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Abstract

This paper extends the jump detection method based on bi-power variation and swap

variance measures to identify realized jumps on financial markets and to estimate paramet-

rically the jump intensity, mean, and variance. Such an approach does not require specifying

and estimating the underlying drift and diffusion functions. Finite sample evidence suggests

that the jump parameters can be accurately estimated and that the statistical inferences can

be reliable relative to the maximum likelihood estimation, under the appropriate choice of

jump detection test level and assuming that jumps are rare and large. The bi-power variation

approach performs slightly better than the swap variance approach when the jump contri-

bution to total variance is small. Applications to equity market, treasury bond, individual

stock, and exchange rate reveal important differences in jump frequencies and volatilities

across asset classes over time. For high investment grade credit spread indices, the esti-

mated jump volatility has a better forecasting power than interest rate factors, volatility

factors including option-implied volatility, and Fama-French risk factors.
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1 Introduction

Continuous-time jump-diffusion modeling of asset return process has a long history in fi-

nance, dating back since at least Merton (1976). However, the empirical estimation of the

jump-diffusion processes has always been a challenge to econometricians, in particular, the

identification of actual jumps is not readily available from the time-series data of underly-

ing asset returns. Most of the econometric work relies on complicated numerical methods,

or heavy simulation-based procedures, and/or joint identification schemes from both the

underlying asset and the derivative prices (see, e.g., Bates, 2000; Andersen, Benzoni, and

Lund, 2002; Pan, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Eraker, Johannes,

and Polson, 2003, among others). Except for some special cases, the direct likelihood-based

estimation of jump parameters is difficult to obtain (Aı̈t-Sahalia, 2002b, 2004). Furthermore,

jumps introduce additional risk price parameters in derivative pricing. Given that the iden-

tification of actual jump dynamics is already imprecise, the reliable estimation of jump risk

parameters and its meaningful interpretation can be even more tenuous (Andersen, Benzoni,

and Lund, 2002). The main message from the empirical literature seems to be that jumps

are very important in asset pricing, but the estimation of jump parameters and the pricing

of jump risk are not easy to implement.

This paper applies a straightforward approach to identify the realized jumps for cer-

tain class of jump-diffusion processes, extending the seminal work by Barndorff-Nielsen and

Shephard (2004b,c). Recent literature suggests that the realized variation measure from

high frequency data provides a more accurate measure of the true variance of the underlying

continuous-time process (Andersen, Bollerslev, Diebold, and Labys, 2003b; Barndorff-Nielsen

and Shephard, 2004a; Meddahi, 2002). Within the realized variance framework, the contin-

uous and jump part contributions can be separated by comparing the difference between

realized variance and bi-power variation (see, Barndorff-Nielsen and Shephard, 2004c; An-

dersen, Bollerslev, and Diebold, 2004b; Huang and Tauchen, 2005). Considering that jumps

in financial markets are usually rare and of large sizes, we further assume that (1) there is

at most one jump per day, and (2) jump size dominates daily return when it occurs. We

also extend the jump detection test based on the swap variance contract (Jiang and Oomen,

2005) to filter our the realized jumps, under the single jump assumption (1) and using a

nonlinear root finding procedure to extract the actual jump size and sign. This allows us

to filter out the realized jumps, and further to directly estimate the jump distributions (in-

tensity, mean, and variance). Such an estimation strategy based on identified jumps, is in

contrast with the existing literature that relies on latent jumps hence the identification from
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likelihood function of daily returns.1

In the Monte Carlo experiment, we examine four settings where the jump contribution

to total variance ranges from 10%, 20%, 50%, to 80%. In these situations, our jump iden-

tification and estimation approach works well, in that the parameter estimates are efficient,

accurate, and converging as the sample size increases (long-span asymptotics). In addition,

the asymptotic Chi-square test based on the Wald standard error converges, as the sampling

frequency increases (in-fill asymptotics). Typically as jump contribution to total variance

increases, the estimation efficiency of jump parameters also increases. One important caveat

is that these convergence results are depending on choosing the level of jump detection test.

For the bi-power variation based approach, the significance level for the jump detection test

need to be set rather loose at 0.99 when jump contribution to total variance is low (10% and

20%), but set rather tight at 0.999 when the jump contribution is high (50% and 80%). In

contrast, the swap variance based approach always favors a tighter test level of 0.999, but its

performance when jump contribution is small (10%) is not as good as the bi-power variation

based one. This seems to be related to the fact that the criterion function of swap variance

test is less responsive to smaller positive jumps, which turn out to be the main empirical

finding in literature (see, Andersen, Bollerslev, and Diebold, 2004b; Huang and Tauchen,

2005, e.g.).

The proposed jump identification mechanism is implemented for S&P500 market index,

10-year US treasury bond, Microsoft company stock, and Brazilian exchange rate, to cover

a wide spectrum of asset classes. The total realized volatility is higher for individual stock

and emerging market exchange rate. The jump intensity is the highest for exchange rate

(51%), moderate for equity index (23%) and government bond (21%), and the lowest for

individual stock (11%). All the jump mean estimates are insiginificant from zero, which is

consistent with the finding of large root-mean-squared-error in jump mean estimates in the

Monte Carlo experiment. Jump volatility is small for stock market (0.49%) and bond market

(0.45%), but large for firm equity (1.12%) and exchange rate (1.13%). Rolling estimates

reveal more interesting jump dynamics. The jump probabilities are quite variable for equity

index and treasury bond (from 10% to 40%), but relatively stable for Microsoft stock (10%)

and Brazilian Real (50%). Although jump means are mostly indistinguishable from zero for

all assets considered here, there are obvious deviations from zero for S&P500 index in late

1It should be pointed out that such a jump detection and estimation strategy is invalid by construction
for certain Lévy process with infinite small jumps in a finite time period (Bertoin, 1996; Barndorff-Nielsen
and Shephard, 2001; Carr and Wu, 2004). Our approach is more applicable to the compound Poisson-
Normal jump process (Merton, 1976), where the rare and large jumps in financial markets are presumably
the responses to significant economic news arrivals.
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1990s (positive return jump) and Brazilian Real around 2003 (exchange rate depreciation).

Finally, the jump volatilities have not changed much for government bond and individual

stock, but elevated significantly for US equity market from 2000 to 2004 and for emerging

market currency around 2003.

Being able to identify realized jumps has important implications for estimating financial

market risk premia, because we are able to obtain reliable estimation of the objective jump

dynamics, which greatly facilitates the estimation of jump risk prices. For Moody’s AAA and

BAA credit spread indices, we find that the rolling estimates of stock market jump volatility

can predict the spread variation with R-squares 0.61 and 0.72, which are considerably higher

than standard interest rate factor, volatility factors including option-implied volatility, and

the systematic Fama-French factors. This result is important, since forecasting high invest-

ment grade credit spreads has not been very successful and the empirical role of jumps in

explaining these credit spreads has not been validated in literature so far. This evidence is

also consistent with the finding in Zhang, Zhou, and Zhu (2005) that credit default swap

(CDS) spreads of individual firms are well explained by the realized jump risk measures

estimated similarly from high frequency individual equity prices.

