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Abstract

In this paper, we discuss four models proposed by Konno, Cai, Teo and Markowitz respectively. Two

groups of data (one from 33 securities over 72 months, the other from 63 securities over 120 months)

are used to examine these models. Efficient frontiers are presented. The utility levels in the four models

do not decrease at the same rate with the change of the risk-aversion factor. Cai’s model provides the

highest utility value and Markowitz’s provides the lowest one in most cases. When the expected returns

are confronted with the true ones at the end of a 10-month period, Markowitz’s and Konno’s models

seem to have similar tendencies while Cai’s and Teo’s models seem to have similar tendencies, and the

four models get higher true wealth compared with Nikkei 225 and Nikkei 500 index respectively in most

cases.

Keywords: Portfolio selection; Mean absolute deviation; Linear programming; Quadratic

programming

1. Introduction

Markowitz (1952) gives a mean-variance method in solving portfolio selection problems.

Such a method has been regarded as a milestone in finance. After his work, some different risk

control models are proposed and people have paid more attention to the characteristics of those

models. The comparison of these models is essential for the investors to choose appropriate one

to construct their portfolios. Therefore the way to distinguish these models and state precisely

the advantages and disadvantages for them is such a meaningful work that many experts are
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concerned with it. Much work has been done. Here, we mention some of those important

findings.

Classical mean variance method employs the expected return to measure the return of a

portfolio, and use variance to measure its risk. But there are many researchers and traders who

may not be convinced that the covariance is an appropriate risk measure. They assume that

the ordinary investors consider its distribution of risk may not be symmetric. In most cases, a

little loss will make one very sad, while the considerably high profit can make one very happy.

This implies that the classical mean variance model may serve to be some approximation to

the complex portfolio problems that all investors encounter. Hence, experts in the financial

area exert all possible efforts to present some new risk models and try to meet the needs of

different investors. For example: the lower semi-variance model, lower semi standard deviation

model (Markowitz, 1959), mean absolute deviation model (Konno and Yamazaki,1990,1991),

mean semi absolute deviation model (Konno, 1991; Ogryczak and Ruszczynski, 1999), below

target risk model (Fishburn, 1977), maximim model (Young, 1998), minimax model (Cai et al.,

2000; Teo and Yang, 2001) and so on.

It is assumed that there are n assets in the market. Let Ri be the random return rate of the

asset i, and xi be the money allocated to asset i, i = 1, . . . , n. The return rate of a portfolio R(x)

is denoted by
n∑

i=1
Rixi, and the expected return rate of asset i is denoted by ri . Denoting by

r(x) = E(R(x)) = (r1, . . . , rn), then the variance is V (x) = E[R(x) − r(x)]2, and the standard

deviation is σ(x) =
√

V (x) =
√

E[R(x)− r(x)]2.

Definition 1 The lower semi-variance is defined as V−(x) = E[(R(x) − r(x))−]2, where

(a)− = max{0,−a}, and denotes this risk function by LSV .

Definition 2 The lower semi standard deviation is defined as σ−(x) =
√

E[(R(x)− r(x))−]2,

and denotes this risk function by LSSD.

It is pointed out that when the distribution of the return rate is skewness, that is, σ(x) 6=
1
2σ(x) , LSV seems to be more preferable than variance or standard deviation to measure the

risk (Markowitz, 1952). Obviously, for those who employ LSV and LSSD, it will be natural to

think risk may exist when future return does not exceed the expected return. This idea has got

firmly fixed among most investors who are risk aversion. But when R(x) is normally distributed,

since these two risk models are similar to the variance model, little importance is placed on LSV

and LSSD.

Definition 3 If ρ is the return rate that the investors would expect to have, then the

2



kth-order target risk is defined as BTk(ρ, x) = E[(ρ−R(x))k−]
1
k .

This risk measure will be fit into the MEU principle (Fishburn,1977). For any k, BTk(ρ, x)

is convex. When k = 1, 2, the portfolio model can be transformed into problems of linear pro-

gramming and quadratic programming respectively, which is extremely important in proceeding

the real computation.

Konno and Yamazaki (1990,1991) present Mean Absolute Deviation (MAD) model.

Definition 4 Absolute deviation is defined as follows

l1(x) = E

∣∣∣∣∣∣

n∑

j=1

Rjxj − E[
n∑

j=1

Rjxj ]

∣∣∣∣∣∣
.

