.568 0.014 0.674 0.276

Moneyness All maturities -0.229 -1.261 0.036 -0.302 -1.579 -0.153 -1.816 -0.035 -1.695 0.138
K/S Short-term -0.323 -1.229 0.051 -0.259 -1.060 -0.369 -3.973 -0.093 -4.668 0.177

1.05 - 1.10 Medium-term -0.432 -1.542 0.105 -0.723 -1.703 -0.141 -0.943 -0.048 -1.498 0.264
Long-term -0.311 -1.633 0.090 -0.376 -1.556 -0.128 -1.574 -0.040 -1.430 0.280

Univariate Regressions
Panel B: Slope Effects

Multivariate Regressions
γ1 γ1 γ2 γ3

 
 
Notes: This table contains two-pass regression results for the level and slope effect tests by excluding the S&P 100 index from the sample. The testing procedures are the same as 
those in Tables 3 and 4. Panel A corresponds to Table 3 and Panel B corresponds to Table 4. Please refer to those tables for further explanations. In Tables 3 and 4, the second-pass 
cross-sectional regressions are run over the 30 stocks and the S&P 100 index; in this table, the cross-sectional regressions are run over the 30 stocks only. To conserve space, we 
only report the regression coefficients together with their t-values and the average 2R .  For brevity, we also omit the results for regressions whose explanatory variables are only 
the skewness and kurtosis. The t-values in bold type are significant at least at the 10% level, for two-tailed tests.  
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Table 9: Level and slope effect tests based on panel regressions 

α0 t α1 t β0 t β1 t R2

All maturities 0.032 225.24 0.068 143.46 -0.361 -36.74 -0.730 -21.88 0.237
Moneyness Short-term 0.038 188.15 0.066 100.35 -0.566 -39.50 -0.615 -13.25 0.238

K/S Medium-term 0.032 129.59 0.064 85.19 -0.275 -16.16 -0.636 -12.06 0.295
0.90 - 0.95 Long-term 0.016 55.14 0.088 33.45 -0.021 -1.07 -0.660 -3.60 0.066

Moneyness All maturities 0.018 141.22 0.037 85.62 -0.229 -24.92 -0.616 -20.58 0.106
K/S Short-term 0.018 95.65 0.036 60.20 -0.318 -24.25 -0.654 -15.68 0.105

0.95 - 1.00 Medium-term 0.022 97.10 0.038 55.64 -0.202 -12.33 -0.524 -10.87 0.155
Long-term 0.015 51.96 0.053 21.06 -0.026 -1.29 -0.511 -2.79 0.030

Moneyness All maturities -0.007 -53.81 0.028 63.67 -0.057 -6.22 -0.409 -13.47 0.053
K/S Short-term -0.006 -30.28 0.022 36.59 -0.050 -3.84 -0.428 -10.26 0.035

1.00 - 1.05 Medium-term -0.004 -18.34 0.029 43.31 -0.090 -5.56 -0.427 -8.92 0.095
Long-term -0.014 -48.34 0.075 28.78 -0.026 -1.26 -0.098 -0.53 0.050

Moneyness All maturities -0.008 -53.31 0.021 31.73 0.070 6.40 0.050 0.95 0.018
K/S Short-term -0.003 -13.91 0.014 15.16 0.201 12.50 -0.117 -1.59 0.013

1.05 - 1.10 Medium-term -0.011 -37.30 0.021 20.60 -0.010 -0.50 0.240 2.87 0.029
Long-term -0.017 -56.35 0.066 22.52 -0.055 -2.66 -0.415 -1.96 0.036  

 
Notes: This table contains panel regression results for the level and slope effect tests. For each moneyness / maturity bucket, 
instead of running the Fama-MacBeth two pass-regressions, we lump the entire sample and run the following panel 
regression: 

ijjijiijiij
his
ij

imp
ij yybbbb εββαασσ +−−++−+=− )]))(([()]([( 1010

, where 
ib  is the cross-sectional average of 

the systematic risk proportion for each day, and 
jy is the sample average of moneyness for stock j or the index within the 

bucket. This panel regression tests the level and slope effects simultaneously. Specifically, if the systematic risk proportion 
doesn’t affect the price level or the level of the implied volatility (after adjusting for the historical volatility), then the 
coefficient 

