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ABSTRACT

Copulas are statistical tools for modelling the multivariate dependence struc-
ture among variables in a distribution free way. This paper investigates bivari-
ate copula structure, the existence and uniqueness of bivariate copula decom-
position in terms of a comonotonic, an independent, a countermonotonic, and
an indecomposable part are proved, while the coefficients are determined by
partial derivatives of the corresponding copula. Moreover, for the indecompos-
able part, an optimal convex approximation is provided and analyzed based
on the usual criterion. Some applications of the decomposition in finance and
insurance are mentioned.

Keywords: Comonotonotic factor, Countermonotonotic factor, Indepen-
dent factor, Copula decomposition.

1 Introduction

A copula is a multivariate distribution function with uniform marginal distri-
butions. It describes the multivariate dependence structure among the ran-
dom variables in a distribution free way. Sklar’s theorem states that for an
n-dimensional distribution function H with marginal distributions F1, · · · , Fn,
there exists an n-copula C such that for all (x1, x2, · · · , xn) ∈ R

n
,

H(x1, x2, · · · , xn) = C
(
F1(x1), F2(x2), · · · , Fn(xn)

)
. (1.1)
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If all the marginal distributions are continuous, then C is unique.
In two dimensional case, every copula is bounded by two copulas C+(u, v) =

min{u, v} and C−(u, v) = max{u + v − 1, 0}, i.e.,

C−(u, v) ≤ C(u, v) ≤ C+(u, v).

Copula C− is often called the lower Fréchet − Hoeffding bound, and copula C+

is called the upper Fréchet − Hoeffding bound. Another well-known copula is
the so-called independence copula,

C⊥(u, v) = uv,

which is very common in statistics and probability for modelling sequences of
independent experiments.

Sklar’s Theorem essentially states that in multivariate setting, marginal
distributions and the dependence between observations can be treated sepa-
rately. This is of great importance for practical work, especially in economics
and finance field which always try finding dependence among different random
variables. The use of the copula function allows us to overcome the issue of
estimating the multivariate distribution function by splitting the distribution
function into two unrelated parts:

1. estimate the marginal distributions by fitting the corresponding data via
choosing the proper statistical methods;

2. determine the dependence structure of the random variables by specify-
ing a meaningful copula function.

Therefore it has been of great interest to researchers for a long time, see
Schweizer (1991), Schweizer and Wolff (1981), Joe (1997), Mari and Kotz
(2001) and Nelsen (1991).

On the other hand, in recent years there has been an increasing attention
on the dependence structure in finance and insurance. This is due to the fact
that the dependence structure is more critical, such as in risk management (for
risk measure or pricing), in portfolio selection for hedging or other purposes,
in aggregate claims of an insurance portfolio over a certain future reference
period, etc. There are many papers dealing with these problems by focusing
on copula approach. See Muller and Scarsini (2001), Sarathy, Muralidhar and
Parsa (2002), Jondeau and Rockinger (2002), Smith (2003), Alink, Löwe and
Wüthrich (2004), Frees and Valdez (1996) and the references therein.

Recently, three important correlations–comonotonicity, countermonotonic-
ity and independence, play significant roles in insurance and finance. The term
”comonotonic” comes from ’common monotonic’ and is discussed by Schmei-
dler (1986) and Denneberg (1994). According to Denneberg (1994, pp.54-55),
two random variables X and Y are said to be comonotonic, if there exist a ran-
dom variable Z and two non-decreasing functions f and g such that X = f(Z)
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and Y = g(Z). Comonotonicity is an extreme positive correlation, it is a
deterministic correlation. When X and Y are comonotonic, the outcomes of
X and Y always move in the same direction, then neither of them can hedge
against the other. The key role of comonotonic can be seen in dual theory
(Yaari, 1987), Wang’s premium principle (Wang, et al,1997), stop-loss orders
and risk measures (Dhaene, et al, 2002a, 2002b). Another extreme case is
countermonotonic, an exact opposite of the comonotonic situation, where X
and Y are said to be countermonotonic if X and −Y are comonotonic. Coun-
termonotonicity is also important in two dimensional case, see Dhaene, et al
(2002b), Embrechets, et al (2001). As we all have known, independence is a
very important correlation in describing the dependence structure of risks.

Initiated by the important roles of the above three correlations, for ar-
bitrary two random variables it is interesting to find out their dependence
structure in terms of the above dependencies. Thanks for the relationship
between the three correlations and the copula functions C+, C− and C⊥. The-
orem 2.5.4 of Nelsen (1999) stated that X and Y are almost surely increasing
functions of each other if and only if their joint distribution function equals
its Fréchet − Hoeffding upper bounds i.e., min{P (X ≤ x), P (Y ≤ y)}. In an-
other words, the fact that X and Y are comonotonic is equivalent to that their
copula equals C+. Similarly, that X and Y are countermonotonic is equivalent
to that their copula function equals C−. Obviously, X and Y are independent
if and only if their copula function equals C⊥. The above equivalence relation-
ships allow us to focus our discussion on the structure of copulas.

In this paper, for a bivariate copula C we first define its comonotonic factor,
its countermonotonic factor and its independent factor, respectively. Then we
consider the following decomposition

C(u, v) = αC+(u, v) + βC⊥(u, v) + γC−(u, v) + lG(u, v), (1.2)

where α, β, γ, l ≥ 0 and G is a copula. The first three terms of the above convex
sum correspond to the comonotonic part, the independent part and the coun-
termonotonic part, respectively. A copula C is called indecomposable, if for
each decomposition of the above form it is necessarily that α = β = γ = 0. We
will show that a copula C can be decomposed uniquely as a convex combina-
tion of a comonotonic part, an independent part, a countermonotonic part, and
an indecomposable part, while the first three coefficients of the decomposition
are its comonotonic factor, its countermonotonic factor and its independent
factor. Moreover, we will also show that the three factors can be determined
by partial derivatives of the corresponding copula. For an indecomposable cop-
ula, an optimal approximation by the convex combination of comonomtonic
part, countermonotonic part and independent part is provided under the usual
criterion.

