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Abstract

Financial derivatives commonly contain pre-mature termination
clauses, which are embedded rights held by the holder or writer. Well
known examples of these stopping rights include the early exercise
right in American options, callable right in callable securities and pre-
payment right in mortgage loans. In this paper, we show how to
model the mortgagor’s prepayment in mortgage loans and issuer’s call
in American warrant as event risks using the intensity based approach,
where the propensity of prepayment or calling is modeled by the inten-
sity of a Poisson process. We illustrate that the corresponding pricing
formulation resembles the penalty approximation approach commonly
used in the solution of the linear complementarity formulation of an
optimal stopping problem. We obtain several theoretical results on
the prepayment strategies of mortgage loans and calling polices of
American warrants. We also propose robust second order accurate
numerical schemes for solving the penalty formulation of an optimal
stopping problem.

Keywords: linear complementarity formulation, mortgage prepayment, callable
feature, intensity approach, penalty method, event risks

1 Introduction

Mortgage loans and bond contracts are both debt instruments, except that
the repayment of the principal in a mortgage loan is amortized over the life
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of the mortgage while the bond par is usually paid in full at the maturity of
the bond. The mortgagor plays a similar role as the bond issuer since both
owe the scheduled stream of cash flows on their liabilities. Most mortgage
loans contain the embedded prepayment privilege that gives the mortgagor
the right to terminate the contract prematurely by paying the remaining
principal plus any applicable transaction costs. The studies on the behav-
iors of prepayment and mortgage termination have been well explored in the
literature in the past decades. Prepayment models that include the consid-
eration of burnout effects and macro-economic factors have been proposed
for the valuation of different types of mortgage backed securities (Deng et
al ., 2000; McConnell and Singh, 1994; Schwartz and Torous, 1992; Stanton,
1995). In callable bonds and other callable derivative securities, the em-
bedded callable right entitles the issuer to recall the derivative by paying a
pre-set cash amount (call price). There may be some imposed constraints
on the calling provision, like the soft and hard call requirements and notice
period requirement (Lau and Kwok, 2004). The discussion of the optimal
calling policies of callable American warrants and convertible bonds can be
found in the papers by Kwok and Wu (2000) and Dai and Kwok (2005). In
essence, both the prepayment and callable rights limit the market value of
future cash flow liabilities via early termination of the contract through an
exchange of future liabilities by an upfront single payment.

The mortgagor’s prepayment in mortgage loans and issuer’s callable right
in callable securities are vivid examples of pre-mature termination clauses
that are commonly found in financial derivatives. Assuming that the exe-
cution of these rights is optimally chosen by the writer or buyer of these
securities, the modeling of early termination clauses can be formulated as
optimal stopping problems. By solving the linear complementarity formula-
tion of the pricing model, the optimal stopping rule and derivative price are
obtained simultaneously. However, numerous empirical studies have shown
that in general these rights would not be exercised optimally following the
optimal stopping rules. Market frictions, corporate finance considerations
and other factors may affect their “rational” behaviors of exercising the em-
bedded right of pre-mature termination.

The intensity based approach is first developed in credit risk modeling
to model the arrival of a default event. Similar intensity based framework
has been adopted by Carr and Linetsky (2001) and Szimayer (2004) in the
valuation of executive stock options subject to potential early departure of
the executive, and by Goncharov (2004) in the valuation of mortgage con-
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tracts. Also, Szimayer (2005) studies the valuation of American options in
the presence of event risk by modeling the arrival of event risk as the first
jump time of a Cox process. Here, we consider prepayment or calling as an
event risk and model the propensity of event arrival by the intensity of a
Poisson process.