The rest of the paper is organized as following, the next section introduces the jump

identification mechanism based on high frequency intraday data, then Section 3 provides

some Monte Carlo evidence on the small sample performance of such a mechanism, Section

4 illustrates the approach with four financial market assets, the following section discusses

some implications for predicting credit risk spreads, and Section 6 concludes.

2 Identifying Realized Jumps

Jumps are important for asset pricing (Merton, 1976), yet the estimation of jump distribution

is very difficult, especially when only low frequency data is available (Bates, 2000; Andersen,

Benzoni, and Lund, 2002; Pan, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Eraker,

Johannes, and Polson, 2003; Aı̈t-Sahalia, 2004). In recent years, Andersen and Bollerslev

(1998), Andersen, Bollerslev, Diebold, and Labys (2001); Andersen, Bollerslev, and Diebold

(2005a), Barndorff-Nielsen and Shephard (2002a,b), and Meddahi (2002), have advocated the

use of so-called realized variance measures by utilizing the information in the intra-day data

for measuring and forecasting volatilities. More recent work on bi-power variation measures,

which are developed in a series of papers by Barndorff-Nielsen and Shephard (2003, 2004b,c),

allows for the use of high-frequency data to disentangle realized volatility into a continuous

and a jump components (see, Andersen, Bollerslev, and Diebold, 2004b; Huang and Tauchen,
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2005, as well). Further more, a related approach based on the difference between arithmetic

and geometric returns can be used to identify realized jumps (Jiang and Oomen, 2005). In

this paper, we rely on the economic intuition that jumps on financial markets are rare and

large, to extract the realized jumps and to explicitly estimate the jump intensity, mean, and

volatility parameters.

2.1 Filtering Jumps from Bi-Power Variation

Let pt = log(Pt) denotes the time t logarithmic price of the asset, and it evolves in continuous

time as a jump diffusion process:

dpt = µtdt + σtdWt + Jtdqt (1)

where µt and σt are the instantaneous drift and diffusion functions that are completely

general and may be stochastic (subject to the regularity conditions), Wt is the standard

Brownian motion, dqt is a Poisson jump process with intensity λJ , and Jt refers to the

corresponding (log) jump size distributed as Normal(µJ , σJ). Note that our approach also

allows for time-varying jump rate λJ,t, jump mean µJ,t, and jump volatility σJ,t, which can

be implemented empirically in many different ways once the actual jumps are filtered out.

Time is measured in daily units and the intra-daily returns are defined as follows:

rt,j ≡ pt,j·∆ − pt,(j−1)·∆ (2)

where rt,j refers to the jth within-day return on day t, and ∆ is the sampling frequency

within each day.

Barndorff-Nielsen and Shephard (2004c) propose two general measures for the quadratic

variation process—realized variance and realized bipower variation—which converge uni-

formly (as ∆ → 0 or m = 1/∆ →∞) to different quantities of the underlying jump-diffusion

process,

RVt ≡
m∑

j=1

r2
t,j →

∫ t

t−1

σ2
sds +

∫ t

t−1

J2
s dqs (3)

BVt ≡ π

2

m

m− 1

m∑
j=2

|rt,j||rt,j−1| →
∫ t

t−1

σ2
sds (4)

Therefore the difference between the realized variance and bipower variation is zero when

there is no jump and strictly positive when there is a jump (asymptotically).

A variety of jump detection techniques are proposed and studied by Barndorff-Nielsen

and Shephard (2004c), Andersen, Bollerslev, and Diebold (2004b), and Huang and Tauchen
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(2005). Here we adopted the ratio statistics2

RJ(bv) ≡
RVt −BVt

RVt

(5)

which converges to a standard normal distribution with appropriate scaling

ZJ(bv) ≡
RJ(bv)√

[(π
2
)2 + π − 5] 1

m
max(1, TPt

BV 2
t
)

d−→ N (0, 1) (6)

where TPt is the Tri-Power Quarticity robust to jumps, and as shown by Barndorff-Nielsen

and Shephard (2004c),

TPt ≡ mµ−3
4/3

m

m− 2

m∑
j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j|4/3 →
∫ t

t−1

σ4
sds (7)

with µk ≡ 2k/2Γ((k+1)/2)/Γ(1/2) for k > 0. This test has excellent size and power, and tells

us whether there is a jump occurred during a particular day and how much the jump-squared

contribution to the total realized variance, i.e.,
∫ t

t−1
J2

s dqs/RVt.

Based on the economic intuition on the nature and source of jumps on financial market

(Merton, 1976), we further assume that, (1) there is at most one jump per day, and (2) jump

size dominates return when jump occurs. These assumptions allow us to filter out the daily

realized jumps as

Ĵ
(bv)
t = sign(rt)×

√
(RVt −BVt)× It,(ZJ(bv)≥Φ−1

α ) (8)

where Φ is the cumulative distribution function of a standard Normal, α is the significance

level of the z-test, and It,(ZJ(bv)≥Φ−1
α ) is the resulting indicator function on whether there is a

jump during the day. Our approach of filtering out the realized jumps is a simple extension

to the concept of “significant jump” in Andersen, Bollerslev, and Diebold (2004b), the signed

square-root of which is equivalent to our Jt. Of course, our interpretation of Jt as a single

jump size during a day relies on the simplifying assumption that jumps on financial markets

are rare and of large sizes.

2.2 Filtering Jumps from Swap Variance Measure

Alternatively, we can use the variance swap contract to identify the jumps, as proposed by

Jiang and Oomen (2005) based on the insight in Neuberger (1990). The basic intuition

2Huang and Tauchen (2005) perform extensive Monte Carlo experiments on various jump detection
techniques under many different settings. Here we choose the ratio statistics, favored by their findings
regarding the power and size properties of various test statistics.
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is that for a log-normal asset price process, the difference between the arithmetic mean

and geometric mean is one-half of the variance. This key insight holds exactly for general

continuous time processes with continuous sample path. Applying Itô’s Lemma to equation

(1) with Pt = exp(pt) and subtracting equation (1), we have

2

∫ t

t−1

(dPs/Ps − dps) =

∫ t

t−1

σ2
sds + 2

∫ t

t−1

(exp(Js)− Js − 1)dqs (9)

which replicates the integrated variance exactly if there is no jump. Let the intra-day arith-

metic returns be defined as:

Rt,j ≡
Pt,j·∆ − Pt,(j−1)·∆

Pt,(j−1)·∆
(10)

where Rt,j refers to the jth within-day arithmetic return on day t, and ∆ is the sampling

frequency within each day. Then the swap variance (SV) contract can form a basis for testing

jumps

SVt ≡ 2
m∑

j=1

(Rt,j − rt,j) →
∫ t

t−1

σ2
sds + 2

∫ t

t−1

(exp(Js)− Js − 1)dqs (11)

RVt ≡
m∑

j=1

r2
t,j →

∫ t

t−1

σ2
sds +

∫ t

t−1

J2
s dqs (12)

with the difference SVt−RVt converges in probability to 2
∫ t

t−1
(exp(Js)−1/2J2

s −Js−1)dqs.

