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Estimation of continuous-time models with an
application to equity volatility dynamics

Abstract

The treatment of this article renders closed-form density approximation feasible for univariate

continuous-time models. Implementation methodology depends directly on the parametric-

form of the drift and the diffusion of the primitive process and not its transformation to a

unit-variance process. Offering methodological convenience, the approximation method re-

lies on numerically evaluating one-dimensional integrals and circumvents existing dependence

on intractable multidimensional integrals. Density-based inferences can now be drawn for a

broader set of models of equity volatility. Our empirical results provide insights on crucial out-

standing issues related to the ranking-orderings of continuous-time stochastic volatility models,

the absence/presence of non-linearities in the drift function, and the desirability of pursuing

more flexible diffusion function specifications.

JEL classification: G10; G11; G12; G13; C15; C32; C52.
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Looking back over the history of financial economics there is little doubt that continuous-time

stochastic processes have played a prominent role in the development of theoretically plausible and

empirically testable models of portfolio selection, fixed income, equity derivatives, and expected

stock returns. Whether the end-goal is martingale pricing or maximum-likelihood estimation,

theory invariably requires the knowledge of the transition density of the economic forcing variable

which is generally unamenable to closed-form characterization. In this sense the lack of analyticity

of the density function has hampered empirical testing and the validation of alternative hypotheses

about continuous-time models. To remedy this deficiency, Aı̈t-Sahalia (1999, 2002) has proposed

a method to approximate the transition density in a one-dimensional diffusion setting. Given

its potential utility to the researcher in applied and theoretical work, the thrust of this article

is to expand on the analytical density approach of Aı̈t-Sahalia (1999, 2002) and our treatment

renders the original method feasible for a substantially larger class of one-dimensional models.

Armed with this modification we empirically implement the density approximation method to

study the plausibility of general models of equity volatility. Density-based inferences allow us to

disentangle issues connected with (i) the ranking-ordering of continuous-time volatility models,

(ii) the presence of non-linearities in the drift function, and (iii) the desirability of adopting more

flexible diffusion specifications.

The motivation for our analysis to expand on Aı̈t-Sahalia (1999, 2002) derives from two con-

siderations. First, in the context of one-dimensional diffusions dXt = µ[Xt] dt + σ[Xt] dWt, for

economic-variable Xt, extant density approximations hinge crucially on transforming Xt to a

unit-variance process via
∫X du

σ[u] and then on inverting
∫X du

σ[u] . This requirement has proved

analytically challenging for some interesting economic models (see Bakshi and Ju (2002) for ex-

amples). Second, in the enhanced-method of Aı̈t-Sahalia (1999, 2002), the recursively defined

coefficients that fulfill the forward/backward equation have a multidimensional integral depen-

dence and are seldom tractable outside of the constant elasticity of variance diffusion class. The

framework of this paper overcomes both hurdles associated with implementing Aı̈t-Sahalia (1999,

2002). Broadening the appeal of the methodology we show that the density approximation can be

derived without reducing the primitive process to a unit-variance process and without analytically

integrating and inverting
∫X du

σ[u] . The contribution of our approach also lies in determining the

recursively defined expansion coefficients that exhibit at most a single integral dependence and

consequently affords tractability. An advantage of this new approach is that it causes the den-

sity approximation to be virtually analytical for continuous-time models with nonlinear drift and

diffusion functions of the general type analyzed in Aı̈t-Sahalia (1996).

Market index volatility is one of the most fundamental variables determined in financial markets

and is a particularly relevant input into option pricing, risk management systems, and volatility-
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based contingent claims (i.e., variance futures, and options on volatility). Despite the flurry of

recent modeling efforts (see Andersen, Bollerslev, Diebold, and Ebens (2001), Duffie, Pan, and

Singleton (2000), Heston (1993), and Jones (2003)) there is yet no consensus on the dynamic

evolution of volatility in continuous-time. Exploiting the closed-form density approximation, our

empirical analysis of daily market volatility provides evidence for a volatility process that has

substantial nonlinear mean-reverting drift underpinnings.