The penalty method is a well known approximation approach for solv-
ing the linear complementarity formulation of an optimal stopping problem
(Friedman, 1982). In this paper, we show that the intensity of calling or
prepayment can be visualized as the penalty parameter in the penalty ap-
proximation. When we take the limit of the penalty parameter to infinity, the
penalty approximation becomes exact. Without any surprise, infinite value
of intensity represents the scenario where the right is exercised following the
optimal stopping rule. On the aspect of numerical computation, Forsyth
and Vetzal (2002) propose an implicit finite difference scheme with quadratic
rate of convergence for valuing American options using the penalty approx-
imation. However, the convergence behaviors of their scheme appear to be
quite erratic. Similar penalty approximation approach has been used to price
American options whose underlying asset process is modeled by the stochas-
tic volatility model (Zvan et al ., 1998) or jump diffusion model (d’Halluin et
al ., 2004). In addition, Khaliq et al . (2005) develop adaptive θ-methods for
solving the penalty formulation of pricing models of one-asset and two-asset
American options. To improve computational efficiency and convergence be-
haviors, we construct two modified versions of Forsyth-Vetzal’s scheme for
solving the penalty formulation of an optimal stopping problem. Our nu-
merical tests reveal that the proposed numerical schemes demonstrate better
computational efficiency and convergence behaviors.

This paper is organized as follows. In Section 2, we review the rational
prepayment model proposed by Stanton (1995). The Stanton model allows
for prepayment with both exogenous and endogenous reasons. By modeling
the arrival of the prepayment event by a Poisson process, we derive the
governing differential equation of the continuous version of Stanton’s model.
We then show how the differential equation formulation can be interpreted
as the penalty approximation of the linear complementarity formulation of
an optimal stopping problem. We analyze the monotonicity property of
the mortgage value with respect to the intensity of prepayment. We also
examine the impact of the transaction costs on the boundary that separates
the prepayment region and non-prepayment region. In Section 3, we propose
two versions of second order accurate finite difference schemes for solving the
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penalty formulation of an optimal stopping problem. Numerical tests were
performed to demonstrate the quadratic rate of convergence of the numerical
schemes. In Section 4, we model the propensity of issuer’s calling of an
American warrant by the intensity of a Poisson process. The impact of the
intensity of calling on the optimal holder’s exercise policy of the American
warrant is analyzed. We end the paper with summary and conclusive remarks
in the last section.

2 Intensity-based approach of pricing mort-

gage loans with prepayment option

In this section, we concentrate on the pricing of a single mortgage loan by
modeling the prepayment decision process of the mortgagor. In Stanton’s
prepayment model (1995), the arrival of prepayment event is modeled using
the intensity based approach. His model allows two commonly observed
“irrational” behaviors: mortgagors may prepay when it is not financially
optimal to do so and delay refinancing even prepayment is financially more
beneficial.

Under the full “rationality” assumption, each mortgagor minimizes the
market value of the mortgage liabilities and acts rationally to exercise the
prepayment right. Let Lt denote the present value of the mortgagor’s liabil-
ities and P (t) be the remaining outstanding principal of the mortgage loan.
The transaction cost is assumed to be proportional to the outstanding prin-
cipal, which can be written as P (t)X, where X is the proportional factor of
transaction cost. The total payout ψ(t) by the mortgagor upon prepayment
is then equal to P (t)(1 + X). The full rationality assumption would lead to
the following simple prepayment decision rule: prepay whenever Lt > ψ(t)
and not to do so otherwise. Here, the transaction costs should be interpreted
in a broader sense. Besides the actual monetary costs, they also include the
inconvenience costs, like the burden of going through the whole prepayment
procedure.

In our mathematical setup, we assume the absence of arbitrage opportu-
nities in the market so that a risk neutral measure Q exists. The uncertainty
of the economy is modeled by a filtered probability space (Ω,G, {Gt}t≥0, Q),
where the σ-algebra Gt represents all observations available to the mortgagor
at time t, Ω is the sample space of all outcomes and Q is a risk neutral mea-
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sure on G, where G ⊇ ∪t≥0Gt. In our continuous-time diffusion state process
setting, we take the interest rate as the single stochastic state variable in
the pricing model. Let τ denote the prepayment time of the mortgage loan,
which is a positive stopping time on this filtered probability space. Let γt de-
note the intensity of the random prepayment time τ , then γt is a Gt-adapted
intensity process. We consider another filtration Ft, which is the natural fil-
tration generated by the interest rate process. Since prepayment decision is
not driven by the interest rate movement alone, τ is not a Ft-stopping time.