Similar to the ratio statistics in Barndorff-Nielsen and Shephard (2004c), Andersen,

Bollerslev, and Diebold (2004b), and Huang and Tauchen (2005) based on the bi-power

variation, here we adopted the ratio statistics as in Jiang and Oomen (2005) based on the

swap variance measure

RJ(sv) ≡
SVt −RVt

SVt

(13)

which converges to a standard normal distribution with appropriate scaling

ZJ(sv) ≡
RJ(sv)√

1
m2

QPt

BV 2
t

d−→ N (0, 1) (14)

where QPt is the Quad-Power Sexticity robust to jumps,

QPt ≡ µ6

9

m3µ−4
6/4

m− 3

m∑
j=4

|rt,j−3|6/4|rt,j−2|6/4|rt,j−1|6/4|rt,j|6/4 → µ6

9

∫ t

t−1

σ6
sds (15)

The swap variance based test statistics has a convergence rate of m, compared to
√

m for

the test based on the bi-power variation (Jiang and Oomen, 2005).

7



Even with rare and large jumps, the swap variance based measure is more involved for

filtering out the realized jumps. Assuming that at most one jump happens per day,

(SVt −RVt)× It,(ZJ(sv)≥Φ−1
α ) = 2(exp(Jt)−

1

2
J2

t − Jt − 1) (16)

Using a third order Taylor expansion of the right-hand-side, we can solve approximately the

realized jump size as

Ĵ
(sv)
t ≈ sign(SVt −RVt)×

[
3(SVt −RVt)× It,(ZJ(sv)≥Φ−1

α )

]1/3

(17)

However, the approximation error is not small here. An exact solution can be found by

minimizing the difference between the observed swap variance measure and its asymptotic

function value,

Ĵ
(sv)
t = arg min

Jt

[
(SVt −RVt)− 2(exp(Jt)−

1

2
J2

t − Jt − 1)

]2

× It,(ZJ(sv)≥Φ−1
α ) (18)

conditional on a significant jump occurring. Our experiment suggests that the most accurate

and efficient result can be achieved by using the third order Taylor approximation as the

starting value and using the nonlinear root-finding procedure to get the final result.

One clear advantage of the swap variance based jump filtering method, is that the sign of

the assumed single jump would be the same as the swap variance test statistics (SVt−RVt);

while for bi-power variation based jump filtering method, we have to use the sign of daily

return to approximate the jump sign. On the other hand, jump size is easier to extract in

the case of bi-power variation, as a simple square-root of the difference realized variance and

bi-power variation; while for swap variance based method, a nonlinear root finding routine

is required to extract the jump size accurately. There is a clear trade-off between these two

approaches.

2.3 Estimating the Jump Distribution

Once the individual jump size is filtered out, we can further estimate the jump intensity,

mean, and variance, by imposing a simple model of Poisson-mixing-Normal jump specifica-

tion,

λ̂J =
Number of Jump Days

Number of Trading Days
(19)

µ̂J = Mean of Ĵ
(bv)
t or Ĵ

(sv)
t (20)

σ̂J = Standard Deviation of Ĵ
(bv)
t or Ĵ

(sv)
t (21)
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with usual formula for the standard error estimates. Such an approach for estimating jumps

is robust to the specifications of time-varying or even stochastic drift and diffusion functions.

It also allows us to specify flexible dynamic structures of the underlying jump arrival rate

or jump volatility processes, similar to those in Andersen, Bollerslev, and Huang (2005b).

Realized jumps therefore can help us to avoid those estimation methods that rely heavily on

numerical simulations.

3 Finite Sample Experiment

It is important to evaluate whether the proposed jump identification scheme works well under

our assumption of large and rare jumps. In particular, we want to know whether the jump

parameters can be accurately estimated and whether the correct inferences can be made, as

both the sample size increases and the sampling interval decreases.

3.1 Experimental Design

Here we adopt the following benchmark specification of a stochastic volatility jump-diffusion

process,

dpt = µtdt + σtdW1t + Jtdqt (22)

dσ2
t = β(θ − σ2

t )dt + γ
√

σ2
t dW2t (23)

with log price drift µt = 0; volatility mean reversion β = 0.10 and volatility-of-volatility

γ = 0.05; jump parameters λJ = 0.05, µJ = 0.20, σJ = 1.40; and leverage coefficient

ρ ≡ corr(dW1t, dW2t) = −0.50. The volatility long-run mean parameter θ is chosen for four

scenarios to cover a possible range of financial asset classes. Scenario (a) has θ = 0.9 such

that the discontinuous part contribution to total variance is 10%. Such a scenario applies

more likely to the US equity market, major currencies, and blue chip stocks. In fact, 10%

is about the average empirical findings in Andersen, Bollerslev, and Diebold (2004b) and

Huang and Tauchen (2005). Scenario (b) with θ = 0.4, may be suited for more volatile

and less liquid markets, like medium size stocks or certain commodity futures. Under this

scenario the jump part contributes to total variance about 20%. Scenario (c) with θ = 0.1,

featuring 50% of jump contribution to realized variance, perhaps better describes those

illiquid small stocks and emerging market stock indices or exchange rates. Finally, Scenario

(d) with θ = 0.025 and 80% jump contribution to variance, resembles the most illiquid

and infrequently traded assets, like some corporate bond and municipal bond markets. The

choice of jump parameters also reflect the empirical findings in literature that (1) jumps
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are rare, (2) jumps are large in terms of standard deviation, and (3) jump mean is hard to

distinguish from zero.

The Monte Carlo experiment is designed as follows. Each day one simulates the jump-

diffusion process, using 1-second as a tick totaling six and a half trading hours, imitating the

US equity market in recent years. The diffusion process with stochastic volatility is simulated

by the Euler scheme, the jump timing is simulated from an Exponential distribution, and the

jump size is simulated from a Normal distribution. Then the realized jumps are combined

with the realized diffusion, and sampled by an econometrician at both 1-minute and 5-minute

intervals, illustrating the in-fill asymptotics. To contrast the long-span asymptotics of sample

sizes, we use both T = 1000 days and T = 4000 days. Further, the choice of significance

level in the jump detection test is also compared between α = 0.99 and α = 0.999. The

appropriate choice of the pre-test level seems to be critical to achieve consistent parameter

estimates, given varying degree of jump contribution to the total variance. In addition,

the simulation provides us the exact jump timing (Exponential) and jump size (Normal),

therefore a maximum likelihood estimator (MLE) can be used as a benchmark for judging

the estimation efficiency of two jump-size extraction methods.

3.2 Parameter Estimation

The finite sample results on various jump parameter estimates are presented in Tables 1-4.

The first column of each table gives the true parameter values, and the second column gives

the mean biases and root-mean-squared-errors of the maximum likelihood estimator (MLE).