The main characteristic of this model is that the risk of a portfolio is measured by the

absolute deviation of the return rate of assets instead of the variance. Much attention has been

focused on this risk function because the portfolio optimization problem with l1 risk function can

be converted into a scalar parametric linear programming problem. Hence, the implementation of

the portfolio optimization with this model can be easily obtained. Simplicity and computational

robustness are perceived as one of the most important advantages of the MAD model. Till now,

many excellent properties of this model have been found and some of them are referred to here..0

It is pointed out that the MAD model takes on an opportunity to make a more specific

model such as the downside risk because absolute deviation may be regarded as a measure of

the downside risk (Konno,1990; Feinstein and Thapa, 1993).

It is known that if the return is multivariatly, normally distributed, the minimization of the

MAD provides similar results as the classical Markowitz formulation, and minimization of MAD

is equivalent to maximization of the expected utility under risk aversion (Rudolf et al, 1999).

Markowtiz model has been criticized as not being consistent with axiomatic models of pref-

erences for choice under risk because it does not depend on a relation of stochastic dominance

(Whitemore and Findlay, 1978; Levy, 1992). In contrast, the MAD model is consistent with

the second degree stochastic dominance, provided that the trade-off coefficient between risk and

return is bounded by a certain constant(Ogryczak, 1997).

Ogryzak and Ruszczynki (1999, 2001) proved that the most optimal solution in efficient

frontier of MAD model satisfies the MEU principle no matter how (R1, . . . , Rn) is distributed.

At the same time, the capital asset pricing model for the l1 risk model is derived by Konno

(1991) where the risk function is assumed to be differentiable at the market portfolio. Without

imposing differentiability on the l1 risk function, equilibrium relations were given by Konno and
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Shirakawa (1994).

Moreover, since the optimization problem with MAD is always transformed into a linear

programming problem, the model can easily be extended to a frictional case ( Konno and

Wijayanayake, 1999, 2001a, 2001b and 2002), while the mean variance model may be more

difficult for these cases. Since there are so many advantages in the MAD model, it is worth

discussing and considering its extension.

Cai et al (2000) gives a new risk model based on MAD. He introduces the minimax rule in

the portfolio selection model.

Definition 5 The maximum absolute deviation risk model l∞ is given as

l∞(x) = max
16j6n

E |Rjxj − E(Rj)xj | .

In this model, the investor is assumed to minimize the maximum of individual risk. The

explicit analytical solution for the model is presented and the entire efficient frontier is also

plotted. The author points out that such a risk model is very conservative and it does not

explicitly involve the covariance of the asset returns.

Definition 6 The alternative l∞ risk function is defined as:

HT
∞(x) =

1
T

T∑

t=1

max
16i6n

E |Ritxi − ritxi| ,

where Rit is random variables and rit is the expected value of Rit, for i = 1, . . . , n, t = 1, . . . , T .

This function is an extension of l∞(x), and it is assumed that the available historical data

are split into T periods. In each period, the individual absolute deviation with respect to the

expected value of the period is calculated. The total risk of the portfolio is taken as the average

of the maximum (over all assets) of these individual absolute deviations over all periods.

It is worth noting that Papahristodoulou and Dotzauer (2004) compared Markowitz’s QP

model, Konno’s MAD model and Young’s Maximum model . They found that the maximin

formulation yields the highest return and risk, while the QP formulation provides the lowest

risk and return. And it is also pointed out that the minimization of mean abosolute deviation is

close to the QP formulation. They conclude that the maximum portfolios seem to be the most

robust of the three models when comparing the expected returns with the true ones at the end

of a 6-month period.

In this paper, we compare Cai’s and Teo’s model with Konno’s model and Markowitz’s

model by employing the similar method used by Papahristodoulou and Dotzauer. The reason
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we consider these four models is that l∞ and HT∞(x) are new risk models based on l1. The

difference of these three models is an interesting and meaningful problem for both the researchers

and the investors. At the same time, in order to observe the difference of these three models

with classical MV model, we also take Markowitz’s model into consideration. We find that most

of the time, Markowtiz’s model has the similar tendency to Konno’s model and Cai’s model has

similar tendency to Teo’s model. Some interesting results in detail are given later.

The organization of the paper is as follows. In section 2, the four models are presented in

detail and the other three models except Markowitz’s model, are transformed into linear forms.

In section 3, two groups of data are employed to test the four models in four respects which are

efficient frontier, utility value, true performance of the four models by using real stock data and

computational speed. Computational results and some figures are given in this section. The

conclusion and future work are given in section 4.