Following the modeling of prepayment behaviors as postulated by Stan-
ton (1995), a mortgagor may prepay his mortgage loan either for exogenous
or endogenous reasons. We refer to prepayment due to migration, divorce,
etc., those not driven by interest rate considerations, as exogenous. The
arrival of exogenous prepayment is modeled as a Poisson process with con-
stant intensity λ. On the other hand, a mortgagor may consider to refinance
when Lt > ψ(t). Such prepayment decision is said to be endogenous. The
endogenous prepayment is also modeled by a Poisson process with intensity
ρ1{Lt>ψ(t)}, where ρ is a constant, reflecting the fact that the intensity of
endogenous prepayment is zero when Lt ≤ ψ(t). The prepayment time τ is
the minimum of these two independent random times, so the intensity γt of
τ is simply the sum of their intensities. The intensity γt has dependence on
Lt, which can be expressed as

γt =

{
λ if Lt ≤ ψ(t)
λ + ρ if Lt > ψ(t)

. (2.1)

Partial differential equation formulation
Under the risk neutral measure Q, the dynamics of the stochastic short rate
rt is assumed to be governed by the Ito process

dr = µr(r, t) dt + σr(r, t) dZ, (2.2)

where µr is the drift, σr is the volatility and dZ is the differential of the
standard Wiener process. Let c(t) denote the continuous stream of amortized
cash flows paid by the mortgagor throughout the contract until termination.
We write L(r, t) as the value of the mortgage liabilities and γ(L) as the
intensity of the prepayment time with dependence on L. The governing
equation for L(r, t) can be derived from the following relation

rL dt = Et[dL + c(t) dt],
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where Et is the expectation under Q conditional on the filtration Gt. By Ito’s
lemma, we have

rL dt =
∂L

∂t
dt + µr

∂L

∂r
dt +

σ2
r

2

∂2L

∂r2
dt

+ γ(L)[ψ(t)− L] dt + c(t) dt.

The differential equation for L(r, t) is then obtained as follows

∂L

∂t
+ µr

∂L

∂r
+

σ2
r

2

∂2L

∂r2
− [r + γ(L)]L + c(t) + γ(L)ψ(t) = 0. (2.3)

Based on the intensity γt defined in eq. (2.1), the above governing equation
can be succinctly expressed as

∂L

∂t
+ µr

∂L

∂r
+

σ2
r

2

∂2L

∂r2
− (r + λ)L + c(t) + λψ(t)

= ρ max(L− ψ(t), 0). (2.4)

For an finite value of ρ, the term ρ max(L − ψ(t), 0) models a sub-optimal
policy of endogenous prepayment. The governing equation is seen to be a
non-linear differential equation. In the limit ρ →∞, the prepayment would
be immediate when Lt reaches ψ(t) from below.

There is a distinction between the liability to the mortgagor L(r, t) and
the fair value of the mortgage M(r, t). The difference arises since the mort-
gagor pays P (t)(1 + X) at the time of prepayment but the value of the
mortgage loan equals the outstanding principal P (t) upon prepayment. The
mortgage value is not simply given by the discounted expected value of the
cash flow c(t) since prepayment may occur. By following similar argument
as above and replacing the payment term ψ(t) in eq. (2.3) by P (t), the
governing differential equation for M(r, t) is deduced to be

∂M

∂t
+ µr

∂M

∂r
+

σ2
r

2

∂2M

∂r2
− (r + λ)M + c(t) + λP (t)

= ρ[M − P (t)]1{L>ψ(t)}. (2.5)

Given the known solution to L(r, t), the above differential equation for M(r, t)
is linear.

The outstanding principal P (t) can be obtained by solving the following
differential equation

c(t) dt = −dP (t) + m(t)P (t) dt,
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where m(t) is the mortgage rate. Using the initial condition: P (0) = P0.
The solution for P (t) is easily found to be

P (t) = P0e
∫ t
0 m(u) du −

∫ t

0

C(s)e
∫ t

s m(u) du ds. (2.6)

The relation between C(t) and m(t) can be established by observing the
terminal condition: P (T ) = 0. If the amortized cashflow is taken to be
independent of time, then the constant cashflow c is related to the fixed
mortgage rate m0 (set at initiation) by

c =
m0

1− e−m0T
P0. (2.7)

Penalty approximation
Assuming the mortgagor to be fully rational, the optimal endogenous strategy
is to exercise the prepayment right immediately when the liability Lt rises
to the level ψ(t). This would mean an infinite value for the intensity ρ. The
mortgage pricing model then becomes an optimal stopping problem. Let L
denote the operator defined as

L = µr
∂

∂r
+

σ2
r

2

∂2

∂r2
− (r + λ).