Note that the MLE results do not vary: (1) across the four scenarios (since only the diffusion

volatility level is altered), (2) across the pre-test α = 0.99 and α = 0.999 levels (since no

pre-estimation filtering is involved), (3) across the 5-minute and 1-minute sampling intervals

(since jumps are observed exactly in simulations). The estimation biases at both 1000 and

4000 days are negligible for all three parameters, relative to their true values. In terms

of the estimation efficiency, both jump rate λJ and jump volatility σJ can very accurately

estimated with RMSE’s much smaller than the parameter values. However, for the jump

mean parameter µJ , the estimate is not accurate at 1000 days (RMSE about the size of

parameter value), but can be accurate at 4000 days (RMSE about half the size of parameter

value). In addition, all the RMSE’s are converging almost exactly at the rate of
√

4, as

predicted by the asymptotic theory that MLE is unbiased, efficient, and root-T consistent.

For the jump filtering mechanism based on the bi-power variation measure, the parameter

estimation efficiency seem to approach that of MLE very differently, depending whether the

jump contribution to total variance is small or large. In Scenario (a) or (b) where jump
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contribution to variance is as small as 10% or 20%, the RMSE’s of parameter estimates

are all closer to those of MLE and the convergence rates are closer to
√

4, as the sample

size increases from T = 1000 to T = 4000, when we set the pre-test level α = 0.99 but

not α = 0.999. In other words, when jumps are small, long-span asymptotics seems to

work better when the pre-test level is less stringent. In contrast, for Scenario (c) or (d)

where the jump contribution to total variance is as large as 50% or 80%, the long-span

asymptotics seem to work much better when we set α = 0.999 rather than α = 0.99, where

the RMSE’s can almost match those of MLE. These findings are intuitive in the following

sense. It is clearly more difficult to detect jumps when they are relatively small, therefore

loosening the jump detection standard can reveal more jumps that otherwise would have

been missed (minimizing the type-I error). On the other hand, when jumps are large they

are easier to detect, so we want a more stringent jump filtering standard, such that false

revelation of jumps can be avoided as much as possible (minimizing the type-II error). In

short, the jump filtering approach based on the bi-power variation measure, can bring us

efficient parameter estimates relative to MLE, provided that we appropriately choose the

pre-test levels according to the relative sizes of jump contribution to total variance.

In contrast, the jump identification approach based on the swap variance measure, seem to

produce more efficient estimation result (close to MLE), only when we set α = 0.999 instead

of α = 0.99, regardless whether the jump contribution to variance is large or small. To be

more specific, if we choose α = 0.999, RMSE’s of swap variance based method generally out-

perform the those of bi-bower variation based method when jumps are small (Scenario (a)

and (b)), while both approaches produces similar efficiencies when jumps are large (Scenario

(c) and (d)). If we choose α = 0.99, the RMSE’s from the swap variance regime are much

worse than those from the bi-bower variation regime, for the jump rate and jump volatility

parameters but not for the jump mean parameter, uniformly across the four scenarios. These

results may be driven by the differences between the swap variance approach and bi-power

variation method: (1) two-sided test versus one-sided test, (2) convergence rate at T versus

root-T , (3) jump signed by the test statistics versus by the daily return. However, the non-

uniform performance of the bi-power variation approach as the choice of pre-test level α

across scenarios, seem to be related to the small jump size mean parameter µJ = 0.2 relative

to the jump standard deviation parameter σJ = 1.2, which is dictated by the empirical

evidence that jump mean is indeed hard to distinguish from zero.

The empirical literature so far has found that jump contribution to total variance is

around 10% or lower (Andersen, Bollerslev, and Diebold, 2004b; Huang and Tauchen, 2005),

which corresponds to our Scenario (a). In this case, the bi-power variation approach with
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α = 0.99 and swap variance approach with α = 0.999 are the best choices, with the former

has a better RMSE convergence rate (see Table 1).

3.3 Statistical Inference

In addition to the parameter estimation efficiency, we also care about whether asymptotic

standard error estimated in finite samples, can provide a reliable statistical inference about

the true parameter value. To set the right benchmark, Figure 1 plot the finite sample rejec-

tion rates from the Monte Carlo replications against the asymptotic test size. The rejection

rate is based on the Chi-square (1) test statistics of each parameter. The deviation between

the dashed line (Monte Carlo finite sample result) and dotted diagonal line (asymptotic

result), indicates how big is the size distortion. It is clear from Figure 1 that the MLE

asymptotic variance estimated in finite sample behaves extremely well, so there is effectively

no size distortion at all.

The Wald test statistics based on bi-power variation approach are reported in Figures

2-5. In general, the t-test for jump mean µJ is well behaved, while the result of jump rate λJ

and jump volatility σJ varies a lot in different settings. In Scenario (a) or (b) where jumps

contributes 10% or 20% of the total variance, the chi-square statistics for jump intensity and

volatility under the choice of α = 0.999 have much higher over-rejection bias compared to

the choice α = 0.99. In Scenario (c) or (d) with relative jump contribution ranging from

50% to 80%, there is almost no over-rejection bias at α = 0.999 level, while the chi-square

test does not converge at all for α = 0.99. In short, if jumps are small then less stringent

jump detection test generates more reliable inferences about the jump parameters, while if

jumps are large then more stringent test generates more reliable inferences.

For the swap variance based approach, the asymptotic Wald test always performs better

for α = 0.999 than for α = 0.99. As seen from Figures 6-9, the over-rejection biases for

jump rate λJ and jump volatility σJ are exceptionally high under the choice of α = 0.99,

and do not improve at all from Scenario (a) to (d) as the jump contribution to total variance

increases from 10% to 80%. On the other hand, If we choose α = 0.999, the size distortions

are quite visible under small jump scenarios (a) and (b) but converge to negligible under

large jump scenarios (c) and (d). It is an advantage for the swap variance method to favor

uniformly the test level of α = 0.999, however, under the small jump contribution scenario

(a) which is typically found in the empirical literature (Andersen, Bollerslev, and Diebold,

2004b; Huang and Tauchen, 2005), the bi-power variation approach with α = 0.99 (upper

two panels of Figure 2) seems to have the right convergence of test statistics, as opposed to

the swap variance method with α = 0.999 (lower two panels of Figure 6). Even under the
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large jump contribution scenario (d) with the preferred choice of α = 0.999, if the sampling

interval is restricted to 5-minute, then the test statistics clear has less over-rejection bias

for the bi-power variation approach (lower two panels of Figure 5) than the swap variance

approach (lower two panels of Figure 9).

3.4 Criterion Function of Test Statistics

The differential performance between the bi-power variation and swap variance based ap-

proach is estimating the jump parameters, when choosing different pre-test level α under

the scenarios with small or large jump contribution to variance, is related to the power of

these jump detection test statistics. As illustrated in Figure 10, the bi-power variation test

is one-sided while the swap variance test is two-sided. When jump is negative, the criterion

function of test statistics is larger for the bi-power variation method than for the swap vari-

ance method. When jump is positive, small jumps are more easily detected by swap variance

measure, while large jumps are more affecting bi-power variation measure. In our realistic

Monte Carlo setting, the jumps have a small positive mean which is hard to distinguish from

zero in estimation. So the finding in Jiang and Oomen (2005) may be interpreted as that for

large fixed jumps the swap variance based test is more effective, but for small random jumps

as in the Scenario (a) of this paper the bi-power variation based test can be more powerful.