This paper is organized as follows: Section 2 gives our main results on bi-
variate copula decomposition in terms of comonotonicity, countermonotonicity
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and independence, while the method to determine the coefficient of each term
in the decomposition is also given. Section 3 presents the convex combina-
tion of C+, C− and C⊥ to approximate the indecomposable part under some
criteria. In Section 4 the random mechanic on the convex decomposition is
presented. In Section 5 some applications of our results in finance and insur-
ance are briefly provided. Sections 6-7 give the mathematical derivation of our
results. Section 8 draws conclusions.

2 The convex decomposition of bivariate copula

For a copula C, its comonotonic factor αC is defined as the largest α ∈ [0, 1]
such that

C(u, v) = αC+(u, v) + (1 − α)B(u, v),

here B(u, v) is also a copula. Similarly, its independent factor βC and counter-
monotonic factor are defined as the largest β ∈ [0, 1] and the largest γ ∈ [0, 1]
such that

C(u, v) = βC⊥(u, v) + (1 − β)D(u, v)

and
C(u, v) = γC−(u, v) + (1 − γ)E(u, v),

here D and E are copulas.
For a bivariate function g, we denote

�(x2,y2)
(x1,y1)

(g) = g(x1, y1) + g(x2, y2) − g(x1, y2) − g(x2, y1),

where x1 ≤ x2 and y1 ≤ y2. It is easy to obtain that

αC = sup{a : �(x2,y2)
(x1,y1)

(C) ≥ a�(x2,y2)
(x1,y1)

(C+) for all x2 ≥ x1, y2 ≥ y1}. (2.1)

Let μC and μC+ be the probability measures induced by C and C+, respectively.
Then for x1 ≤ x2 and y1 ≤ y2,

μC ((x1, y1] × (x2, y2]) = �(x2,y2)
(x1,y1)

(C), μC+ ((x1, y1] × (x2, y2]) = �(x2,y2)
(x1,y1)(C

+).

Thus the comonotonic factor can be expressed as

αC = sup{a : μC ((x1, y1] × (x2, y2]) ≥ aμC+ ((x1, y1] × (x2, y2])

for all x2 ≥ x1, y2 ≥ y1}.

From measure theory we know that

αC = sup{a : μC(B) ≥ aμC+(B) for all Borel set B ⊆ [0, 1] × [0, 1]}

Similarly, the independent factor of C can be expressed as

βC = sup{b : �(x2,y2)
(x1,y1)

(C) ≥ b�(x2,y2)
(x1,y1)

(C⊥) for all x2 ≥ x1, y2 ≥ y1}, (2.2)
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and the countermonotonic factor of C can be expressed as

γC = sup{c : �(x2,y2)
(x1,y1)

(C) ≥ c�(x2,y2)
(x1,y1)

(C−) for all x2 ≥ x1, y2 ≥ y1}. (2.3)

Note that the comonotonic factor αC accounts for the portion of positive de-
terministic relationship between two random variables, the countermonotonic
factor γC accounts for the portion of negative deterministic relationship, and
the independent factor βC gives the portion of independent part.

Here we need some notations. Let

DC,1 = {(u, v) ∈ [0, 1]2 :
∂

∂u
C(u, v) exists}

and

DC,2 = {(u, v) ∈ [0, 1]2 :
∂

∂v
C(u, v) exists}.

Denote

M1(u) = lim
v↓u,(u,v)∈DC,1

∂C(u, v)

∂u
− lim

v↑u, (u,v)∈DC,1

∂C(u, v)

∂u
,

M2(v) = lim
u↓v, (u,v)∈DC,2

∂C(u, v)

∂v
− lim

u↑v, (u,v)∈DC,2

∂C(u, v)

∂v
,

M3(u) = lim
v↑u,(u,1−v)∈DC,1

∂C(u, 1 − v)

∂u
− lim

v↓u,(u,1−v)∈DC,1

∂C(u, 1 − v)

∂u
,

M4(v) = lim
u↑v,(1−u,v)∈DC,2

∂C(1 − u, v)

∂v
− lim

u↓v,(1−u,v)∈DC,2

∂C(1 − u, v)

∂v
.

Note that ∂
∂u

C(u, v), ∂
∂v

C(u, v) and ∂2

∂u∂v
C(u, v) exist for almost all (u, v) ∈

[0, 1]2 with respect to Lebesgue measure (Theorem 7.1.8 of Lojasiewicz (1988)
and Theorem 2.2.7 of Nelsen (1991)). For each fixed u ∈ (0, 1), M1(u) is the

size of the jump discontinuity in ∂C(u,v)
∂u

at v = u, and M3(u) is the size of the

jump discontinuity in ∂C(u,v)
∂u

at v = 1 − u. For each fixed v ∈ (0, 1), M2(v) is

the size of the jump discontinuity in ∂C(u,v)
∂v

at u = v, and M4(v) is the size of

the jump discontinuity in ∂C(u,v)
∂v

at u = 1 − v.

Another notation is also needed. For one measurable function h(x), x ∈ R2,
its essential infimum in a measurable set A ∈ R2, is denoted as g = essinfAh(x).

Theorem 2.1. (1) Each copula C can be decomposed as a convex combina-
tion (1.2) of a comonotonic, an independent, a countermonotonic, and an
indecomposable part with α, β, γ, l ≥ 0. Such a decomposition is unique, and
the coefficients α, β, γ, l equal to the factors αC , βC , γC and lC, respectively,
where lC = 1 − αC − βC − γC.
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(2) The factors αC, βC and γC can be computed by using the following essential
infimums,

βC = essinf(u,v)∈[0,1]2
∂2C(u, v)

∂u∂v
, (2.4)

αC = essinfu∈[0,1]M1(u) = essinfv∈[0,1]M2(v), (2.5)

γC = essinfu∈[0,1]M3(u) = essinfv∈[0,1]M4(v), (2.6)

here every essential infimum in the above equations exists and

0 ≤ αC + βC + γC ≤ 1. (2.7)

This theorem presents the relationship between the three factors αC , βC

and γC and the convex decomposition (1.2). The uniqueness of the decom-
position allows us to deal with two random variables’ correlation by focusing
on its every part separately. This theorem can also be generalized. For two
random variables X and Y with copula C and marginal distributions F1 and
F2, applying C’s convex decomposition, the joint distribution function H of
(X, Y ) can be expressed as

H(x, y) = αCC+(F1(x), F2(y)) + βCC⊥(F1(x), F2(y))

+γCC−(F1(x), F2(y)) + lCGC(F1(x), F2(y)). (2.8)

Example 1: Normal copula is given by

C(u, v) = Φρ(Φ
−1(u), Φ−1(v)),

where Φρ is bivariate normal distribution with standard normal marginal distri-
butions and the correlation coefficient −1 < ρ < 1, Φ−1 is the inverse function
of standard normal distribution. One can verify that αC = γC = 0. In the
case ρ �= 0,

βC = essinf(u,v)∈[0,1]2
∂2

∂u∂v
Φρ(Φ

−1(u), Φ−1(v)) = 0.