The linear complementarity (variational inequalities) formulation of the op-
timal stopping problem is given by

∂L

∂t
+ LL + c(t) + λψ(t) ≥ 0

L− ψ(t) ≤ 0[
∂L

∂t
+ LL + c(t) + λψ(t)

]
[L− ψ(t)] = 0. (2.8)

From the theory of variational inequalities of free boundary problems (Fried-
man, 1982), the differential equation formulation in eq. (2.4) can be visual-
ized as the penalty approximation to the linear complementarity formulation
in eq. (2.8). Here, the parameter ρ in the penalty term has a specific financial
interpretation in the prepayment model. It is interpreted as the intensity of
endogenous prepayment.
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Separating boundary
Recall that a necessary condition for endogenous prepayment is given by

Lt > ψ(t). As it is obvious that
∂L

∂r
≤ 0, so the critical threshold on the

interest rate r that separates Lt > ψt and Lt < ψt in the (r, t)-plane can be
defined as

r∗(t) = min{r(t); Lt < ψ(t)}. (2.9)

How would the separating boundary r∗(t) depend on the intensity of prepay-
ment and transaction cost? First, we would like to establish the monotonicity
property of the value function with respect to the penalty parameter ρ. We
then present the lemma that states the monotonicity property of r∗(t) with
respect to the proportional factor of transaction cost X.

Lemma 1
Let the liability value function Li, i = 1, 2, be the solution to the following
penalty formulation

(
∂

∂t
+ L

)
Li + fi(t) = ρi max(Li − ψ, 0), i = 1, 2,

sharing the same set of initial-boundary conditions. Here, ρ1 and ρ2 are
constant penalty parameters, and f1(t) and f2(t) are source terms. Suppose
ρ1 ≥ ρ2 > 0 and f1(t) ≤ f2(t) for all t, then the value functions L1 and L2

observe
L1 ≤ L2 for all values of ρ and t.

The proof of Lemma 1 using the comparison principle in partial differ-
ential equation theory is presented in Appendix A. Using the monotonicity
result established in Lemma 1, it becomes straightforward to show Lemma
2.

Lemma 2
If X1 < X2, then r∗(t; X1) ≥ r∗(t; X2).

The financial interpretation of the above lemma is quite obvious. With a
higher transaction cost, the interest rate has to be lowered further in order
to increase the value of liability Lt to the level of prepayment payout ψ(t).
The proof of Lemma 2 is presented in Appendix B.
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In Figures 1 and 2, we show the plot of the separating boundary r∗(t)
[corresponding to Lt = ψ(t)] against time to expiry T − t with varying val-
ues of the penalty parameter ρ and proportional transaction cost factor X,
respectively. In the calculations, we assume that the interest rate dynamics
under Q is given by

dr = [0.29368(0.07935− r) + 0.12165r] dt + 0.11425
√

r dZ.

Also, the amortized cashflow is assumed to be constant. We use X = 0.1
in Figure 1 and ρ = 0.05 in Figure 2. The other parameter values are
T = 30, λ = 0.3 and m0 = 0.08. Here, the curve r∗(t) separates the non-
prepayment region in the above and the feasible prepayment region below.
Since L is decreasing with respect to both ρ and r, we obtain a lower value
of r∗(t) when ρ assumes a higher value. The monotonicity properties of r∗(t)
with respect to ρ and X as deduced from Lemmas 1 and 2 are verified. We
also observe that there exists some critical value of time to expiry such that
the mortgage is never prepaid when the time to expiry is less than this critical
value.

3 Second order accurate numerical schemes

for solving penalty formulation

In this section, we propose two second order time accurate finite difference
schemes for solving the penalty formulation presented in eq. (2.4). Gon-
charov (2004) analyzes the numerical procedure proposed by Stanton (1995)
for solving eq. (2.4). He interprets Stanton’s scheme as a first order time
accurate fractional step method. Goncharov also cautions that numerical
methods in general cannot be of second order accurate unless the discon-
tinuity in the prepayment function is specially treated. Though Forsyth
and Vetzal have employed the second order Crank-Nicolson discretization in
their numerical scheme (2002), erratic convergence behaviors are observed in
their American option calculations. In the implementation of their numerical
method, a system of non-linear equations have to be solved in each time step
due to implicit discretization of the non-linear penalty term.