4 Application to Financial Markets

We select four financial assets to illustrate the proposed methodology in filtering out realized

jumps and estimating jump dynamics. The intraday high frequency data for S&P500 index

(1986-2005) is obtained from the Institute of Financial Market, the 10-year US treasury

bond (1991-2005) from the Federal Reserve Board, Microsoft stock (1993-2002) from NYSE

TAQ data base, and the Brazil exchange rate (1999-2005) from the Federal Reserve Bank of

New York. These choices are meant to give a representative view of available asset classes,

in particular, with a reasonable range of jump contribution to total variance. All the data

are transformed to five minute log returns. We eliminate days with less than 60 trades or

quotes. We also drop the after-hour tradings due to the liquidity concern, except for the

Brazil exchange rate, from which we drop the stale quotes.

Summary statistics for daily percentage returns and realized volatility (square-root of

realized variance) are reported in Table 5. The sample means suggest annualized returns of

8.85% for S&P500, 4.10% for t-bond, 11.20% for Microsoft, and 12.85% for the Real. The

average realized volatility is higher for individual stock (2.19%) and exchange rate (1.14%),
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and lower for market index (0.73%) and t-bond (0.56%). The return skewness is negative

for S&P500 index and government bond, while positive for Microsoft and Brazilian Real.

Kurtosis suggests all return and volatilities are quite deviant from the Normal distribution.

The returns are approximately serially uncorrelated, while the volatility series exhibit pro-

nounced own temporal dependencies. In fact, the first ten autocorrelations reported in the

bottom part of the table are all highly significant with the gradual, but very slow, decay

suggestive of long-memory type features. This is also evident from the time series plots of

realized volatility series given in the top panels of Figures 11-14.

4.1 Unconditional Jump Parameter Estimates

As shown in the top panel of Table 6, jump contribution to total variance is about 7.85%

for S&P500, 10.37% for t-bond, 2.60% for Microsoft, and 30.07% for the exchange rate.

The numbers on market index and treasury bond are very close to the finding in Andersen,

Bollerslev, and Diebold (2004b) and Huang and Tauchen (2005). Since these numbers are

closer to Scenario (a) or (b) of smaller jump contribution to variance in our Monte Carlo

study section, we expect that the jump filtering and estimation based the bi-power variation

approach would outperform the swap variance approach. In the rest of the empirical exercise,

we will focus on the bi-power variation approach.

The realized jumps filtered by our method are plotted in the second panels of Figures

11-14. Jumps in S&P500 index is clearly more frequent with maximum sizes between -2%

and +2%. Treasuary bond has less frequent jump with similar maximum range. Microsoft

stock has rare jumps but the sizes are larger than the market return and government bond.

Brazilian currency has the most frequent jumps with sizes as large as -4.5% and +6.5%.

The bottom panel of Table 6 reports the parametric distribution estimates based on the

filtered realized jumps. Except for the S&P500 index (µJ = 0.05 with s.e. = 0.01), all the

jump mean estimates are statistically indifferent from zero. The jump intensity estimates

are highly significant and vary across assets; with exchange rate being the highest (0.51 with

s.e. 0.02), individual stock the lowest (0.11 with s.e. 0.02), and S&P500 (0.23 with s.e. 0.01)

and bond in between (0.21 with s.e. 0.02). The standard deviations of jumps are estimated

most accurately; being moderate for equity market (0.49 with s.e. 0.01) and bond market

(0.45 with s.e. 0.01) but fairly large for individual firm (1.12 with s.e. 0.05) and emerging

market currency (1.13 with s.e. 0.03).

These results differ from the usual jump estimation results in empirical finance, in that

most of the literature focus on latent unobserved jumps, while ours are based on filtered

realized jumps. Our findings regarding jump frequency and jump size may be reconciled with
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the notion that significant jumps on financial markets are related to the surprise responses

to the macroeconomic news announcement (Andersen, Bollerslev, Diebold, and Vega, 2003a,

2004a). That’s why October 87 market crash is not classified as a big jump, since there were

no particular news announcement and market surprise as evidenced in the literature.

4.2 Time-Varying Jump Parameter Estimates

Another interesting feature that can be seen from the second panels of Figures 11-14, is

that the clustering and amplitude of jumps are changing over time, which leads to the usual

conjecture of time-varying jump rate and jump size distribution. To get a first handle of

such a possibility, we perform a two-year rolling estimation (except for exchange rate with

one-year rolling) of the jump parameters λJ,t, µJ,t, and σJ,t, with corresponding 95% standard

error bands. As seen from Figure 11, the jump intensity of S&P500 index was fairly high

during the early 1990s (30-40%), then dropped considerably during the late 1990s (10-20%),

and started to rise again since 2002. Jump size mean have been mostly close to zero, except

for the late 1990s when positive jump means are statistically significant and coinciding with

the stock market bubble. Jump volatility had been largely stable from late 1980s to late

1990s around 40%, but has been elevated since 1999 and peaked around 2002-2003 at high

80%. As Figure 12 shows, the jump intensity of the bond market was high around 1998

and 2001-2002, while jump mean is mostly zero and jump volatility is little changed around

its unconditional level. Microsoft stock, as seen from Figure 13, has nearly constant jump

intensity, zero jump mean, and constant jump volatility. For the Brazilian currency in Figure

14, jump intensity is stable, while jump mean is statistically above zero around 2002 to 2003

when jump volatility is also at its peak.

Time-varying jump intensity and jump volatility are very important risk factors in asset

pricing, but until recently most of the evidence are coming from the option implied or latent

jump specifications (see, for example, Duffie, Pan, and Singleton, 2000; Eraker, Johannes, and

Polson, 2003, among others). A recent paper by Andersen, Bollerslev, and Huang (2005b)

use the realized jump timing to examine the temporal dependency in jump durations.

5 Implications for Risk Premia

A direct identification of realized jumps and an easy characterization of jump distributions

have important implications for quantifying financial market risk premia. The reason is

that jump parameters are generally very hard to pin down even with both underlying and

derivative assets prices, due to the fact that jumps are latent and are rare events in financial
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markets. Inaccurate estimates of the underlying jump dynamics makes the jump risk premia

even harder to quantify. However, as demonstrated bellow, a reliable estimate of stock

market jump volatility based on identified realized jumps, can have a superior predicting

power for the bond credit risk premium.