Thus the normal copula is indecomposable when ρ �= 0.

Example 2: Consider the copula ( Farlie-Gumbel-Morgenstern family)

Cθ(u, v) = uv + θuv(1 − u)(1 − v),

with the parameter θ ∈ [−1, 1]. By detailed calculation one can obtain that

βCθ
= 1 − |θ|, αCθ

= γCθ
= 0

For θ �= 0, the indecomposable part of Cθ is C1 when θ > 0 and C−1 when
θ < 0.
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Example 3: Consider the copula

C(u, v) = C⊥(u, v) (1 − log max{u, v}) , (u, v) ∈ [0, 1]2.

For this copula, αC = βC = γC = 0. It is indecomposable.
Example 4: Consider the two-parameter comprehensive family (Nelsen (1999,
p.13) or Kass, et al (2001, p.264))

C(u, v) = a1C
+(u, v) + (1 − a1 − a2)C

⊥(u, v) + a2C
−(u, v)

with a1 ≥ 0, a2 ≥ 0 and a1 + a2 ≤ 1. The copula C is the convex combination
of comonotonic copula, independent copula and countermonotonic copula. Its
comonotonic factor, independent factor and countermonotonic factor are a1,
1 − a1 − a2 and a2 respectively. In the case a1 > 0, its comonotonic factor is
greater than zero. In the next section, the comprehensive copula will be used
to approximate indecomposable copula.

From the normal copula it can be seen that two random variables may
be positive correlated, however their comonotonic factor may equal to zero.
Example 2 tells us that for two correlated random variables, some portion of
them may be independent. Examples 3 gives another indecomposable copula.
Example 4 gives an example that the comonotonic factor is positive.

The next corollary gives the necessary and sufficient condition for a copula
to be indecomposable.

Corollary 2.2. Copula C is indecomposable if and only if the following con-
ditions hold:

essinf(u,v)∈[0,1]2
∂2C(u, v)

∂u∂v
= essinfu∈[0,1]M1(u) = essinfu∈[0,1]M3(u) = 0.

For the copula C with continuous density function over [0, 1]× [0, 1], αC =
γC = 0 and βC equals the essential infimum of the joint density function over
[0, 1] × [0, 1]. In this case the possible decomposition of the copula is the
sum of the independent part and the indecomposable part. Moreover, C is
indecomposable if and only if

essinf(u,v)∈[0,1]2
∂2C(u, v)

∂u∂v
= 0.

3 Approximation of the indecomposable part

Usually, for comonotonic, countermonotonic and independent random vari-
ables, it is easy to tackle them, such as in Wang’s premium principle, (Wang,
et al, 1997), dual theory (Yaari, 1987), stop-loss orders and risk measures
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(Dhaene, et al, 2002a, 2002b). For the indecomposable part, it benefits prac-
tical application to make it sense. In this section, we use the convex sum of
C+, C− and C⊥ to approximate the indecomposable part.

Let G be a copula. Here it can be an indecomposable part of copula C, or
an arbitrary copula.

Denote the objective function

s(a1, a2) =

∫ 1

0

∫ 1

0

[
G(u, v)

−
(
a1C

+(u, v) + a2C
−(u, v) + (1 − a1 − a2)C

⊥(u, v)
)]2

dudv.

Our approximation principle is to find out 0 ≤ a∗1 ≤ 1, 0 ≤ a∗2 ≤ 1 satisfying
a∗1 + a∗2 ≤ 1, such that

s(a∗1, a
∗
2) = min

{0≤a1,a2≤1, a1+a2≤1}
s(a1, a2). (3.1)

One interesting fact is that s(a1, a2) = 0 if and only if

G(u, v) = a1C
+(u, v) + a2C

−(u, v) + (1 − a1 − a2)C
⊥(u, v).

Theorem 2.1 guarantees that the above decomposition is unique.
It is not easy to solve the above constrained optimization problem directly.

By the way, we can overcome the difficulty by solving several unconstrained
optimization problems.

First solve the unconstrained optimization problem

s(b∗1, b
∗
2) = min

{b1,b2}
s(b1, b2) (3.2)

for the optimal b∗1 and b∗2. The detailed derivation (see Section 7) shows that

b∗1 = 720

∫ 1

0

∫ 1

0

G(u, v)

×
( 8

15
C+(u, v) +

7

15
C−(u, v) − C⊥(u, v)

)
dudv − 2 (3.3)

b∗2 = 720

∫ 1

0

∫ 1

0

G(u, v)

×
( 7

15
C+(u, v) +

8

15
C−(u, v) − C⊥(u, v)

)
dudv (3.4)
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and

s(b∗1, b
∗
2) =

∫ 1

0

∫ 1

0

(G(u, v))2 dudv − 2

∫ 1

0

∫ 1

0

G(u, v)C⊥(u, v)dudv

−b∗1

∫ 1

0

∫ 1

0

G(u, v)
(
C+(u, v) − C⊥(u, v)

)
dudv

−b∗2

∫ 1

0

∫ 1

0

G(u, v)
(
C−(u, v) − C⊥(u, v)

)
dudv

+
1

45
b∗1 −

7

360
b∗2 +

1

9
.

If the solution satisfies that 0 ≤ b∗1 ≤ 1, 0 ≤ b∗2 ≤ 1, 0 ≤ 1−b∗1−b∗2 ≤ 1, then
the optimal value s(a∗1, a

∗
2) is obtained at points a∗1 = b∗1, a∗2 = b∗2. Otherwise,

s(a∗1, a
∗
2) must be achieved at the boundary of [0, 1] × [0, 1] × [0, 1]. So in the

following we consider the situation that a∗1 = 0, a∗2 = 0 or a∗1 + a∗2 = 1. Let
c∗1, c

∗
2, c
∗
3 be the solutions of the following unconstrained optimization problems

s1(c
∗
1) = min

{c1}
s(c1, 0), s2(c

∗
2) = min

{c2}
s(0, c2), s3(c

∗
3) = min

{c3}
s(c3, 1 − c3).