2. Model description

In this section, we will describe the above four models in detail and each of Konno’s , Cai’s

and Teo’s model will be transformed into a linear programming problem respectively.

Let M0 be the initial wealth the investor holds, and ρ be the return rate the investor required.

Denote by µi the maximum amount the investor wants to invest in asset i, i = 1, . . . , n. It is

assumed that the short selling is not permitted, that is, xi > 0, i = 1, . . . , n. Denote by

S = {x = (x1, · · · , xn) :
n∑

j=1

rjxj > ρM0,
n∑

j=1

xj = M0, 0 6 xj 6 µj , j = 1, . . . , n}

Model 1 Konno’s model

min w(x) = E|
n∑

j=1
Rjxj − E(

n∑
j=1

Rjxj)|

s.t. x ∈ S

Since the objective function is not linear, we follow Konno and Yamazaki’s method and

express this model in the following way (Konno and Yamazaki,1991):

min w(x) = 1
T

T∑
t=1

yt

s.t. yt >
n∑

j=1
(rjt − rj)xj , t = 1, . . . , T

yt > −
n∑

j=1
(rjt − rj)xj , t = 1, . . . , T

x ∈ S
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Here rj is the expected return of jth stock. rjt is the return rate of jth stock during period t.

It is worth noting that we need not to estimate the variance-covariance matrix for this model

and the size of the constraints can be easily controlled by the number of the period.

Model 2: Cai’ s model

min l∞(x) = max
j

E|Rjxj − rjxj |

s.t. x ∈ S

This model can also be transformed into the following linear form (The proof is in Appendix.):

min y

s.t. qjxj 6 y j = 1, . . . , n

x ∈ S

where qj = E|Rj − rj |, j = 1, . . . , n, which is the expected absolute deviation of Rj from

its mean. Obviously, if the distribution of each random variable Rj is given, this function is

explicitly determined. Historical data can also be used to estimate rj and qj . The l∞ model

and the related techniques are easy to manipulate and implement in practice. Moreover, the

selection of the optimal portfolio does not involve the correlations among stocks, which is similar

to Konno’s model, and the number of constraints for this model is determined by the number

of stocks.

Model 3: Teo’s model

min HT∞(x) = 1
T

T∑
t=1

max
j

E|Rjtxj − E(Rjt)xj |

s.t. x ∈ S

For this model, a capital asset pricing model between the market portfolio and each individual

return is established by using a nonsmooth optimization method. This model can be transformed

into the following linear form. The proof is in the Appendix.

min 1
T

T∑
t=1

yt

s.t. ajtxj 6 yt, t = 1, . . . , T, j = 1, . . . , n

x ∈ S

where ajt = E|Rjt − E(Rjt)|, j = 1, . . . , n, t = 1, . . . , T . Obviously, the size of the constraints

is determined by the number of the stocks and the number of the periods. Obviously, if n or T

becomes large, the computational speed of solving this model may certainly get slow.
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At last, we recall the classical model: Markowitz’ model

min V (x) =
n∑

i=1

n∑
j=1

σijxixj

s.t. x ∈ S

The characteristic of this model is that it is a quadratic programming. Noting that the objec-

tive function is related to variance-covariance matrix, so when investors choose such a model, it

means they should first take a certain amount of time to calculate this matrix. For instance, if

there are 200 securities, i.e., n = 200, we have to calculate a variance-covariance matrix of 20100

combinations. Such a time-consuming calculation is unnecessary for those above 3 models. But

with the rapid development of computational technologies, such a work is no longer as difficult

as before. We also notice that the minimization of the variance-covariance matrix might lead to

inefficient portfolios unless one sets explicitly an expected return. Related description is given

by Papahristodoulou and Dotzauer(2004).

3. Data and computational results

We will use two groups of data to examine all models from several points of view. First,

we will give the efficient frontier of the four models. Efficient frontier analysis of the portfolio

selection is important as it gives clearly a geometric scope of the relation between the return and

the risk. The second, the utility values of the optimal portfolio are considered. A useful criterion

to determine which portfolio should be selected for different risk measures is to recognized by

observing various utility functions (Sharpe et al, 1999). The third, we will compare the true

performance with the expected value of the four models. Constructing the portfolio given by

the models, we examine the true wealth of these portfolios during 10 months. Finally, we will

consider the computational speed. Computational speed is also an important factor for investor

to consider when they decide to choose a suitable model. A model will not be selected if the

computational speed is too slow, and a good investment chance is often lost as time goes by.