We consider the construction of finite difference schemes for the follow-
ing prototype equation (Forsyth and Vetzal, 2002), which is obtained from
the penalty approximation of the linear complementarity formulation of the
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pricing model of an American option with payoff function φ(S):

∂U

∂τ
=

σ2

2
S2∂2U

∂S2
+ rS

∂U

∂S
− rU + ρ max(φ(S)− U, 0). (3.1)

Here, the option value function U(S, τ) is a function of stock price S and
time to expiry τ , where τ = T − t, and σ is the volatility of the stock price.
In this section, we propose two modifications of the discretization of the
penalty term in the Crank-Nicolson scheme proposed by Forsyth and Vetzal
(2002). The objectives of which are to achieve better convergence behaviors
and computational efficiency.

Let Un
j denote the discrete numerical approximation to U(Sj, τn), where

Sj = S0 + j∆S, j = 1, 2, · · · , NS, and τn = n∆τ, n = 1, 2, · · · , Nτ . Here, ∆S
and ∆τ are the stepwidth and time step, respectively, NS and Nτ are the
total number of spatial and temporal grids, respectively. Define the spatial
difference operator Lh by

LhU
n
j =

σ2

2
S2

j

Un
j+1 − 2Un

j + Un
j−1

∆S2
+ rSj

Un
j+1 − Un

j−1

2∆S
− rUn

j .

Forsyth and Vetzal (2002) propose the following Crank-Nicolson discretizaiton
of eq. (3.1):

Un+1
j = Un

j +
∆τ

2

LhU
n+1
j + LhU

n
j

2
+ ξn+1[φ(S)− Un+1

j ] (3.2a)

where

ξn+1 =

{
ρ∆τ if φ(S) > Un+1

j

0 otherwise
. (3.2b)

Since the penalty term ξn+1[φ(S) − Un+1
j ] is non-linear, one has to solve a

non-linear system of algebraic equations at each time step to obtain Un+1
j .

The generalized Newton iteration procedure is adopted by Forsyth and Vetzal
for the numerical solution of the non-linear system.

Experimental tests on the Forsyth-Vetzal scheme reveal that the numeri-
cal results may not exhibit quadratic rate of convergence when the Rannacher
smoothing procedure is not applied. With some slight modification of the
discretized penalty term in eqs. (3.2a,b), we may achieve better convergence
behaviors and computational efficiency. Our proposed modifications are pre-
sented below.
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Scheme One
The penalty term is discretized at

(
n + 1

2

)th
time level, so that it now becomes

ξn+ 1
2

[
φ(S)− Un+1

j + Un
j

2

]
(3.3a)

where

ξn+ 1
2 =

{
ρ∆τ if φ(S) >

Un+1
j +Un

j

2

0 otherwise
. (3.3b)

Scheme Two
The non-linearity in the penalty term disappears when we replace the implicit
term (Un+1

j + Un
j )/2 by the explicit term (3Un

j −Un−1
j )/2. Now, the solution

for Un+1
j amounts to the solution of a linear tridiagonal system of algebraic

equations. The discretized penalty term is given by

ξ̂n+ 1
2

[
φ(S)− 3Un

j − Un−1
j

2

]
, (3.4a)

where

ξ̂n+ 1
2 =

{
ρ∆τ if φ(S) >

3Un
j −Un−1

j

2

0 otherwise
. (3.4b)

Unfortunately, the new scheme is a three-level scheme. As part of the initia-
tion procedure, one has to use an alternative two-level second order accurate
scheme to obtain the numerical solution at the first time level.