Supporting a strand of drift specifications taking the parametric form α0 + α1 Xt + α2X
2
t +

α3 X−1
t , the finding of statistically significant α2 < 0 and α3 > 0 indicates drift-reversals at both

high and low ends of the volatility spectrum. Volatility processes omitting a role for nonlinear

diffusion coefficient σ[X] ≡
√

β1Xt + β2X
β3

t with β3 > 2 are structurally flawed and destined

for unsatisfactory empirical performance. Thus, the inconsistency of affine volatility models (i.e.,

Heston (1993)) can be attributed to misspecified drift and diffusion coefficients. Overall, a mar-

ket variance specification with nonlinear drift and diffusion function delivers the most desirable

goodness-of-fit statistics and this new result has wide-ranging implications for pricing and trading

of risks associated with equity and volatility derivatives.

The rest of the paper is divided into four parts. Section 1 discusses the enhanced density

approximation method of Aı̈t-Sahalia (1999, 2002) and develops results aimed at simplifying the

multidimensional structure of the expansion coefficients up to fourth-order. Our characterizations

are derived entirely in terms of the drift and diffusion of the underlying primitive process. Section 2

presents the density approximation for the encompassing model of Aı̈t-Sahalia (1996). The next

section is devoted to empirically evaluating continuous-time models of equity volatility. Section 4

summarizes our contributions and provides concluding statements.

1 Maximum-likelihood estimation of continuous-time models

Consider a one-dimensional diffusion process for a state variable Xt:

dXt = µ[Xt; θ] dt + σ[Xt; θ] dWt, (1)

where µ[Xt; θ] and σ[Xt; θ] are respectively the coefficients of drift and diffusion, and θ represents

the parameter vector in an bounded set Θ ⊂ RK . The maximum likelihood estimation of θ using

discretely observed data requires the underlying transition density.

To facilitate empirical testing using density methods, Aı̈t-Sahalia (1999, 2002) has developed

two analytical density approximations. Of particular interest are the enhanced formulae in Aı̈t-

Sahalia (1999, 2002) which correspond to the limit where the order of the Hermite polynomi-
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nals converges to infinity and is derived by forcing the coefficients to fulfill the Fokker-Plank-

Kolmogorov partial differential equation. The contribution of this section is to propose a modifi-

cation to the enhanced-method and shows that the resulting density approximation applies to a

broader class of µ[Xt; θ] and σ[Xt; θ].

1.1 Enhanced-method in Aı̈t-Sahalia (1999, 2002)

Aı̈t-Sahalia (1999, 2002) constructs a unit-variance process Yt defined by:

Yt ≡ γ[X; θ] =

∫ Xt du

σ[u; θ]
. (2)

Letting γ−1[y; θ] be the inverse function of γ[X; θ], the drift of dYt is:

µY [y; θ] =
µ
[

γ−1[y; θ]; θ
]

σ [γ−1[y; θ]; θ]
− 1

2

∂σ

∂x

[

γ−1[y; θ]; θ
]

. (3)

Denoting φ[z] ≡ e−z2/2/
√

2π and ∆ as a discrete time interval, Aı̈t-Sahalia (1999, 2002) shows

that the density of Yt = y can be approximated up to the K-th term by

p
(K)
Y [∆, y|y0; θ] = ∆−1/2 φ

[

y − y0

∆1/2

]

exp

(
∫ y

y0

µY [w; θ] dw

) K
∑

k=0

ck[y|y0; θ]
∆k

k!
, (4)

where c0[y|y0, θ] ≡ 1 and, for j ≥ 1, the recursive coefficients, cj [y|y0; θ], can be derived by solving:

cj [y|y0; θ] = j (y − y0)
−j
∫ y

y0

(w − y0)
j−1

(

λ[w] cj−1[w] +
1

2

∂2cj−1[w|y0; θ]

∂w2

)

dw, (5)

by defining

λ[y; θ] ≡ −1

2

(

µ2
Y [y; θ] +

∂µY [y; θ]

∂y

)

. (6)

The transition density of Xt is then obtained through the Jacobian formula as:

p
(K)
X [∆, x|x0; θ] = (σ[x; θ])−1 p

(K)
Y [∆, γ[x] | γ[x0]; θ]. (7)