The first group consists of 33 stocks traded in Nikkei 225, using monthly returns from

January 1995 to December 2000. We note one reason not to include data after 2000 is, as seen

in most places in the world, that the return dropped down very sharply over the last 4 years. The

second group consists of 63 stocks traded in Nikkei 500, whose monthly returns are employed

from January 1991 to December 2000. The second group consists of more stocks and the period

is longer than that in the first group. The criterion to select the stocks in our examination is

described as follows:
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1. Since the portfolios are examined on the basis of the historical data, those with negative

average returns over the examined period are excluded.

2. Those companies which were not on the list at the starting point and entered the Nikkei

225 (group 1) or Nikkei 500 (group 2) at different dates afterwards are excluded.

3. Those companies which were on the list at the starting point and not in the list at the

end of the examined period are excluded.

4. Those stocks which have the positive returns but with too small values are excluded.

5. Large companies are taken preference over small and medium-sized companies.

We assume that an investor has the initial wealth whose value is equal to 1 unit and require

various monthly returns. For group 1 and 2, the required return rate ρ is set from 1 to 2.2%.

The investors also wish that each asset would not receive more than 60% of their budget. Table

1 and Table 2 give the expected returns and risks for various values of ρ for group 1 and group

2 respectively.

Table 1 Monthly average expected returns for group 1

ρ Markowitz Konno Cai Teo

1.00% ER 0.013569 0.014332 0.012636 0.01277

σ 0.036971 0.028913 0.002224 0.006083

1.30% ER 0.013569 0.014332 0.0130 0.013

σ 0.036971 0.028913 0.002399 0.006138

1.50% ER 0.01500 0.01500 0.01500 0.015

σ 0.037565 0.029106 0.004031 0.009095

1.80% ER 0.01800 0.01800 0.01800 0.01800

σ 0.042217 0.033365 0.011259 0.019092

2.0% ER 0.02 0.02 0.020 0.02

σ 0.048263 0.039312 0.020149 0.028656

2.2% ER 0.02200 0.02200 0.02200 0.022

σ 0.068506 0.054864 0.033994 0.043038

Variables 33 105 34 105

Constraints 2 146 35 2378
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Table 2 Monthly average expected returns for group 2

ρ Markowitz Konno Cai Teo

1-1.20% ER 0.012 0.012 0.014526 0.013076

σ 0.0391 0.0279 0.001148 0.007137

1.60% ER 0.016 0.016 0.016 0.016

σ 0.043143 0.031377 0.001377 0.008112

1.80% ER 0.018 0.018 0.018 0.018

σ 0.045992 0.033848 0.001797 0.009732

2.00% ER 0.020 0.020 0.020 0.020

σ 0.049124 0.03682 0.002374 0.011724

2.20% ER 0.022 0.022 0.022 0.022

σ 0.052745 0.040187 0.003122 0.013959

Variables 63 183 64 183

Constraints 2 242 65 7562
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Figure 1: Efficient frontier

(I) Efficient frontier of the models

Figure 1 shows that the curves of these four models’ efficient frontier are similar for both

groups. We can find the following interesting results when comparing two Tables.

1. Markowitz’ curve is closer to Konno’s. This result is also given by Papahristodoulou and

Dotzauer. And Cai’s curve is closer to Teo’s. For the same expected return, four models show
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different risk values. Thus, the risk values for σ(x) and l1(x) are always higher than those for

l∞(x) and HT∞(x).

2. It is found that for the second group which consists of 63 stocks, Cai’s model show lower

risk values than that in group 1. For example, for Cai’s model in group 1, the risk varies from

0.002224 to 0.033994 when the required return rate ρ varies from 1 to 2.2%, while in group 2,

risk varies from 0.001148 to 0.003122. But such a trend can not be observed for the other 3

models. Hence it may be considered that Cai’s model is more sensitive to the diversification of

the risk when the number of stocks increases.

3. In Table 1, compared with Cai’s model and Teo’s model, Markowitz’s and Konno’s models

are more robust because the portfolio derived from them remains unchanged for ρ ranging from

1 to 1.3569% and 1.4332% respectively. But in Table 2, the same result can also be given for

Cai’s and Teo’s models. The optimal portfolio derived from them remains unchanged from 1 to

1.4526 and 1.3076% respectively. Hence, we would claim that which model will be more robust

should not be concluded by only observing one group of data. Papahristodoulou and Dotzauer

thought maximum model is more robust by using one group of data. Such a result may not be

so confident as it looks.