5.1 Predicting Corporate Bond Spread Indices

Here we examine the daily forecasting powers for Moody’s AAA and BAA bond spreads,

using the estimated S&P 500 jump volatility from the identified realized jumps of the past

two years, which is discussed in Section 4. It has been puzzling to explain high invest-

ment grade bond spreads, since those firms entertain very little default risk historically, yet

the credit spreads over default-free treasuries are sizable positive (Amato and Remolona,

2003). Although jump risk has been proposed as a possible source of such a credit premium

puzzle (Zhou, 2001; Huang and Huang, 2003), the empirical validation in literature has

met with mixed and unsatisfactory results (Collin-Dufresne, Goldstein, and Martin, 2001;

Collin-Dufresne, Goldstein, and Helwege, 2003; Cremers, Driessen, Maenhout, and Wein-

baum, 2004a,b). Here we use an alternative jump risk measure, based on identified realized

jumps as opposed to latent or implied jumps, to provide some contrasting positive evidence

in explaining high investment grade credit spread indices. For comparison purpose, we also

include standard predictors like the short rate and term spread as in Longstaff and Schwartz

(1995) and all empirical studies, long-run realized volatility (Campbell and Taksler, 2003)

and short-run realized volatility (Zhang, Zhou, and Zhu, 2005), and option implied volatility

(Carr and Wu, 2005; Wu and Zhang, 2005).

Table 7 presents the univariate forecasting regressions for Moody’s AAA and BAA bond

spreads. The OLS coefficients show remarkable similarity between the two spread indices.

To be more precise, one percentage increase in short rate lowers credit spreads 14 and 16

basis points; positive term spread increases default premium 5 and 12 basis points. Short

rate predict 44% and 36% of spread variation, while term spread by itself has very little

forecasting power. Short-run volatility (1-day) has R-squares around 30% with marginal

impact around 4 basis points, while long-run volatility (2-year) has higher R-squares about

50-60% and higher impact coefficient 7 to 9 basis points. It is worth pointing out that option

implied volatility (VIX index) has about the same predicting power and marginal effect as

the long-run and short-run volatilities. In comparison, the S&P500 jump volatility not only

has a larger impact on credit spreads — one percentage increase raises spreads about 200

basis points, but also has the highest forecasting power — with R-squares being 61% for the

AAA bond spread and 72% for the BAA bond spread. The close association between credit
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risk premium and market jump volatility can be more vividly seen in Figure 15. Although

the daily credit spread is very noisy, there clearly exist both long term trends and short term

cycles from 1988 to 2004. It is obvious that time-varying jump volatility trace closely these

trends and cycles, while discarding the day-to-day fluctuations in credit spreads.

Given the common finding that the typical default risk factors can only account for a

very small fraction of the corporate bond spreads, recent effort has been directed to the

role of systematic risk premia in the economy (see, Elton, Gruber, Agrawal, and Mann,

2001; Huang and Huang, 2003; Chen, Collin-Dufresne, and Goldstein, 2005, e.g.). However,

those business cycle effects can easily explain the spread variations of low investment grade or

speculative grade credit spreads, but has little or no explaining power for the high investment

grade credit spreads. As Table 8 shows, the systematic risk factors—market return, SMB,

and HML Fama-French variables—have zero predicting capability for the high investment

grade credit spread at the daily frequency. The fact that these bonds have little default risk

yet commands a sizable risk premium constitutes a major challenge in credit risk pricing.

In comparison, jump volatility risk measure stands out as the most powerful instrument in

forecasting the credit spread indices, suggesting that a systematic jump risk factor may be

important in pricing the top quality credit.

Table 9 presents multiple regressions in forecasting the bond spreads. It seems that

two interest rate factors are complementary, in that the combined R-square is much higher

that the sum of two univariate regressions. The signs of both short rate and term spread

are now negative and larger. Intuitively when economy is in expansion, short rate and

term spread tend to be rising, and the credit default condition is also improving. Note

that when combining short- and long-run volatilities or implied and jump volatilities, the

coefficient magnitude and significance level mostly remain the same. It suggests that two

volatility components may be needed in explaining the risk premium dynamics (Adrian and

Rosenberg, 2005). Further experiments with multiple predictors suggest that interest rate

factors are more important for forecasting the AAA credit spread, while volatility factors

more important for BAA credit spread. Therefore the last columns in Table 9 are the

multiple regressions that have the highest adjusted R-squares which are close to 80%.

In short, contrary to the negative finding in empirical literature about the jump impact

on credit spread, our measure of realized jump volatility have strong predictability for high

investment grade credit spreads. The forecasting power is higher than the interest rate

factors, short-run and long-run volatility factors, or even the option implied volatility factor.
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5.2 Explaining Credit Default Spreads of Individual Firms

In a related paper, Zhang, Zhou, and Zhu (2005) apply the jump identification strategy of

this paper to individual firms, and find that the realized jump risk measures (intensity, mean,

and volatility) all have strong explaining power for credit default swap (CDS) spreads. In

particular, jump risk alone can predict about 19% variation of the CDS spreads. By separat-

ing realized volatility and jump measures, Zhang, Zhou, and Zhu (2005) also strengthen the

forecasting power of equity volatility measures (Campbell and Taksler, 2003), and increase

the overall forecasting R-square to 77%. Furthermore, they find that the nonlinear effects of

jump and volatility risk measures on credit spreads are largely consistent with a structural

model with stochastic volatility and jumps.

5.3 Econometric Estimation of Jump-Diffusion Processes

Being able to filter out the realized jumps, provides us a new scope in estimating and testing

the continuous-time asset return process, along the lines of Chernov, Gallant, Ghysels, and

Tauchen (2003). Observable jumps can also strengthen the likelihood based estimation

method for jump-diffusion process (Aı̈t-Sahalia, 2002a). Further, the measurement error

problem in detecting and estimating jumps, when jump contribution to total variance is

relatively small, certainly need to be addressed in the second stage estimation of jump

parameters, as in Andersen, Bollerslev, and Meddahi (2005c). Finally, the discrete-time

joint dynamics of realized variance and jumps may serve as an ideal score generator in an

Efficient Method of Moments setting, for estimating richer and more complex jump-diffusion

specifications in continuous-time (Bollerslev, Kretschmer, Pigorsch, and Tauchen, 2005)

6 Conclusion

Disentangling jumps from diffusion has always been a challenge for pricing financial assets

and for estimating the jump-diffusion processes. Building on the recent jump detection

literature by differentiating realized variance and bi-power variation (Barndorff-Nielsen and

Shephard, 2003, 2004b,c; Andersen, Bollerslev, and Diebold, 2004b; Huang and Tauchen,

2005), we extend the methodology to filter out the realized jumps, under two key assumptions

typically adopted in financial economics: (1) jumps are rare and there is at most one jump

per day, and (2) jumps are large and dominate return signs when occurring. We also extend

the jump detection test based on the swap variance contract (Jiang and Oomen, 2005) to

filter our the realized jumps, under the single jump assumption and using a nonlinear root

finding procedure.
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These approximations provide us powerful tools to identify the realized jumps on finan-

cial markets. Our Monte Carlo experiment under realistic empirical settings suggests that

consistent parameter estimates and converging inference tests can be obtained, if both the

sample size and the sampling frequency increase, with an appropriate choice of the signif-

icance level of the jump detection pre-test. Of course, the stochastic volatility of the pure

diffusion part creates a measurement error problem for detecting the jump timing and for

estimating jump parameters, especially when the jump contribution to total variance is rela-

tively small. Although both the bi-power variation approach and the swap variance approach

achieve similar estimation efficiency when jump contribution to variance is large, the former

seems to perform better than the latter when the jump contribution to total variance is

small. This finding seems to be related to the properties of the criterion functions of the two

jump test statistics, and is also driven the fact that in our realistic Monte Carlo setting the

jumps have a small positive mean that is hard to distinguish from zero.