To compare the convergence behaviors of the numerical results obtained
using our Scheme One and the Forsyth-Vetzal scheme (without applying Ran-
nacher smoothing), we repeated similar pricing calcaulations on an American
put option as reported in Forsyth and Vetzal’s paper (2002). The payoff of
the put option is φ(S) = max(X − S, 0), where X is the strike price. The
numerical results are presented in Table 1. The parameter values used in the
American put option are: r = 0.1, S = 100, τ = 0.25, X = 100. For a second
order time accurate scheme, we expect that the error of approximation is
reduced by a factor of 1/4 when the number of time steps is doubled. The
numerical solutions obtained from our Scheme One do demonstrate quadratic
rate of convergence while those from the Forsyth-Vetzal scheme reveal erratic
convergence behaviors.
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We have also applied both our proposed schemes and Stanton’s scheme
to numerical valuation of a mortgage loan. In particular, we measured the
mean squared errors and examined the rates of decrease of the mean squared
errors with increasing number of time steps. In Table 2, we present the
numerical results in a typical mortgage loan valuation. From the values of
the successive ratios of the mean squared errors, we deduce that both Scheme
One and Scheme Two are second order time accurate while Stanton’s Scheme
is only first order time accurate (since the error of approximation is halved
when the number of time steps is doubled).

4 American warrant subject to issuer’s call-

ing

In this section, we consider the impact of issuer’s calling right on the optimal
early exercise policy of an American warrant. Examples of callable American
warrants that are traded in the financial markets can be found in Kwok and
Wu’s paper (2000). The payoff of the American warrant upon exercise by the
holder is the usual call option payoff: max(St̂ −X, 0), where St̂ is the stock
price at the exercise time t̂ and X is the strike price. Upon calling by the
issuer, the American warrant is terminated prematurely. For simplicity in our
subsequent analysis, we assume that the holder receives the fix dollar amount
K as rebate from the issuer upon calling. The calling may be visualized as
an event of pre-mature termination. In this sense, the callable American
warrant can be interpreted as an American option subject to event risk of
early termination (Szimayer, 2005). As noted by Szimayer, the presence of
calling risk influences the optimal exercise policy adopted by the warrant
holder.

We would like to derive the formulation of the pricing model of an Ameri-
can warrant subject to the risk of pre-mature termination by issuer’s calling.
Let V (S, t) be the price function of the American warrant, where S is the
stock price. Let φ(S) be payoff upon exercise and ψ(S) be the rebate received
by the holder upon calling. Assume the arrival of calling by issuer to be gov-
erned by a Poisson process with intensity ρ1{V >ψ}, where ρ is a constant.
The indicator function 1{V >ψ} is included since the issuer calls only when
V > ψ. Here, we consider a callable American warrant whose exercise payoff
φ(S) = S −X and rebate ψ(S) = K.
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Partial differential equation formulation
Under the risk neutral measure Q, the dynamic of the stock price is assumed
to be governed by

dS

S
= r dt + σ dZ, (4.1)

assuming zero dividend yield of the stock. By following a similar argument
as that of the value of the liability mortgage loan in Sec. 2, we obtain the
following governing equation for V (S, t) in the continuation region where the
warrant remains alive. We obtain

rV dt =

(
∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ rS

∂V

∂S

)
dt + ρ max(V − ψ, 0)

so that
∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ rS

∂V

∂S
− rV + ρ max(V − ψ, 0). (4.2)

In the stopping region where it is optimal for the holder to exercise the
warrant, we have

V (S, t) = φ(S). (4.3)

We write τ = T−t, where τ is the time to expiry and let Lw be the differential
operator

Lw =
σ2

2
S2 ∂2

∂S2
+ rS

∂

∂S
− r,

the complementarity formulation for V (S, τ) is given by

min

(
∂V

∂τ
− LwV + ρ max(V − ψ, 0), V − φ

)
= 0

subject to terminal condition

V (S, 0) = max(φ(S), 0). (4.4)

The above complementarity formulation is non-linear due to the pres-
ence of the term max(V − ψ, 0). Recall that in the Carr-Linesky model of
executive stock valuation, the intensity of the process of event arrival does
not depend on the value function, so their differential equation formulation
remains linear.
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In the limit ρ → ∞, the issuer calls whenever V reaches ψ from below.
This corresponds to the “no delayed call” scenario. The complementarity
formulation (4.4) becomes (Dai and Kwok, 2005)

min

(
max

(
∂V

∂τ
− LwV, V − ψ

)
, V − φ

)
= 0

V (S, 0) = min(φ, ψ). (4.5)

Now, the pricing model becomes the double obstacle problem since V is
bounded above by ψ and below by φ. The interaction of the optimal calling
and exercise policies of the American warrant under optimality of calling
have been discussed by Dai and Kwok (2005).