4. It should be noted that Markowitz’s model provides higher risk than Konno’s model, and

Teo’s model provides higher risk than Cai’s model at any required return rate for both groups.

(II) Utility of four models.

The following simple form (mentioned by Sharp et al.) as a standard method to represent

the investor’s indifference curves in a mean-variance context:

U = E(R)− wσ2

where U is the level of utility, E(R) is the expected return and w is a positive constant which

indicates the investor’ risk aversion (Sharp et al,1999). Obviously, if w = 0, the utility level that

the specific portfolio provides is independent of its risk. If the value of w approaches infinity,

this means the investor will allocate all the money to risk-less asset.

Figure 2 summarizes the utility levels for various values of risk factor w and different required

return rate ρ for group 1 and group 2, respectively.

It may be found that except for w = 0, Markowitz’s model provides the lowest utility, and

Cai’ s model provides the highest one for both groups. Moreover, we note that utility levels in

the four models do not drop at the same rates with one another. Utility in Markowitz’s model

decreases more sharply, compared with the other three models. It is worth noting that utility
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in Cai’s and Teo’s model seems to decreases very slowly as w varies from 0 to 1. Hence, it may

be difficult for the investor to choose a portfolio according to the utility value of Cai’s and Teo’s

model because the utility value does not show an obvious preference as w varies.

(III)Wealth over ten-months period.

We will examine the true performance of these models for the next 10 months and compare

the results with the expected values, Nikkei 225 index (for group 1) and Nikkei 500 index (for

group 2) respectively. We assume that the investors are confident of these models and wish to

construct their portfolio at the end of December 2000. Obviously, every investor wishes to get

positive returns but because of the decline of the stock market from 2000, the true performance

is poor. All models give positive expected returns as we expected, but the true monthly returns

were negative. Table 3-4 show this clearly.

Table 3: Wealth of four models for 33 assets

ρ Markowitz Konno Cai Teo

0.01 True 0.87338 0.90733 0.78625 0.80205

Expected 1.1841 1.1909 1.1924 1.19

0.018 True 0.88371 0.9058 0.79366 0.80206

Expected 1.1953 1.1953 1.1953 1.1953

0.02 True 0.86485 0.86547 0.7895 0.7955

Expected 1.219 1.219 1.219 1.219

0.022 True 0.82294 0.81706 0.7441 0.78427

Expected 1.2431 1.2431 1.2431 1.2431

0.024 True 0.78402 0.79043 0.651 0.70518

Expected 1.2677 1.2677 1.2677 1.2677

0.026 True 0.77031 0.77785 0.60457 0.66726

Expected 1.2926 1.2926 1.2926 1.2926

0.028 True 0.7552 0.7793 0.6208 0.6601

Expected 1.3180 1.3180 1.3180 1.3180
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Table 4: Wealth of four models for 63 assets

ρ Markowitz Konno Cai Teo

0.012 True 0.91895 0.89162 0.89065 0.97721

Expected 1.1046 1.1053 1.1551 1.1387

0.016 True 0.83258 0.84852 0.84026 0.8613

Expected 1.172 1.172 1.172 1.172

0.018 True 0.82267 0.81737 0.81035 0.79597

Expected 1.1953 1.1953 1.1953 1.1953

0.02 True 0.81296 0.8154 0.78089 0.69809

Expected 1.219 1.219 1.219 1.219

0.022 True 0.79653 0.82688 0.75527 0.67099

Expected 1.2431 1.2431 1.2431 1.2431

Figure 3 reflects the change of the wealth during the 10 months for group 1 and group 2.

For group 1, we can summarize that:

1. The curves of wealth for Markowitz’s and Konno’s model show similar change, while the

curves of wealth for Cai’s and Teo’s model are similar.

2. The wealth values for Markowitz’s and Konno’s are always higher than that of Cai’s and

Teo’s each month.

3. At the end of 10 month, Markowtiz’s and Konno’s model always get higher wealth than

that of Nikkei 225 index. While for Cai’s and Teo’s model, it is found that when the required

rate is not so high, for example, ρ = 1% or 2%, these two models get higher wealth than that of

Nikkei 225, but when ρ = 2.8%, this characteristic disappears.