The proposed jump identification method (based on the bi-power variation approach) is

applied to four financial assets — S&P500 index, treasury bond, Microsoft stock, and Brazil

Real. We find that the jump intensity varies significantly among these asset classes (from

10% to 50%). All the jump mean estimates are insignificantly from zero, except for the

S&P500 index driven by a positive run in late 1990s. Jump volatility is small for equity

market and bond market (near 0.5%) but large for individual firm and exchange rate (above

1%). Rolling estimates reveal that the jump probabilities are quite variable for equity index

and treasury bond (from 10% to 40%), but relatively stable for Microsoft stock (10%) and

Brazil currency (50%). The jump volatilities are little changed for government bond and

individual stock, but elevated a great deal for stock market from 2000 to 2004 and for Brazil

currency around 2003.

The identification of realized jumps and direct estimation of jump distributions have im-

portant implications in assessing financial market risk premia. Given more reliable estimates

of the objective jump dynamics, the impact on jump risk premia can be more precisely es-

timated. For example, the Moody’s AAA and BAA credit risk premia can be predicted by

the realized jump volatility measure, much better than the interest rate factors, volatility

factors, and Fama-French risk factors. Explaining the credit spreads of high investment

grade entities has always been a challenge in credit risk pricing, and a systematic jump risk

factor holds some promise in resolving such an puzzle. Individual firm’s credit spreads can

also be better predicted by the realized jump risk measures from each firm’s equity returns

(Zhang, Zhou, and Zhu, 2005). Finally, transforming jumps from latent to realized, even with

a considerable measurement error problem, may significantly enhance the econometrician’s
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tool box in estimating the underlying jump distribution dynamics (Bollerslev, Kretschmer,

Pigorsch, and Tauchen, 2005).
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Table 5: Summary Statistics for Daily Returns and Realized Variances

Asset Type S&P500 Index (%) T-Bond (%) Microsoft (%) Brazil Reais (%)
Statistics Returnt

√
RVt Returnt

√
RVt Returnt

√
RVt Returnt

√
RVt

Mean 0.0348 0.7341 0.0164 0.5598 0.0448 2.1890 0.0514 1.1392
Std. Dev. 1.0868 0.4162 0.5995 0.2894 2.0803 0.9186 1.2774 0.9679
Skewness -2.1087 2.2511 -0.3418 3.3803 0.1621 4.7522 0.9040 4.0363
Kurtosis 48.2123 13.2551 4.3559 24.9531 4.0724 75.5502 18.6239 29.3109

Minimum -22.8867 0.1309 -3.3200 0.1327 -8.8421 0.8089 -10.5039 0.0383
5% Qntl. -1.6453 0.2945 -0.9900 0.2755 -3.2029 1.1742 -1.7590 0.3939
25% Qntl. -0.4495 0.4473 -0.3300 0.3861 -1.2896 1.6107 -0.4650 0.6125
50% Qntl. 0.0524 0.6330 0.0380 0.4932 0.0000 2.0112 0.0000 0.8509
75% Qntl. 0.5660 0.9086 0.3900 0.6550 1.3340 2.5817 0.5404 1.3399
95% Qntl. 1.6081 1.5189 0.9488 1.0361 3.4989 3.6994 1.8410 2.7629
Maximum 8.3795 5.4363 2.2200 4.0919 10.5769 20.8284 10.6768 11.7541

ρ1 0.0146 0.7533 0.0348 0.2415 -0.0602 0.4818 0.0224 0.5615
ρ2 -0.0474 0.7013 -0.0138 0.2011 -0.0235 0.4046 -0.0079 0.5304
ρ3 -0.0088 0.6669 -0.0446 0.1568 -0.0212 0.3502 0.0863 0.4902
ρ4 -0.0208 0.6465 -0.0421 0.1651 0.0149 0.3252 0.0947 0.5037
ρ5 -0.0182 0.6379 0.0002 0.1959 -0.0112 0.3304 0.0147 0.4263
ρ6 -0.0056 0.6164 -0.0079 0.1576 0.0390 0.3301 0.0791 0.5040
ρ7 -0.0431 0.6062 0.0213 0.1260 0.0208 0.3162 -0.0460 0.4047
ρ8 0.0116 0.6042 0.0013 0.1767 0.0257 0.3018 0.0370 0.3939
ρ9 0.0308 0.5917 0.0020 0.1502 -0.0009 0.2674 0.0714 0.3506
ρ10 0.0228 0.5819 0.0189 0.1453 -0.0057 0.2516 0.0467 0.3454
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Table 6: Jump Parameter Estimation for Four Assets

Statistics S&P500 T-bond Microsoft Brazil Real

Mean
√

RVt 0.7341 0.5598 2.1890 1.1392

Mean RJ in Std 0.1338 0.1361 0.0542 0.3875

Mean RJ in Var 0.0785 0.1037 0.0260 0.3007

Trading Days 4752 3376 2481 1469

Parameter S&P500 T-bond Microsoft Brazil Real

λJ 0.2319 0.2062 0.1092 0.5133

(s.e.) (0.0127) (0.0153) (0.0189) (0.0182)

µJ 0.0500 0.0262 0.1141 0.0418

(s.e.) (0.0147) (0.0169) (0.0682) (0.0413)

σJ 0.4885 0.4454 1.1233 1.1345

(s.e.) (0.0104) (0.0119) (0.0482) (0.0292)
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Table 7: Univariate Prediction of Credit Spreads with Interest Rate and Volatility Factors

Regressors Moody’s AAA Bond Yield Spread

Constant 1.8733 1.1216 0.7971 0.3414 0.5537 0.4138

(s.e.) (0.0126) (0.0127) (0.0115) (0.0148) (0.0178) (0.0108)

Short Rate -0.1425

(s.e.) (0.0025)

Term Spread 0.0546

(s.e.) (0.0062)

Short-Run Volatility 0.0359

(s.e.) (0.0009)

Long-Run Volatility 0.0679

(s.e.) (0.0011)

Implied Volatility 0.0316

(s.e.) (0.0008)

Jump Volatility 1.7213

(s.e.) (0.0214)

Adj. R-Square 0.4352 0.0181 0.2921 0.4816 0.2679 0.6062

Regressors Moody’s BAA Bond Yield Spread

Constant 2.7966 1.8608 1.5473 0.8806 1.1193 1.0076

(s.e.) (0.0163) (0.0151) (0.0139) (0.0159) (0.0201) (0.0112)

Short Rate -0.1577

(s.e.) (0.0032)

Term Spread 0.1196

(s.e.) (0.0073)

Short-Run Volatility 0.0447

(s.e.) (0.0010)

Long-Run Volatility 0.0923

(s.e.) (0.0012)

Implied Volatility 0.0454

(s.e.) (0.0009)