In the simple case of ψ = K and φ = S − X, the optimal calling and
exercise policies are given by (Kwok and Wu, 2000)

S∗(τ) = min(S̃∗(τ), K + X), (4.6)

where S∗(τ) denote the critical stock price at which the warrant is either

optimally called by the issuer or exercised by the holder. Here, S̃∗(τ) denotes
the critical stock price of the usual American call option. Kwok and Wu show
that there is a critical value τ ∗ of the time to expiry at which

S̃∗(τ) = K + X, (4.7a)

and

S∗(τ) =

{
Ŝ∗(τ) when τ ≤ τ ∗

K + X when τ > τ ∗
. (4.7b)

Under the present framework of modeling the arrival of calling as a Pois-
son process, we would like to examine the critical stock price S∗ρ(τ) at which
it is optimal for the holder to exercise. In Figure 3, we plot S∗ρ(τ) against τ
for varying values of ρ. The parameter values used in the calculations are:
X = 100, r = 0.02, q = 0.04, σ = 0.3, T = 2 and K = 130. Interestingly, it is
observed from the figure that

S∗ρ(τ) = S̃∗(τ) for τ ≤ τ ∗ (4.8)

and S∗ρ(τ) is a decreasing function of ρ when τ > τ ∗.
The monotonically decreasing property of S∗ρ(τ) with respect to ρ can be

inferred easily from the monotonicity of the value function V (S, τ ; ρ) with
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respect to ρ. In particular, we have V (S, τ ; ρ) ≥ V (S, τ ;∞) for any finite
value of ρ. Recall that when τ ≤ τ ∗, the issuer would never call the warrant
since

V (S, τ ; ρ) ≤ CA(S, τ) ≤ K, τ ≤ τ ∗,

where CA(S, τ) is the price function of the non-callable American call. For
τ ≤ τ ∗, the callable American warrant is equivalent to its non-callable coun-
terpart, hence the result in eq. (4.8).

5 Conclusion

The prepayment right in a mortgage loan or the calling right in a callable
security represents pre-mature termination clause that limit the market value
of liabilities of the financial security. When optimality of exercising the right
is assumed, the pricing model of the derivative constitutes an optimal stop-
ping problem. The optimal stopping rule and the price of the derivative can
be obtained via the solution of the linear complementarity formulation of the
optimal stopping problem. However, empirical studies have shown that these
embedded rights are generally not be executed optimally by the mortgagor
and security issuer. Suppose the propensity of mortgagor’s prepayment or is-
suer’s calling is modeled by the intensity of a Poisson process, we have shown
that the pricing formulation resembles the penalty approximation approach
for solving the linear complementarity formulation of an optimal stopping
problem. The penalty parameter is seen to have a vivid financial interpre-
tation. It can be visualized as the intensity of the Poisson process modeling
the arrival of mortgagor’s prepayment or issuer’s calling.

For the mortgage loan valuation problem, the pricing of the value of
liabilities remains a non-linear problem. The boundary that separates the
non-prepayment region and feasible prepayment region is obtained as part of
the solution of the pricing model. We have obtained several theoretical results
on the monotonicity properties of the separating boundary with respect to
the intensity of prepayment and level of transaction cost.

The pricing model of a callable American warrant can be formulated
as a set of variational inequalities with double obstacle functions. This is
because the value function is bounded above by the payoff upon issuer’s
calling and below by the payoff upon holder’s exercise. When the arrival
of issuer’s calling is modeled by a Poisson process, the pricing model of the
callable American warrant resembles that of an American call option subject
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to event risk of pre-mature termination. The double obstacle problem is
simplified to a set of variational inequalities with one obstacle, except that
one of the inequalities becomes non-linear. We have managed to deduce the
optimal holder’s exercise policy subject to risk of calling by issuer. There
exists a critical value of time to expiry below which the warrant is always
in the non-calling region. Beyond this critical time of expiry, the arrival of
issuer’s calling is plausible. We have shown that the critical stock price at
which the holder should exercise decreases with increasing value of intensity
of calling by the issuer.

We have proposed two versions of second order finite difference schemes
for solving the penalty approximation of the linear complementarity formu-
lation of an optimal stopping problem. With proper explicit discretization
of the non-linear penalty term, we achieve better computational efficiency
and convergence behaviors when compared to other existing schemes in the
literature.
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Appendix A – Proof of Lemma 1

Assume the contrary, that is, L1 > L2 on an open set G so that

max(L1 − ψ, 0) ≥ max(L2 − ψ, 0).