4. During the 10 months, it is found that when the required return is low, (for example,

when ρ = 1%, 2%), the wealth in the 10 months is higher than that of the Nikkei 225 index

in most times for Markowitz’s and Konno’s models. But when ρ becomes higher, for example,

(ρ = 2.8%), such a tendency disappears.

For group 2, it is obvious that:

1. All four models always get higher wealth than that of Nikkei 500 index at the end of 10

month.

2. During the 10 months, it is found that for the four models, when the required return is

low, (for example, when ρ = 1.2%, 1.6%), the wealth in the 10 months is higher than that of
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the Nikkei 500 index in most cases. But when ρ becomes higher, (for example, ρ = 2%), such a

tendency disappears for Teo’s model.

It is worth noting that if Markowitz’s and Konno’s results, as well as Cai’s and Teo’s results

are plotted in the respective planes, the similarity for the tendency of the change of the wealth is

identified with its own case. This is also observed in group 1. Figure 4 shows this result clearly.

(IIII) Computation speed.

We use Matlab 7.0 to calculate all results. It is found that the solution procedure for Teo’s

model is influenced by the number of stocks and the number of periods we choose. If we consider

that every month is counted as a period, the constraints of Teo’s model are very large, which

make the computation speed slow, especially for 63 stocks. The other three models show no

evidence that the number of the stocks and periods influence the speed of the solution procedure.

4. Conclusion

In this paper, we compare 4 models, which are Markowitz’s model, Konno’s MAD model,

Cai’s model and Teo’s model. Two groups of data from the Tokyo stock markets are employed to

compare them in four respects. Efficient frontiers are given and the utility values are considered.

Moreover, we construct portfolios according to the models and compare the expected value with

the true ones. The computational speed is also discussed. It is found that all the four models

have the similar shape of efficient frontier. The utility levels in the four models do not fall at the

same rate with the change of the risk-aversion factor. In most cases, Cai’s model has the highest

utility values and Markowitz’ model has the lowest one, and it may be difficult for the investor

to choose portfolios according to the utility value of Cai’s and Teo’s models because the utility

value does not show obvious preference as the risk factor varies. Moreover, when the expected

returns are faced with the true ones at the end of a 10-month period, Markowitz’s model and

Konno’s model seem to have similar tendencies while Cai’s and Teo’ models seem to have similar

tendencies. At the same time, it is found that at the end of the 10-month period, (both in two

groups), four models can get higher true final wealth compared with Nikkei 225 index and Nikkei

500 index respectively in most cases. As for Teo’s model, the solution procedure is influenced

by the number of stocks and periods.

For future study, we are concerned with the dynamic portfolio employing absolute deviation.

It is well known that a classical Mean-variance model has been extended to multiperiod cases

(see Li and Ng, 2000; Li et al, 2002), but how about the MAD model? We believe that some

13



extension of the MAD model to a multiperiod case is a very interesting and challenging problem

to be solved.

5. Appendix

I. Proof of the two theorems.

Denoted by P1 and P2

P1





min max
j

qjxj

s.t. x ∈ S
P2





min y

s.t. qjxj 6 y j = 1, . . . , n

x ∈ S

Theorem A.1 If x∗ is an optimal solution to P1, then (x∗, y∗) is an optimal solution to P2,

where y∗ = max
j

qjxj . On the other hand, if (x∗, y∗) is an optimal solution to P2, then x∗ is an

optimal solution to P1.

Proof. If x∗ is an optimal solution to P1, then (x∗, y∗) is a feasible solution to P2, where

y∗ = max
j

qjxj . If (x∗, y∗) is not an optimal solution to P2, then there exists a feasible solution

(x, y) to P2, such that y < y∗. Noticing that qjxj 6 y, then max
j

qjxj ≤ y < y∗ = max
j

qjx
∗
j .

This contradicts to that x∗ is an optimal solution to P1.

On the other hand, if (x∗, y∗) is an optimal solution to P2, then x∗ is a feasible solution to

P1. If x∗ is not an optimal solution to P1, then there exits a feasible solution x to P1, such that

max
j

qjxj < max
j

qjx
∗
j . Denote by y = max

j
qjxj . Then we have y = max

j
qjxj < max

j
qjx

∗
j ≤ y∗.

This contradicts that (x∗, y∗) is an optimal solution to P2.

The proof is complete.