There are several aspects of this methodology that need fine-tuning. For the expansion in (4)

to converge, the Xt process (1) must first be transformed to be sufficiently Gaussian. Based on

the theoretical models adopted by Aı̈t-Sahalia (1999) it is clear that when Yt and γ−1[y; θ] are in

analytical closed-form, then µY [y; θ] and λ[y; θ] are completely analytical and the reduction to a
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unit-variance diffusion is feasible. Both Brandt and Santa-Clara (2002, p163) and Durham (2003,

p465) have argued that - for a broad class of continuous-time models - the reduction step from Xt

to Yt is restrictive and can curb the appeal of the density approximation in empirical applications.

Recognizing this disparity between theory and implementation, Bakshi and Ju (2002) relax

the requirement that both Yt and γ−1[y; θ] be known analytically, and explain how the Hermite

expansions in the basic-approach of Aı̈t-Sahalia (2002) can be reformulated so that only the

numerical value of Yt is needed. While the Bakshi and Ju (2002) refinement is appealing because

it makes the density approximation possible for a wide class of σ[X], there are reasons to believe

that the method in (4) is superior if it can be transformed to make it apply to an equally wide

class. The accuracy tests in Bakshi and Ju (2002) indicate that the approximation based on (4)

is accurate with expansion coefficients as few as three, and is substantially more reliable (see also

our comparisons to come in Table 1). The Hermite approach relies on expanding the density of

Yt around a standard normal while the expansion in (4) forces the density function to satisfy the

Kolmogorov forward and backward equations to the order ∆K , resulting in greater accuracy.

The second point relates to the determination of the recursively defined cj[y|y0; θ]. From

the form of (5) it may be observed that c1[y|y0; θ] and c2[y|y0; θ] can be derived by solving one-

dimensional integrals and two-dimensional integrals respectively, and higher-dimensional integrals

are involved in implementing the density approximation with c3[y|y0; θ] and beyond. Aı̈t-Sahalia

(1999) has solved the density function for models satisfying dXt = (α0+α1Xt+α2 X2
t +α3 X−1

t ) dt+

σ Xρ
t dWt where each cj [y|y0; θ] is fully analytical. However, the expressions for leading terms

cj [y|y0; θ] are still unknown under a general class of µ[Xt; θ] and σ[Xt; θ]. Particularly when

dXt = (α0 + α1 Xt + α2 X2
t + α3 X−1

t ) dt +
√

β0 + β1 Xt + β2 Xβ3

t dWt the multidimensional inte-

grals embedded in cj [y|y0; θ] remain unsolved, thereby eluding closed-form characterizations for

{c1[y|y0; θ], c2[y|y0; θ], c3[y|y0; θ], · · ·, cK [y|y0; θ]}. The lack of analyticity of cj [y|y0; θ] is problem-

atic: It has impaired the density-based inference of models with general µ[X; θ] and σ[X; θ].

Citing this reason, Durham (2003), Durham and Gallant (2002), and Brandt and Santa-Clara

(2002) have argued in favor of simulation-based methods. However, simulation methods can be

cumbersome and computationally expensive. Our objective is to characterize transition densities

for a broad parametric class of diffusion processes and exploit them for empirical testing and model

selection.

1.2 Central elements of the modification

The proposed approximation method, outlined below, directly exploits the form of µ[Xt; θ] and

σ[Xt; θ] and bypasses closed-form reliance on µY [y; θ] and
∫Xt du

σ[u;θ] in practical applications. Our

4



analytical contributions also ensure that each cj [y|y0; θ] contains at most one-dimensional integrals

rather than a set of complex multidimensional integrals.

1.2.1 Circumventing the reliance of the approximation on µY [y; θ]

Models for µ[X; θ] and σ[X; θ] contained in Aı̈t-Sahalia (1999) stress that when Yt and γ−1[Y ; θ]

are analytical so are µY [Y ] and λ[Y ]. In this family of continuous-time models, equations (4), (5),

and (7) constitute a conceptually simple and accurate approximation method. However, when Yt

and/or γ−1[Y ; θ] do not admit closed-form representation, it is expedient to reexpress all required

density approximation components in terms of µ[X; θ] and σ[X; θ] of the original Xt process.