1α  should not be significantly different from zero; likewise, if the systematic risk proportion doesn’t affect the 
slope of the implied volatility curve, then the coefficient 

1β  should not be significantly different from zero. The t-values in 
bold type are significant at least at the 10% level, for two-tailed test.
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Table 10: Level and slope effect tests using systematic risk estimates derived from Fama-French factors  

avg. t R2 avg. t avg. t avg. t R2

All maturities 0.069 13.009 0.120 0.074 8.601 -0.017 -1.552 -0.004 -1.618 0.221
Moneyness Short-term 0.069 15.816 0.142 0.072 5.887 -0.013 -1.787 -0.002 -1.230 0.262

K/S Medium-term 0.064 14.167 0.219 0.065 10.874 -0.013 -1.158 -0.002 -0.836 0.397
0.90 - 0.95 Long-term 0.074 5.916 0.089 0.070 5.758 -0.011 -1.092 -0.004 -1.622 0.262

Moneyness All maturities 0.045 10.776 0.063 0.057 5.218 -0.014 -1.251 -0.004 -1.604 0.169
K/S Short-term 0.041 10.568 0.066 0.047 3.877 -0.003 -0.401 -0.001 -0.432 0.176

0.95 - 1.00 Medium-term 0.032 5.375 0.076 0.032 5.484 -0.008 -0.682 -0.002 -0.937 0.296
Long-term 0.010 0.661 0.065 0.021 1.873 -0.003 -0.248 -0.002 -0.716 0.328

Moneyness All maturities 0.040 4.076 0.061 0.046 4.103 0.011 1.307 0.002 1.199 0.165
K/S Short-term 0.032 3.980 0.052 0.034 2.849 0.016 2.771 0.003 2.432 0.192

1.00 - 1.05 Medium-term 0.025 3.295 0.089 0.032 4.067 0.020 3.176 0.003 2.600 0.342
Long-term 0.071 3.621 0.134 0.074 3.120 0.014 1.796 0.002 0.986 0.362

Moneyness All maturities 0.030 3.735 0.045 0.037 3.998 0.013 1.501 0.002 1.420 0.138
K/S Short-term 0.020 3.361 0.039 0.025 1.878 0.011 1.490 0.002 1.585 0.171

1.05 - 1.10 Medium-term 0.020 2.720 0.056 0.030 4.683 0.009 0.808 0.001 0.443 0.279
Long-term 0.024 1.544 0.106 0.036 1.832 0.012 2.288 0.001 0.766 0.334

Multivariate RegressionsUnivariate Regressions
Panel A: Level Effects

γ1 γ2 γ3γ1

 

avg. t R2 avg. t avg. t avg. t R2

All maturities -0.464 -6.628 0.051 -0.400 -5.260 0.454 7.500 0.080 5.041 0.142
Moneyness Short-term -0.372 -5.766 0.033 -0.230 -1.819 0.346 3.791 0.048 2.762 0.142

K/S Medium-term -0.430 -8.799 0.101 -0.528 -8.403 0.067 0.536 0.001 0.046 0.262
0.90 - 0.95 Long-term -0.231 -1.459 0.104 -0.287 -1.417 0.049 0.801 0.002 0.105 0.310

Moneyness All maturities -0.426 -7.016 0.048 -0.396 -5.342 -0.045 -0.497 -0.011 -0.528 0.134
K/S Short-term -0.558 -11.463 0.055 -0.446 -5.854 -0.130 -2.272 -0.038 -2.745 0.135

0.95 - 1.00 Medium-term -0.522 -16.269 0.149 -0.526 -7.930 0.046 0.437 0.008 0.328 0.271
Long-term -0.133 -1.303 0.052 -0.144 -0.906 0.075 1.431 0.030 1.478 0.187

Moneyness All maturities -0.507 -5.781 0.048 -0.421 -5.020 -0.003 -0.059 -0.005 -0.367 0.113
K/S Short-term -0.564 -6.132 0.055 -0.446 -3.190 -0.113 -1.370 -0.027 -1.450 0.146