One can get that

c∗1 = 90

∫ 1

0

∫ 1

0

G(u, v)
(
C+(u, v) − C⊥(u, v)

)
dudv − 2,

c∗2 = 90

∫ 1

0

∫ 1

0

G(u, v)
(
C−(u, v) − C⊥(u, v)

)
dudv +

7

4
,

c∗3 = 24

∫ 1

0

∫ 1

0

G(u, v)
(
C+(u, v) − C−(u, v)

)
dudv − 1

2

and

s1(c
∗
1) =

∫ 1

0

∫ 1

0

(G(u, v))2 dudv − 2

∫ 1

0

∫ 1

0

G(u, v)C⊥(u, v)dudv +
1

9

−c∗1

∫ 1

0

∫ 1

0

G(u, v)
(
C+(u, v) − C⊥(u, v)

)
dudv +

1

45
c∗1,

s2(c
∗
2) =

∫ 1

0

∫ 1

0

(G(u, v))2 dudv − 2

∫ 1

0

∫ 1

0

G(u, v)C⊥(u, v)dudv +
1

9

−c∗2

∫ 1

0

∫ 1

0

G(u, v)
(
C−(u, v) − C⊥(u, v)

)
dudv − 7

360
c∗2,

s3(c
∗
3) =

∫ 1

0

∫ 1

0

(G(u, v))2 dudv − 2

∫ 1

0

∫ 1

0

G(u, v)C−(u, v)dudv +
1

12

−c∗3

∫ 1

0

∫ 1

0

G(u, v)
(
C+(u, v) − C−(u, v)

)
dudv +

1

48
c∗3.
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Detailed calculation yields that

c∗1 = b∗1 −
7

8
b∗2, c∗2 = −7

8
b∗1 + b∗2, c∗3 =

1

2
(b∗1 − b∗2) +

1

2
.

Finally, the minimum value of s(a1, a2) equals

s(a∗1, a
∗
2) = min

{
min

{i:0≤c∗i≤1}
{si(c

∗
i )}, s(1, 0), s(0, 1), s(0, 0)

}
.

Note that a∗1 and a∗2 are unique.
The following two examples will explain our approximation methodology,

with one solved by analytical method and another by numerical method.
Example 5: For the copula in Example 2, lC = |θ| and∫ 1

0

∫ 1

0

C(u, v)C⊥(u, v)dudv =
1

9
+

1

144
θ,∫ 1

0

∫ 1

0

C(u, v)C+(u, v)dudv =
2

15
+

13

1260
θ,∫ 1

0

∫ 1

0

C(u, v)C−(u, v)dudv =
11

120
+

1

280
θ,∫ 1

0

∫ 1

0

C2(u, v)dudv =
1

9
+

1

72
θ +

1

900
θ2.

Then

b∗1 =
17

105
θ, b∗2 = − 17

105
θ.

Note that except for the case θ = 0, the constraint conditions are not satisfied.
Now let θ �= 0, one can get that

c∗1 =
17

56
θ, c∗2 = −17

56
θ, c∗3 =

1

2
+

17

105
θ

and

s(c∗1, 0) =
41

470400
θ2, s(0, c∗2) =

41

470400
θ2, s(c∗3, 1 − c∗3) =

1

1440
+

1

52920
θ2.

Since s(c∗3, 1 − c∗3) > s(c∗1, 0) = s(0, c∗2) for θ ∈ [−1, 1], we can find the optimal
parameters

(a∗1, a
∗
2) =

{
(17

56
θ, 0), 0 < θ ≤ 1

(−17
56

θ, 0), −1 ≤ θ < 0

and

s(a∗1, a
∗
2) =

41

470400
θ2.

Note that the approximation error is quite small.
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Example 6: For the normal copula in Example 1, it is difficult to get the
accurate values of a∗1, a

∗
2 by analytical method. Using the numerical method,

the accurate calculation will be involved in complex approximation to the
integrals. Here we will not focus our attention on the accurate calculating. For
illustrate purpose we list some figures by numerical approximation to b∗1, b∗2, etc.
Figure 1 shows the trend of b∗1, b∗2. From this graph we can see that the factors
b∗1, b

∗
2 and 1−b∗1−b∗2 do not satisfy the constraints. So we should use two terms to

approximate the normal copula with respect to different correlation coefficient
ρ. For negative ρ, intuitively, the convex sum of the countermonotonic part
and independent part may produce good approximation, the correspondent
results are shown in Figure 2. While for positive ρ, intuitively, the convex
combination of comonotonic part and independent part is more suitable, the
results are shown in Figure 3.

−1 −0.5 0 0.5 1
−1

0

1

correlation coefficient ρ

a1

−1 −0.5 0 0.5 1
−1

0

1

correlation coefficient ρ

a2

−1 −0.5 0 0.5 1
0

0.5

1

1.5

correlation coefficient ρ

1−
a1

−
a2

Figure 1: Three different factors and the correlation coefficient ρ

It is difficult to find upper bound for the constrained optimization problem
s(a∗1, a

∗
2) in (3.2). In the following we give an upper bound for the unconstrained

optimization problem min{a1,a2} s(a1, a2). Recall that in the case 0 ≤ b∗1 ≤
1, 0 ≤ b∗2 ≤ 1 and 0 ≤ 1 − b∗1 − b∗2 ≤ 1, min{a1,a2} s(a1, a2) = s(a∗1, a

∗
2)

follows.
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Figure 2: Countermonotonic factor, independent factor and the correlation
coefficient ρ when ρ is negative

Theorem 3.1. For arbitrary copula G,

min
{a1,a2}

s(a1, a2) ≤
∫ 1

0

∫ 1

0

(
G(u, v)

)2

dudv − 1

12
.

The proof will be given in Section 7.