Proposition 1 Define the function

f [X] ≡ µ[X]

σ[X]
− σ′[X]

2
(8)

by analogy with (3) with σ′[X] ≡ ∂σ[X]
∂X . The following density approximation components can be

obtained in terms of µ[X] and σ[X] of the original process Xt (suppressing θ dependence):

λ[y] = −1

2

(

f2[x] + f ′[x]σ[x]
)

, (9)

λ′[y] ≡ ∂λ[y; θ]

∂y
= −1

2
σ[x]

(

f2[x] + f ′[x]σ[x]
)′

(10)

λ′′[y] ≡ ∂2λ[y; θ]

∂y2
= −1

2
σ[x]

(

(

f2[x] + f ′[x]σ[x]
)′

σ[x]

)′

(11)

y − y0 =

∫ x

x0

du

σ[u]
, (12)

∫ y

y0

µY [w] dw =

∫ x

x0

f [u]
du

σ[u]
, (13)

∫ y

y0

λ[w] dw = −1

2

∫ x

x0

(

f2[u] + f ′[u]σ[u]
) du

σ[u]
, (14)

∫ y

y0

λ2[w] dw =
1

4

∫ x

x0

(

f2[u] + f ′[u]σ[u]
)2 du

σ[u]
. (15)

Proof: Make the change of variable x = γ−1[y]. From the definition of γ[X] given in (2), we

have dy = dx/σ[x]. From the definition of λ[y] in (6) and the new variable x we have (9). The

chain rule of differentiation implies λ′[y] = ∂λ[y]
∂x

∂x
∂y in (10). Similarly, we obtain (11). Noting that

µY [y] = µ[γ−1[y]]/σ[γ−1[y]]− ∂σ
∂x (γ−1[y])/2 = µ[x]/σ[x]−σ′[x]/2 and using dy = dx/σ[x], we have

(13). Using (9) and dy = dx/σ[x], we obtain (14) and (15). 2
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1.2.2 Reduction of cj [y|y0; θ] to a set of one-dimensional integrals

Proposition 2 For the recursively defined coefficients cj [y|y0; θ] in (5) and λ[y; θ] defined in (6),

we may derive the higher-order cj [y|y0; θ] analytically with only one-dimensional integral depen-

dence (suppressing the y0 and θ arguments):

c1[y] =
1

y − y0

∫ y

y0

λ[w] dw, (16)

c2[y] = c2
1[y] +

1

(y − y0)2
(λ[y] + λ[y0] − 2 c1[y]), (17)

c3[y] = c3
1[y] +

3

(y − y0)2
(c1[y](λ[y] + λ[y0]) − 3c2[y]) +

3

(y − y0)3

(

λ′[y] − λ′[y0]

2
+

∫ y

y0

λ2[w] dw

)

, (18)

and,

c4[y] = c4
1[y] +

3

(y − y0)2
(2λ[y] c2[y] − 8 c3[y] + 2λ[y0] c

2
1[y]) +

12 c1[y]

(y − y0)3

(

λ′[y] − λ′[y0]

2
+

∫ y

y0

λ2[w] dw

)

+

3

(y − y0)4
(3λ2[y] + 5λ2[y0] + 4λ[y] c1[y] − 12 c2[y] + λ′′[y] + λ′′[y0]). (19)

Proof: See Appendix A. 2

To obtain coefficient c1[y] involves computing two simple integrals: y − y0 =
∫ x
x0

du
σ[u] and

∫ y
y0

λ[w] dw. Once c1[y] is obtained, c2[y] follows immediately and c3[y] merely requires
∫ y
y0

λ2[w] dw.

Again, with c3[y] known, c4[y] can be easily recovered and involves no further integrals. Viewed

from this perspective of solving one-dimensional integrals, the density approximation with K = 4

constitutes an efficient method. This proposition achieves the crucial task of reducing the recur-

sively defined multidimensional integrals in cj [y0; θ] to those involving only the one-dimensional

integrals outlined in Proposition 1.