Jump Volatility 2.2772

(s.e.) (0.0221)

Adj. R-Square 0.3594 0.0591 0.3056 0.5996 0.3714 0.7156
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Table 8: Univariate Prediction of Credit Spreads with Fama-French and Jump Risk Factors

Regressors Moody’s AAA Bond Yield Spread

Constant 1.2175 1.2173 1.2171 1.6213 1.2342 0.4138

(s.e.) (0.0067) (0.0067) (0.0067) (0.0211) (0.0101) (0.0108)

Market Return -0.0061

(s.e.) (0.0068)

SMB 0.0136

(s.e.) (0.0119)

HML 0.0171

(s.e.) (0.0120)

Jump Intensity -1.7271

(s.e.) (0.0862)

Jump Mean -0.2821

(s.e.) (0.1260)

Jump Volatility 1.7213

(s.e.) (0.0214)

Adj. R-Square 0.0001 0.0001 0.0002 0.0869 0.0010 0.6062

Regressors Moody’s BAA Bond Yield Spread

Constant 2.0709 2.0706 2.0704 2.3399 2.1735 1.0076

(s.e.) (0.0081) (0.0081) (0.0081) (0.0266) (0.0121) (0.0112)

Market Return -0.0077

(s.e.) (0.0083)

SMB 0.0228

(s.e.) (0.0145)

HML 0.0151

(s.e.) (0.0146)

Jump Intensity -1.1512

(s.e.) (0.1084)

Jump Mean -1.7229

(s.e.) (0.1512)

Jump Volatility 2.2772

(s.e.) (0.0221)

Adj. R-Square 0.0000 0.0004 0.0000 0.0259 0.0297 0.7156
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Table 9: Multivariate Prediction of Credit Spreads with Interest Rate and Volatility Factors

Regressors Moody’s AAA Bond Yield Spread

Constant 2.6484 0.3196 0.2704 1.6572 1.5038 0.3814 1.5123
(s.e.) (0.0208) (0.0143) (0.0134) (0.0285) (0.0268) (0.0139) (0.0262)
Short Rate -0.2243 -0.1555 -0.1464 -0.1356
(s.e.) (0.0028) (0.0028) (0.0029) (0.0029)
Term Spread -0.2271 -0.1356 -0.1452 -0.1599
(s.e.) (0.0053) (0.0048) (0.0043) (0.0043)
Short-Run Volatility 0.0155 0.0128 0.0098
(s.e.) (0.0008) (0.0007) (0.0010)
Long-Run Volatility 0.0556 0.0282 -0.0449 -0.0338
(s.e.) (0.0012) (0.0010) (0.0026) (0.0024)
Implied Volatility 0.0112 0.0150 0.0104 0.0173
(s.e.) (0.0007) (0.0006) (0.0010) (0.0006)
Jump Volatility 1.5248 0.7012 2.3203 1.4642
(s.e.) (0.0236) (0.0268) (0.0541) (0.0611)

Adj. R-Square 0.6089 0.5199 0.6319 0.7338 0.7726 0.6659 0.7825

Regressors Moody’s BAA Bond Yield Spread

Constant 3.2851 0.8590 0.7594 1.3596 1.1138 0.8291 1.0900
(s.e.) (0.0311) (0.0154) (0.0130) (0.0360) (0.0311) (0.0135) (0.0215)
Short Rate -0.2093 -0.0756 -0.0567 -0.0456
(s.e.) (0.0042) (0.0036) (0.0033) (0.0030)
Term Spread -0.1432 0.0262 0.0083
(s.e.) (0.0079) (0.0061) (0.0050)
Short-Run Volatility 0.0153 0.0180 -0.0021 -0.0037
(s.e.) (0.0009) (0.0008) (0.0010) (0.0009)
Long-Run Volatility 0.0801 0.0622 -0.0516 -0.0320
(s.e.) (0.0013) (0.0013) (0.0025) (0.0028)
Implied Volatility 0.0194 0.0253 0.0273 0.0302
(s.e.) (0.0006) (0.0007) (0.0010) (0.0009)
Jump Volatility 1.9370 1.4392 2.9100 2.1696
(s.e.) (0.0229) (0.0311) (0.0524) (0.0702)

Adj. R-Square 0.4058 0.6248 0.7676 0.7127 0.7929 0.7885 0.7997
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Figure 1: Asymptotic Wald Test with Maximum Likelihood Estimator

34



0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ
J
  α=0.99  T=1000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ
J
  α=0.99  T=4000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

µ
J
  α=0.99  T=1000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

µ
J
  α=0.99  T=4000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

σ
J
  α=0.99  T=1000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

σ
J
  α=0.99  T=4000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ
J
  α=0.999  T=1000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ
J
  α=0.999  T=4000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

µ
J
  α=0.999  T=1000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

µ
J
  α=0.999  T=4000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

σ
J
  α=0.999  T=1000

0 0.5 1
0

0.2

0.4

0.6

0.8

1

σ
J
  α=0.999  T=4000

Figure 2: Asymptotic Wald Test for Bi-Power Variation Approach with Scenario (a)
The relative contribution of diffusion and jump to variance is 90% versus 10%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 3: Asymptotic Wald Test for Bi-Power Variation Approach with Scenario (b)
The relative contribution of diffusion and jump to variance is 80% versus 20%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 4: Asymptotic Wald Test for Bi-Power Variation Approach with Scenario (c)
The relative contribution of diffusion and jump to variance is 50% versus 50%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 5: Asymptotic Wald Test for Bi-Power Variation Approach with Scenario (d)
The relative contribution of diffusion and jump to variance is 20% versus 80%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 6: Asymptotic Wald Test for Swap Variance Approach with Scenario (a)
The relative contribution of diffusion and jump to variance is 90% versus 10%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 7: Asymptotic Wald Test for Swap Variance Approach with Scenario (b)
The relative contribution of diffusion and jump to variance is 80% versus 20%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 8: Asymptotic Wald Test for Swap Variance Approach with Scenario (c)
The relative contribution of diffusion and jump to variance is 50% versus 50%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.
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Figure 9: Asymptotic Wald Test for Swap Variance Approach with Scenario (d)
The relative contribution of diffusion and jump to variance is 20% versus 80%. The dotted
line is the reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute,
and the solid line is for sampling interval ∆ = 1-minute.

42



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4

−2

0

2

4

6

8

10

12

Single Jump Size J in Percentage

R
V

 −
 B

V
 o

r 
S

W
V

 −
 R

V

Criterion Function Value of Jump Test Statistics

Bi−Power Variation Method: RV − BV = J2

Swap Variance Method: SWV − RV = 2 (eJ − 0.5 J2 − J − 1)
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Figure 11: S&P500 Realized Variance, Realized Jumps, and Temporal Variation
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Figure 12: Treasury Bond Realized Variance, Realized Jumps, and Temporal Variation
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Figure 13: Microsoft Stock Realized Variance, Realized Jumps, and Temporal Variation
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Figure 14: Brazil Real Realized Variance, Realized Jumps, and Temporal Variation
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Figure 15: Bond Spread and Jump Volatility
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