4 The probability models on the convex decomposition

Let us introduce uniform [0, 1] distributed random variables U, V and W in
probability space (Ω,F , P ) and the disjoint sets A+, A⊥, A−, AI ∈ F . It is also
assumed that the sets A+, A⊥, A−, AI are independent of the random variables
U, V and W . Suppose that U and V are independent, U and W has joint
distribution

GC(u, v) =

{
C(u,v)−αCC+(u,v)−βCC⊥(u,v)−γCC−(u,v)

1−αC−βC−γC
, αC + βC + γC < 1

Φ0.5

(
Φ←(u), Φ←(v)

)
, αC + βC + γC = 1

and
P (A+) = αC , P (A⊥) = βC , P (A−) = γC, P (AI) = lC .
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Figure 3: Comonotonic factor, independent factor and the correlation coeffi-
cient ρ when ρ is positive

Proposition 4.1. Random vector (ζ, η) defined by

(ζ, η) = (U, UIA+ + V IA⊥ + (1 − U)IA− + WIAI ) (4.1)

has joint distribution function C. Furthermore,

P (ζ ≤ u, η ≤ v|A+) = C+(u, v), P (ζ ≤ u, η ≤ v|A⊥) = C⊥(u, v),

P (ζ ≤ u, η ≤ v|A−) = C−(u, v),

and if lC �= 0,
P (ζ ≤ u, η ≤ v|AI) = GC(u, v).

Proof. As a consequence of Mikusinski, Sherwood and Taylor (1991)’ result,
(ζ, η) has distribution C. Moreover,

P (ζ ≤ u, η ≤ v|A+) = P (U ≤ u, U ≤ v) = C+(u, v).

The other equations can be proved similarly.
In fact, Φ0.5

(
Φ←(u), Φ←(v)

)
can be replaced by an arbitrary indecompos-

able copula.
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The probability space Ω can be partitioned into four subspaces via the
dependent structure of copula C. The random variables ζ and η in (4.1)
are comonotonic in the subspace A+ , independent in the subspace A⊥ and
countermonotonic in the subspace A−.

Generally, consider two random variables’ dependence. For two random
variables X and Y with copula C and marginal distributions F1 and F2, their
joint distribution is given in (2.7). Define the inverse functions of F1 and F2

respectively by

F←1 (x) = inf{s : F1(s) ≥ x}, F←2 (x) = inf{s : F2(s) ≥ x}.

Denote

(X+, Y +) = (F←1 (U), F←2 (U)), (X⊥, Y ⊥) = (F←1 (U), F←2 (V ))

and

(X−, Y −) = (F←1 (U), F←2 (1 − U)), (XI , Y I) = (F←1 (U), F←2 (W )),

where U, V and W are defined before. The four pairs (X+, Y +), (X⊥, Y ⊥),
(X−, Y −) and (XI , Y I) have the same marginal distributions as (X, Y )’s. The
first pair (X+, Y +) is comonotonic, the second to fourth pairs are indepen-
dent, countermonotonic and indecomposable, respectively. It is easy to get
the following proposition. The proof is omitted here.

Proposition 4.2. For any non-negative measurable function f on R2, one has

E
[
f(X, Y )

]
= αCE

[
f(X+, Y +)

]
+ βCE

[
f(X⊥, Y ⊥)

]
+γCE

[
f(X−, Y −)

]
+ lCE

[
f(XI , Y I)

]
.

The coefficients of the above decomposition only depend on the copula of
(X, Y ). This property will show its advantage when applying it to deal with
random vectors with the same copula function.

5 Applications in insurance and finance

Recently, copula is becoming a hot topic in finance and insurance. This section
will give some ideas briefly on applications of our results in these fields.

For a given copula, Theorem 2.1 can be used to get the convex decompo-
sition, four factors can be found. If the indecomposable factor is not small
enough, then the approximation method in Section 3 can be used. Hence the
four factors and the two values of a∗1, a∗2 (defined in section 3) are obtained.
The following comments on its application in insurance and finance aspects
are given:

14



1. In variance’s decomposition: From Proposition 4.2 one can verify that
for every a, b ∈ R, it holds that

V ar(aX + bY ) = αCV ar(aX+ + bY +) + βCV ar(aX⊥ + bY ⊥)

+γCV ar(aX− + bY −) + lCV ar(aXI + bY I).

The above equation can be applied to find mean-variance optimal invest-
ment portfolio in finance.

2. In stop-loss premium’s decomposition: For one risk Y , its stop-loss pre-
mium is defined as E(Y − t)+ = E(max{Y − t, 0}), where t ∈ [0,∞).
The stop-loss premium is applied when ordering risks in insurance (see
chapter 10 of Kass, et al. (2001)). From Proposition 4.2 one can find
that

E(X + Y − t)+ = αCE(X+ + Y + − t)+ + βCE(X⊥ + Y ⊥ − t)+

+γCE(X− + Y − − t)+ + lCE(XI + Y I − t)+.

By the well-known fact (Dhaene, et al., 2002a, 2002b)

E(X− + Y − − t)+ ≤ E(XI + Y I − t)+ ≤ E(X+ + Y + − t)+,

we get

E(X + Y − t)+ ≤ (αC + lC)E(X+ + Y + − t)+ + βCE(X⊥ + Y ⊥ − t)+

+γCE(X− + Y − − t)+

and

E(X + Y − t)+ ≥ αCE(X+ + Y + − t)+ + βCE(X⊥ + Y ⊥ − t)+

+(γC + lC)E(X− + Y − − t)+.

When lC is small enough, the above inequalities provide good approxi-
mation.

3. In finance for hedging: Suppose that a company A with risk X wants
to find an asset from (Y1, Y2, · · · , Yn) existing in the financial market to
hedge its risk X. Here the factors and values corresponding to (X, Yi)
are denoted by αi, βi, γi, a

i
1 and ai

2. It should choose the one which |γi −
αi| is the largest when li is small enough, otherwise the larger value of
|(γi − αi) + li(a

i
2 − ai

1)|, the better for hedging.
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6 Proof of Theorem 2.1

Let SC = {x1, x2, · · · } be a countable dense set of [0, 1], and denote

Ai = {u ∈ [0, 1] :
∂

∂u
C(u, xi) exists}

and AC = ∩i=1Ai. For fixed i, C(u, xi) is increasing about u ∈ [0, 1], then
∂
∂u

C(u, xi) exists for almost all u ∈ [0, 1]. Thus the lebesgue measure of the
set [0, 1]/AC is equal to zero. Further, ∂

∂u
C(u, v) exists for (u, v) ∈ AC × SC,

and ∂
∂u

C(u, v) is increasing with respect to v. See Nelsen (1991, Part II of
Theorem 2.2.7, p11).