With the relevant components in the density approximation expressed directly in terms of

the original state variable Xt, its drift µ[X] and diffusion function σ[X], the method under con-

sideration can be applied to any selected scaler diffusion processes. The density approximation

becomes

p
(K)
X [∆, x|x0; θ] ≈ ∆−1/2

σ[X; θ]
φ

[

1

∆1/2

∫ x

x0

du

σ[u]

]

exp

(
∫ x

x0

f [u]
du

σ[u]

) 4
∑

k=0

ck[γ[x] |γ[x0]; θ]
∆k

k!
, (20)
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where {c1[y|y0; θ], . . . , c4[y|y0; θ]} are presented in (16)-(19). Although some integrals still remain

to be determined in our formulation in (13)-(15), but they are solely required for their numer-

ical values. When x − x0 is small, these integrals can be approximated by the Taylor series in

Proposition 3 which renders the formulation completely analytical. Compared with the recursively

defined multidimensional integrals the simplified cj [y]’s are easier to evaluate and this connection

will be highlighted in the context of the general model of Aı̈t-Sahalia (1996). To guarantee that

the density remains positive, the approximation for log-density is used: log
(

p
(K)
X [∆, x|x0; θ]

)

≈

− log
(

2πσ2[X; θ]∆
)

/2−
(

∫ x
x0

du
σ[u]

)2
/(2∆)+

∫ x
x0

f [u] du
σ[u] +

∑4
k=0 Ck[γ[x] |γ[x0]; θ] ∆k

k! , where C1 ≡ c1,

C2 ≡ c2 − c2
1, C3 ≡ c3 − 3c2 c1 + 2c3

1, and C4 ≡ c4 − 4c3c1 − 3c2
2 + 12c2c

2
1 − 6c4

1.

Aı̈t-Sahalia (2003) has extended the density approximation method in Aı̈t-Sahalia (1999, 2002)

to higher-dimensional diffusion processes. It must be emphasized that the problem of determining

cj [y0|y0; θ] is even harder in the multivariate setting and we have been unable to work through the

multivariate counterparts of Proposition 1 and Proposition 2. See Aı̈t-Sahalia and Kimmel (2003)

for closed-form likelihood expansions under affine multifactor models of the term structure.

Although not done here to preserve focus, the method can be adapted to approximate risk-

neutral densities for valuing contingent claims when the characteristic function of the state-price

density is unavailable (Bakshi and Madan (2000) and Duffie, Pan, and Singleton (2000)). Suppose

the log stock price is Xt ≡ log(Pt), then Ito’s lemma implies dXt = (r− 1
2σ[eX ; θ]) dt+σ[eX ; θ] dWt.

The risk-neutral density approximation q
(K)
X [X] leads to European option prices with strike price

K and maturity T as e−rT
∫+∞
log(K)(e

Xt+T −K) q
(K)
X [Xt+T ] dXt+T .

1.2.3 Density approximation when x − x0 and/or y − y0 is small

For some applications (say, the spot interest rates), the difference between the two adjacent ob-

servations (x0 and x) can be small. In such applications, Proposition 3 derives the corresponding

closed-form approximation of the relevant integrals and renders the method totally analytical.

Proposition 3 Let E ≡ x − x0, D ≡ y − y0, and define the successive partial derivative entities:

νi = ∂i(1/σ[X0])/∂Xi
0, (21)

ϕi = ∂i(f [X0]/σ[X0])/∂Xi
0 (22)

λi = ∂iλ[y0]/∂yi
0. (23)

When x − x0, equivalently y − y0, is small, we have the following Taylor expansions of
∫ x
x0

du
σ[u] ,
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∫ x
x0

f [u] du
σ[u] :

D = y − y0 =

∫ x

x0

du

σ[u]
= ν0E +

ν1E
2

2
+

ν2E
3

6
+

ν3E
4

24
+

ν4E
5

120
+

ν5E
6

720
, (24)

∫ y

y0

µY [w] dw =

∫ x

x0

f [u]
du

σ[u]
= ϕ0E +

ϕ1E
2

2
+

ϕ2E
3

6
+

ϕ3E
4

24
+

ϕ4E
5

120
+

ϕ5E
6

720
, (25)

and c1[y|y0; θ], c2[y|y0; θ], c3[y|y0; θ], and c4[y|y0; θ] are presented in (62)-(65) of Appendix B.