Consequently, we have

(
∂

∂t
+ L

)
(L1 − L2)

= ρ1 max(L1 − ψ, 0)− ρ2 max(L2 − ψ, 0) + f2 − f1

= ρ1 [max(L1 − ψ, 0)−max(L2 − ψ, 0)] + (ρ1 − ρ2) max(L2 − ψ, 0)

+ (f2 − f1) ≥ 0.

On the boundary of G, we have L1 = L2 = 0 on ∂G. By using the com-

parison principle of the linear operator −
(

∂

∂t
+ L

)
, we obtain L1 ≤ L2. A

contradiction is encountered, so we have the desired result.

Appendix B – Proof of Lemma 2

It is reasonable to assume −dP (t)

dt
+ rP (t) ≥ 0 since the mortgage loan

payment is amortized throughout the life of the contract. For X1 < X2, it
suffices to show

L(r, t; X1)− P (t)(1 + X1) ≥ L(r, t; X2)− P (t)(1 + X2)

or equivalently

L(r, t; X1) ≥ L(r, t; X2)− P (t)(X2 −X1).

We define
L̃(r, t) = L(r, t; X2)− P (t)(X2 −X1).
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It is easy to check that

(
∂

∂t
+ L

)
L̃ =

(
∂

∂t
L

)
L(r, t; X2)

+ (X2 −X1)

[
−dP (t)

dt
+ rP (t)

]
.

Note that

(X2 −X1)

(
−dP (t)

dt
+ rP (t)

)
≥ 0.

By Lemma 1, we infer that L̃(r, t) ≤ L(r, t; X1), hence the desired result.
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Figure 1 Plot of the separating boundary r∗ against time to expiry T − t
with varying values of the penalty parameter ρ. The non-prepayment region
lies above the separating boundary curve. With a higher value of ρ, r∗(t)
assumes a lower value.
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Figure 2 Plot of the separating boundary r∗ against time to expiry T − t
with varying values of the transaction cost factor X. With a higher value of
X, r∗ assumes a lower value.
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Figure 3 Plot of the critical stock price S∗ against time to expiry T − t
with varying values of the penalty parameter ρ. With a higher value of ρ, S∗

assumes a lower value.
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Scheme One Forsyth-Vetzal’s scheme
Nτ NS Value Change Ratio Value Change Ratio

σ = 0.2, spatial domain of computation = [0, 200]
100 200 3.06908 3.06751
200 400 3.06986 0.00078 3.06910 0.00159
400 800 3.07005 0.00019 4.1 3.06968 0.00058 2.8
800 1600 3.07010 0.00005 4.1 3.06991 0.00023 2.5
1600 3200 3.07010 0.00001 4.3 3.07001 0.00010 2.3

σ = 0.8, spatial domain of computation = [0, 1000]
100 200 14.67638 14.67431
200 400 14.67826 0.00188 14.67729 0.00298
400 800 14.67873 0.00047 4.0 14.67828 0.00099 3.0
800 1600 14.67885 0.00012 4.0 14.67863 0.00035 2.8
1600 3200 14.67887 0.00002 4.2 14.67877 0.00014 2.5

Table 1 Comparison of the convergence behaviors of pricing calculations
of an American put option using Scheme One and Forsyth-Vetzal’s scheme
(without applying Rannacher smoothing). The numerical results obtained
from Scheme One demonstrate quadratic rate of convergence.

Stanton’s Scheme Scheme One Scheme Two
Nτ NS mean squared errors ratio mean squared errors ratio mean squared errors ratio
200 200 13.468 — 0.062315 — 0.038450 —
400 400 6.706 2.0 0.011925 5.2 0.009535 4.0
800 800 3.347 2.0 0.002557 4.7 0.002374 4.0
1600 1600 1.672 2.0 0.000596 4.3 0.000591 4.0
3200 3200 0.835 2.0 0.00146 4.1 0.000147 4.0

Table 2 Examination of the rate of convergence of numerical calculations of
pricing a mortgage loan using Stanton’s scheme and our proposed modified
Crank-Nicolson schemes.
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