Lemma 6.1. For almost all u ∈ [0, 1], Mi(u) exists and is non-negative.

Proof. Here we only prove the case i = 1 . It suffices to prove that M1(u)
exists for u ∈ AC .

Fix u ∈ AC . When v is in the dense set SC, ∂
∂u

C(u, v) exists and ∂
∂u

C(u, v)
is increasing about v, hence M1(u) exists for u ∈ AC and M1(u) ≥ 0. The
lemma is proved.

By Lemma 6.1, essinfu∈[0,1]M1(u) exists.

Lemma 6.2. Each copula function C can be decomposed as

C(u, v) = essinfu∈[0,1]M1(u)C+(u, v) +
(
1 − essinfu∈[0,1]M1(u)

)
D(u, v), (6.1)

where D is a copula.

Proof. Denote a = essinfu∈[0,1]M1(u) and

d(u, v) =

{
∂C(u,v)

∂u
− aI{v>u}, if ∂C(u,v)

∂u
exists

0, otherwise.

Fix v ∈ [0, 1]. By Radon-Nikodym theorem (Chow and Teicher (1988), p195),
the copula function C can be decomposed as

C(u, v) =

∫ u

0

∂C(s, v)

∂s
ds + A(u, v), (6.2)

where the non-negative function A(u, v) is increasing with respect to u. Note
that (6.2) can be rearranged as

C(u, v) = f(u, v) + A(u, v) + aC+(u, v), (6.3)

where f(u, v) =
∫ u

0
d(s, v)ds.
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In the following, suppose that for all u1 ≤ u2, v1 ≤ v2

�(u2,v2)
(u1,v1)(f) ≥ 0, �(u2,v2)

(u1,v1)
(A) ≥ 0. (6.4)

Then f(u, v) and A(u, v) can induce two measures. Since f(0, 0) = A(0, 0) = 0,
then f and g are non-negative.

Consider the case a = 1. Letting u = 1, v = 1 in (6.3), f(1, 1)+A(1, 1)+1 =
1, thus f(1, 1) = A(1, 1) = 0 follows. Hence f(u, v) = A(u, v) = 0 and (6.1)
follows from (6.3).

Now consider the case a < 1. In this case, (6.3) can be rewritten as

C(u, v) = (1 − a)D(u, v) + aC+(u, v), (6.5)

where D(u, v) = f(u,v)+A(u,v)
1−a

. It is easy to verify that D(u, v) is a copula. Thus
(6.1) holds.

To finish the proof of the lemma, it suffices to prove that (6.4) holds. In

the following, we will prove that �(u2,v2)
(u1,v1)(f) ≥ 0 in (a) and �(u2,v2)

(u1,v1)
(A) ≥ 0 in

(b). For fixed v1 < v2, denote

T = {s ∈ [0, 1] : (s, v1) ∈ DC,1, (s, v2) ∈ DC,1}.

(a) By the monotonicity of ∂C(s,v)
∂s

with respect to v and the definition of
a, we know that for almost all s ∈ T ,

∂C(s, v2)

∂s
− ∂C(s, v1)

∂s
− aI{v2>s≥v1}

=

{
∂C(s,v2)

∂s
− ∂C(s,v1)

∂s
≥ 0, s ≥ v2 or s < v1

∂C(s,v2)
∂s

− ∂C(s,v1)
∂s

− a ≥ 0, v1 ≤ s < v2.

Thus

�(u2,v2)
(u1,v1)

(f) =

∫
s∈T ,u1<s≤u2

{∂C(s, v2)

∂s
− aI{v2>s} −

∂C(s, v1)

∂s
+ aI{v1>s}

}
ds

=

∫
s∈T ,u1<s≤u2

{∂C(s, v2)

∂s
− ∂C(s, v1)

∂s
− aI{v2>s≥v1}

}
ds ≥ 0

(b)From (6.2) we have

�(u2,v2)
(u1,v1)

(C) =

∫
s∈T ,u1<s≤u2

(∂C(s, v2)

∂s
− ∂C(s, v1)

∂s

)
ds + �(u2,v2)

(u1,v1)(A)

=

∫
s∈T ,u1<s≤u2

∂P (ζ ≤ s, v1 < η ≤ v2)

∂s
ds + �(u2,v2)

(u1,v1)(A),

where the random vector (ζ, η) is defined in (4.1) with distribution function C.
By Canonical Lebesgue Decomposition (Theorem 4.4.9 of Lojasiewicz (1998)),

�(u2,v2)
(u1,v1)(C) = P (u1 < ζ ≤ u2, v1 < η ≤ v2) ≥

∫ u2

u1

∂P (ζ ≤ s, v1 < η ≤ v2)

∂s
ds.
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Thus we conclude that
�(u2,v2)

(u1,v1)
(A) ≥ 0.

Now we finish the proof of the lemma.

Lemma 6.3. Copula C can be decompensated as

C(u, v) = essinf(u,v)∈[0,1]2
∂2C(u, v)

∂u∂v
× C⊥(u, v)

+

(
1 − essinf(u,v)∈[0,1]2

∂2C(u, v)

∂u∂v

)
× P (u, v), (6.6)

where P is a copula.

Proof. Denote b = essinf(u,v)∈[0,1]2
∂2C(u,v)

∂u∂v
. Applying Radon-Nikodym theo-

rem (Chow and Teicher (1988), p195) again, there exists bivariate continuous
Lebesgue-singular measure Cd(u, v) such that

C(u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
C(s, t)dtds + Cd(u, v) (6.7)

holds. In the case b = 1, C(u, v) = C⊥(u, v) follows. Otherwise (6.7) can be
expressed as

C(u, v) = (1 − b)P (u, v) + bC⊥(u, v), (6.8)

where

P (u, v) =

∫ u

0

∫ v

0
( ∂2

∂s∂t
C(s, t) − b)dtds + Cd(u, v)

1 − b
.

is a copula. The lemma is proved.

It is easy to proof the next lemma. Here we omit its proof.