Denoted by P3 and P4 respectively

P3





min 1
T

T∑
t=1

max
j

ajtxj

s.t. x ∈ S

P4





min 1
T

T∑
t=1

yt

s.t. ajtxj 6 yt t = 1, . . . , T, j = 1, . . . , n

x ∈ S

Theorem A.2 If x∗ is an optimal solution to P3, then (x∗, y∗) is an optimal solution to P4,

where y∗ = (y∗1, . . . , y
∗
t , . . . , y

∗
T ), y∗t = max

1≤j≤n
ajtx

∗
j . On the other hand, if (x∗, y∗) is an optimal

solution to P4, where y∗ = (y∗1, . . . , y
∗
T ), then x∗ is an optimal solution to P3.

Proof. If x∗ is an optimal solution to P3, then (x∗, y∗) is a feasible solution to P4, where

y∗ = (y∗1, . . . , y
∗
T ), y∗t = max

1≤j≤n
ajtx

∗
j . If (x∗, y∗) is not an optimal solution to P4 , then there exists

a feasible solution (x, y), where y = (y1, . . . , yT ), to P4, such that 1
T

T∑
t=1

yt < 1
T

T∑
t=1

y∗t . Noticing
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that ajtxj 6 yt, then we have

1
T

T∑

t=1

max
1≤j≤n

ajtxj ≤ 1
T

T∑

t=1

yt <
1
T

T∑

t=1

y∗t =
1
T

T∑

t=1

max
1≤j≤n

ajtx
∗
j

which contradicts that x∗ is an optimal solution to P3.

On the other hand, if (x∗, y∗) is an optimal solution to P4, where y∗ = (y∗1, . . . , y
∗
T ), then

x∗ is an optimal solution to P3. Otherwise, there exists a feasible solution x to P3, such that
1
T

T∑
t=1

max
1≤j≤n

ajtxj < 1
T

T∑
t=1

max
1≤j≤n

ajtx
∗
j . Denote by yt = max

1≤j≤n
ajtxj , and y = (y1, . . . , yT ). Then

we have
1
T

T∑

t=1

yt =
1
T

T∑

t=1

max
j

ajtxj <
1
T

T∑

t=1

max
j

ajtx
∗
j ≤

1
T

T∑

t=1

y∗t

which contradicts that (x∗, y∗) is an optimal solution to P4.

Hence, we complete the proof.

II. The list of the companies.

Group 1: The list of 33 assets in Nikkei 225:

T2531, T4063, T4452,T4505, T4506, T4507, T4519, T4523, T4543, T4901, T5202,

T5706,T5801, T6367, T6701, T6702, T6752, T6758, T6762, T6764, T6971,T6976,

T7203, T7267, T7270, T7733, T7751, T7752, T8035, T4502, T4503,T6857, T6954.

Group 2: The list of 63 assets in Nikkei 500:

N0000247, N0000488, N0000489 , N0000519, N0000525, N0000710, N0000529, N0000531,

N0000565, N0000559, N0000592, N0000593, N0000597, N0000617, N0000622, N0013612,

N0000697, N0000722, N0000759, N0001382, N0001387, N0001392, N0001393, N0001394,

N0001408, N0001451, N0001452, N0000728, 0001458, N0001459, N0001516, N0001738,

N0001708, N0002142, N0012655, N0005640, N0024129, N0001680, N0001683, N0070046,

N0001711, N0001637, N0028448, N0070201, N0028448, N0070204, N0031596, N0001874,

N0002001, N0002003, N0015006, N0005754, N0004459, N0002104, N0017193, N0005290,

N0027118, N0014401, N0002031, N0008680, N0007573, N0001736, N0068435.
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19



2 4 6 8 10

0.9

1

1.1

Required rate=0.012

Month

W
e
a
;
t
h

2 4 6 8 10

0.9

1

1.1

Required rate=0.012

Month

W
e
a
l
t
h

2 4 6 8 10
0.8

0.9

1

Required rate=0.016

Month

W
e
a
l
t
h

2 4 6 8 10
0.8

0.9

1

1.1

1.2
Required rate=0.016

Month

W
e
a
l
t
h

2 4 6 8 10
0.8

0.9

1

Required rate=0.02

Month

W
e
a
l
t
h

2 4 6 8 10

0.7

0.8

0.9

1

1.1

Required rate=0.02

Month

W
e
a
l
t
h

mar

kon

cai

teo

mar

kon

cai

teo

mar

kon

cai

teo

Figure 4: Wealth

20