1.00 - 1.05 Medium-term -0.492 -9.356 0.156 -0.424 -6.733 0.000 0.004 0.013 0.873 0.351
Long-term -0.481 -2.459 0.089 -0.488 -2.032 0.039 0.555 0.013 0.660 0.287

Moneyness All maturities -0.007 -0.159 0.017 -0.011 -0.173 -0.144 -1.809 -0.030 -1.570 0.112
K/S Short-term -0.047 -0.800 0.023 0.029 0.265 -0.298 -2.838 -0.070 -2.777 0.151

1.05 - 1.10 Medium-term -0.158 -2.124 0.059 -0.162 -1.835 -0.161 -1.326 -0.047 -1.904 0.222
Long-term -0.255 -1.553 0.089 -0.386 -2.050 -0.116 -1.566 -0.038 -1.458 0.278

Univariate Regressions
Panel B: Slope Effects

Multivariate Regressions
γ1 γ1 γ2 γ3

 
 
Notes: This table contains two-pass regression results for the level and slope effect tests using systematic risk estimates derived from the Fama-French factors. The testing 
procedures are otherwise the same as those in Tables 3 and 4. Panel A corresponds to Table 3 and Panel B corresponds to Table 4. Please refer to those tables for further 
explanations. In Tables 3 and 4, the systematic risk is estimated by regressing the stock’s returns on the market returns (S&P 500). Here, the systematic risk is estimated by 
regressing the stock’s returns on the two Fama-French factors as well as on the market returns. The daily Fama-French factors are downloaded from Kenneth French’s website. To 
conserve space, we only report the regression coefficients together with their t-values and the average 2R .  For brevity, we also omit the results for regressions whose explanatory 
variables are only the skewness and kurtosis. The t-values in bold type are significant at least at the 10% level, for two-tailed tests
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Figure 1: Daily implied and historical volatilities for the S&P100 index 
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Note:  This figure plots S&P100 index's daily implied and historical volatilities (annualized) for the sample period 
from January 1, 1991 to December 31, 1995. The historical volatility is computed using the one-year rolling window 
of daily returns and is annualized by multiplying 250 . The daily implied volatility is the average of the implied 
volatilities of all the contracts in our sample on each day. The correlation coefficient between the two daily volatility 
series is 0.644. 
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Figure 2: The implied volatility as a function of moneyness corresponding to different 
levels of asset risk premium 
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Note: Each curve depicts the Black-Scholes implied volatilities of European options in relation to K/S. The option 
maturity is fixed at 60 business days. The option values are computed using the GARCH option pricing model for 
three different levels of asset risk premium. 
 
 
Figure 3: The standardized volatility of the risk-neutral cumulative return distribution as a 

function of maturity corresponding to different levels of asset risk premium 
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Note: Each curve depicts the standard deviation of the risk-neutral cumulative return distribution in relation to the 
maturity stated in number of business days. The standard deviation has been annualized using the square root of the 
maturity. The risk-neutral cumulative return distribution is obtained by a 50,000-path empirical martingale 
simulation using the GARCH option pricing model under different levels of asset risk premium. 
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Figure 4: The skewness of the risk-neutral cumulative return distribution as a function of 
maturity corresponding to different levels of asset risk premium 
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Note: Each curve depicts the skewness of the risk-neutral cumulative return distribution in relation to the maturity 
stated in number of business days. The risk-neutral cumulative return distribution is obtained by a 50000-path 
empirical martingale simulation using the GARCH option pricing model under different levels of asset risk 
premium. 
 
 

Figure 5: The kurtosis of the risk-neutral cumulative return distribution as a function of 
maturity corresponding to different levels of asset risk premium 
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Note: Each curve depicts the kurtosis of the risk-neutral cumulative return distribution in relation to the maturity 
stated in number of business days. The risk-neutral cumulative return distribution is obtained by a 50,000-path 
empirical martingale simulation using the GARCH option pricing model under different levels of asset risk 
premium. 