Lemma 6.4. Let
L(u, v) = u − C(u, 1 − v).

Then L is a copula, and the comonotonic factor αL of L equals γC.

Based on the above lemmas, we can prove Theorem 2.1 now.

Proof of Theorem 2.1
We first prove that (2.4)-(2.6) hold, then prove (2.7) and the first part of

the theorem.
(1) Proof of (2.4): According to the definition of βC , the function C can be
decomposed as

C(u, v) = βCC⊥(u, v) + (1 − βC)G(u, v),
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where G is a copula. Then for almost all (u, v) ∈ [0, 1]2,

∂2

∂u∂v
C(u, v) = βC + (1 − βC)

∂2

∂u∂v
G(u, v).

Thus

essinf(u,v)∈[0,1]2{
∂2

∂u∂v
C(u, v)} ≥ βC .

On the other hand, from Lemma 6.3 and the definition of βC we know that

βC ≥ essinf(u,v)∈[0,1]2{
∂2

∂u∂v
C(u, v)}.

Then (2.4) follows.
(2) Proof of (2.5): Note that the copula function C can be decomposed as

C(u, v) = αCC+(u, v) + (1 − αC)R(u, v),

where R is a copula. For u �= v, differentiating the above equation with respect
to u, ∂R(u,v)

∂u
exists if and only if ∂C(u,v)

∂u
exists, and the following equation holds

for almost all (u, v) ∈ [0, 1]2,

∂C(u, v)

∂u
=

{
αC + (1 − αC)∂R(u,v)

∂u
, u < v,

(1 − αC)∂R(u,v)
∂u

, u > v

Then for every u ∈ AC, we have

M1(u) = αC + (1 − αC)( lim
v↓u,(u,v)∈DC,1

∂R(u, v)

∂u
− lim

v↑u,(u,v)∈DC,1

∂R(u, v)

∂u
)

≥ αC .

On the other hand, from the definition of αC and Lemma 6.2 we have

essinfu∈[0,1]M1(u) ≤ αC .

Thus
essinfu∈[0,1]M1(u) = αC .

Similarly the other part of (2.5) can be proved.
(3) Proof of (2.6): Let L be defined as in Lemma 6.4. Then

DL,1 =
{

(u, v) ∈ [0, 1]2 :
∂

∂u
L(u, v) exists

}
=

{
(u, v)|(u, 1− v) ∈ DC,1

}
,

and for (u, v) ∈ DL,1,

∂L(u, v)

∂u
= 1 − ∂C(u, 1 − v)

∂u
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holds. From the above equation and (2.5), it yields that

αL = essinfu∈[0,1]{ lim
v↓u,(u,v)∈DL,1

∂L(u, v)

∂u
− lim

v↑u,(u,v)∈DL,1

∂L(u, v)

∂u
}

= essinfu∈[0,1]{ lim
v↑u,(u,1−v)∈DC,1

∂C(u, 1 − v)

∂u
− lim

v↓u,(u,1−v)∈DC,1

∂C(u, 1 − v)

∂u
}.

Hence the first part of (2.6) can be obtained by using Lemma 6.4. Similarly
the second part can be obtained.
(4) We will show that (1.2) holds with

α = αC , β = βC , γ = γC, lC = 1 − αC − βC − γC

and that (2.7) holds.
Based on the definition of αC ,

C(u, v) = αCC+(u, v) + (1 − αC)D1(u, v).

Note that 1 − αC ≥ 0 and D1 is a copula. For the copula D1 it holds that

D1(u, v) = βD1C
⊥(u, v) + (1 − βD1)D2(u, v),

here D2 is a copula. Thus

C(u, v) = αCC+(u, v) + (1 − αC)βD1C
⊥(u, v) + (1 − αC)(1 − βD1)D2(u, v)

follows. By (2.4) and the above decomposition one can verify that βC =
(1 − αC)βD1. Similarly, for

D2(u, v) = γD2C
−(u, v) + (1 − γD2)G(u, v),

we have

C(u, v) = αCC+(u, v) + βCC⊥(u, v) + (1 − αC)(1 − βD1)γD2C
−(u, v)

+(1 − αC)(1 − βD1)(1 − γD2)G(u, v)

and γC = (1 − αC)(1 − βD1)γD2. Moreover,

1 − αC − βC − γC = (1 − αC)(1 − βD1)(1 − γD2) ≥ 0.

Thus (1.2) holds with α = αC , β = βC , γ = γC , lC = 1 − αC − βC − γC and
(2.7) follows.
(5) Proof of the first part of Theorem 2.1: Suppose that (1.2) holds for the
two cases α = α1, β = β1, γ = γ1, G = G1 and α = α2, β = β2, γ = γ2, G = G2

respectively, with l1, l2 ≥ 0. Further, it is also assumed that G1 is indecom-
posable if l1 �= 0, and G2 is indecomposable if l2 �= 0.

(a) First we will prove that β1 = β2.
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The case β1 = 1 or β2 = 1 is trivial. In the next we consider the case that
β1 < 1, β2 < 1. Notice that

α1C
+(u, v) + γ1C

−(u, v) + l1G1(u, v)

= α2C
+(u, v) + γ2C

−(u, v) + l2G2(u, v) + (β2 − β1)C
⊥(u, v). (6.9)

Suppose 1 > β2 > β1 and let

P (u, v) =
α1C

+(u, v) + γ1C
−(u, v) + l1G1(u, v)

1 − β1
.

Then
∂2P (u, v)

∂u∂v
=

l1
1 − β1

∂2G1(u, v)

∂u∂v
, a.e..

Using (6.9) and the fact that β2−β1 > 0, the independent factor βP of P (u, v)
is greater than zero. Then by (2.4) and the above equation we assert that
l1 > 0 and the independent factor of G1 is greater than zero, which contradicts
to the indecomposable assumption on G1. Thus β2 ≤ β1 follows. Similarly, we
can get β1 ≤ β2 and finally β1 = β2 holds.

(b) Since β1 = β2 holds, for simplicity we only consider the case β1 = β2 =
0. In the following we give the proof of α1 = α2, the proof of γ1 = γ2 is similar.

Assume that α1 > α2. Then from (6.9) one has

Q(u, v) =: (α1 − α2)C
+(u, v) + l1G1(u, v)

= (γ2 − γ1)C
−(u, v) + l2G2(u, v). (6.10)

Thus for almost all (u, v) ∈ [0, 1]2,

∂

∂u
Q(u, v) = (γ2 − γ1)I{u+v−1>0} + l2

∂

∂u
G2(u, v).

Applying (2.4) and by the above equation, one can derive that the comonotonic
factor αQ of Q satisfies that

αQ = l2αG2 .

Since α1 > α2, from (6.10) we know that the comonotonic factor αQ > 0.
Then the above equation leads to that αG2 > 0, which contradicts to the
indecomposable assumption on G2. Thus α1 ≤ α2, and similarly α1 ≥ α2.
Hence α1 = α2 holds.

Combining (a) and (b) with the fact that (1.2) holds with α = αC , β =
βC , γ = γC , lC = 1−αC − βC − γC proved before, the first part of the theorem
is proved. Now we finish the proof of the theorem.
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7 Mathematical derivation of Section 3

In this section we will prove some results used in Section 3.

Proposition 7.1. For the optimization problem

s(b∗1, b
∗
2) = min

{b1,b2}
s(b1, b2),

the optimal parameters satisfy (3.3) and (3.4).

Proof. Differentiating s(a1, a2) with respect to a1 and a2, respectively, the
optimal b∗1 and b∗2 should satisfy∫ 1

0

∫ 1

0

[
G(u, v) −

(
b∗1 min{u, v} + b∗2 max{u + v − 1, 0} + (1 − b∗1 − b∗2)uv

)]
·
(

min{u, v} − uv
)
dudv = 0, (7.1)∫ 1

0

∫ 1

0

[
G(u, v) −

(
b∗1 min{u, v} + b∗2 max{u + v − 1, 0} + (1 − b∗1 − b∗2)uv

)]
·
(

max{u + v − 1, 0} − uv
)
dudv = 0, (7.2)

i.e.,
b∗1A1 + b∗2B1 = D1, b∗1B1 + b∗2C1 = E1,

where

A1 =

∫ 1

0

∫ 1

0

(
min{u, v} − uv

)2

dudv,

B1 =

∫ 1

0

∫ 1

0

(
max{u + v − 1, 0} − uv

)(
min{u, v} − uv

)
dudv,

C1 =

∫ 1

0

∫ 1

0

(
max{u + v − 1, 0} − uv

)2

dudv,

D1 =

∫ 1

0

∫ 1

0

(
G(u, v) − uv

)(
min{u, v} − uv

)
dudv,

E1 =

∫ 1

0

∫ 1

0

(
G(u, v) − uv

)(
max{u + v − 1, 0} − uv

)
dudv.

By Cramer’s rule,

b∗1 =
D1C1 − B1E1

A1C1 − B2
1

, b∗2 =
A1E1 − B1D1

A1C1 − B2
1

.
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In fact, after simple calculations, we have∫ 1

0

∫ 1

0

(
min{u, v}

)2

dudv =
1

6
,

∫ 1

0

∫ 1

0

(
uv

)2

dudv =
1

9
,∫ 1

0

∫ 1

0

(
max{u + v − 1, 0}

)2

dudv =
1

12
,

∫ 1

0

∫ 1

0

(
min{u, v}uv

)
dudv =

2

15
,∫ 1

0

∫ 1

0

(
max{u + v − 1, 0}uv

)
dudv =

11

120
,∫ 1

0

∫ 1

0

(
min{u, v}max{u + v − 1, 0}

)
dudv =

5

48
.

Plugging above results into A1, B1, C1 yields A1 = 1
90

, B1 = − 7
720

, C1 = 1
90

.
Hence

A1C1 − B2
1 =

1

34560
.

So (3.3) and (3.4) are obtained.

Next we give the proof of Theorem 3.1.
Proof of Theorem 3.1: The minimum is

s(b∗1, b
∗
2) =

∫ 1

0

∫ 1

0

[(
G(u, v) − uv

)
−

(
b∗1(min{u, v} − uv) + b∗2(max{u + v − 1, 0} − uv)

)]2

dudv.

Then due to the conditions (7.1) and (7.2), we have

s(b∗1, b
∗
2)

=

∫ 1

0

∫ 1

0

(
G(u, v)

)2

dudv + (1 − b∗1 − b∗2)

∫ 1

0

∫ 1

0

u2v2dudv

+(b∗1 + b∗2 − 2)

∫ 1

0

∫ 1

0

G(u, v)uvdudv

−b∗1

∫ 1

0

∫ 1

0

G(u, v) min{u, v}dudv

−b∗2

∫ 1

0

∫ 1

0

G(u, v) max{u + v − 1, 0}dudv

+b∗1

∫ 1

0

∫ 1

0

uv min{u, v}dudv + b∗2

∫ 1

0

∫ 1

0

uv max{u + v − 1, 0}dudv.

The above value can be written as∫ 1

0

∫ 1

0

(
G(u, v)

)2

dudv +
1

12
− 2

∫ 1

0

∫ 1

0

G(u, v) max{u + v − 1, 0}dudv + M,
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where

M = −384A2
2 + (1440C2 − 672B2)A2 + 1440B2C2 − 1440C2

2 − 384B2
2

and

A2 =

∫ 1

0

∫ 1

0

G(u, v)C+(u, v)dudv − 1

48
,

C2 =

∫ 1

0

∫ 1

0

G(u, v)C⊥(u, v)dudv − 1

120
,

B2 =

∫ 1

0

∫ 1

0

G(u, v)C−(u, v)dudv.

It is easy to check that M is a negative definite quadratic form because its
eigenvalues are 0, −1 and −45. Due to the fact that G(u, v) is a copula, so
G(u, v) ≥ max{u + v − 1, 0}, hence the theorem holds.

8 Conclusions

This paper presents a convex decomposition in terms of a comonotonic, an
independent, a countermonotonic, and an indecomposable part for bivariate
copula, and provides deep insights into the dependence structure for bivariate
random variables. For the indecomposable part, the approximation by a convex
sum of comonotonic copula, independent copula, and countermonotonic copula
is discussed, moreover the approximation error bound is provided. This paper
also briefly introduces this result’s applications in insurance and finance, and
gives some application ideas in these fields. Our method allows us to deal with
more complicated copula by focusing on its convex approximation.
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