Owing to the results in (24)-(25) and (62)-(67), the approximation for the transition density

(20) is now completely analytical. The partial derivatives, νi, ϕi and λi, are compact and can

be conveniently programmed for the estimation of a wide class of continuous-time models. The

tractability of cj [y0|y0; θ] and the methodological dependence on µ[X; θ] and σ[X; θ] are at the

core of the analytical density approximation.

Upon further reflection, the coefficients in our Taylor series in Proposition 3 are related to

the corresponding coefficients in Aı̈t-Sahalia (2003) when the irreducible method is applied to the

univariate case. Realize, however, in the irreducible multivariate modeling case, the expansion

coefficients do not afford the tractability of integral representations and must be approximated by

Taylor series in x−x0 irrespective of whether x−x0 is small or not. On the other hand, the integral

equation (5) and the reduced coefficients in Proposition 2 hold for univariate diffusions and can be

evaluated through efficient integration routines. In fact, Proposition 3 may be construed as stating

that when x−x0 is small, the appropriate integrals can be determined by appealing to Taylor series

approximations making our method entirely analytical. In the irreducible multivariate setting, one

must resort to Taylor approximations.

2 Density approximation for a parametric model class

Spurred by our characterizations in Proposition 1 through Proposition 3, this section applies the

density approximation (20) to the following eight-parameter encompassing class of one-dimensional

processes due to Aı̈t-Sahalia (1996):

µ[X; θ] = α0 + α1 Xt + α2 X2
t + α3 X−1

t , (26)

σ[X; θ] =
√

β0 + β1 Xt + β2 Xβ3

t , (27)

subject to technical conditions (24a) through (24d) in Aı̈t-Sahalia (1996). Here,

θ ≡ (α0, α1, α2, α3, β0, β1, β2, β3) . (28)
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Following the convention in Durham (2003), this general process is labeled as GEN4 and, under

appropriate restrictions, subsumes several theoretically appealing models:

GEN4: dXt =
(

α0 + α1 Xt + α2 X2
t + α3X

−1
t

)

dt +
√

β0 + β1 Xt + β2 Xβ3

t dWt.

GEN2: dXt = (α0 + α1 Xt) dt +
√

β0 + β1 Xt + β2 Xβ3

t dWt

GEN1: dXt = α0 dt +
√

β0 + β1 Xt + β2 xβ3

t dWt

CEV4: dXt =
(

α0 + α1 Xt + α2 X2
t + α3 X−1

t

)

dt + β2 Xβ3

t dWt

CEV2: dXt = (α0 + α1Xt) dt + β2 Xβ3

t dWt

CEV1: dXt = α0 dt + β0 Xβ1

t dWt

AFF: dXt = (α0 + α1 Xt) dt +
√

β0 + β1Xt dWt

As argued earlier, to apply the enhanced-method of Aı̈t-Sahalia (1999, 2002) to the process in

(26)-(27) requires Yt ≡
∫Xt du

σ[u;θ] =
∫ du√

β0+β1 u+β2 uβ3
, which has no known closed-form analytical

representation. Thus, leaving aside the additional issue of multiple numerical integration determi-

nation of higher-order cj [y|y0; θ], none of the models in the GEN class are amenable to a density

characterization under the approach of Aı̈t-Sahalia (1999, 2002).

Returning to our methodology, we determine the components of p
(K)
X [∆, x|x0; θ] in (20) by

defining V0 ≡ β0 + β1 X0 + β2 Xβ3

0 . Clearly, ν2
0 V0 = 1 where ν0 ≡ 1/

√

β0 + β1 X + β2 Xβ3 .

Straightforward successive differentiation of ν2
0 V0 = 1 with respect to X0 yields the first five

derivatives of ν0 with respect to X0:

ν1 = −ν0V1/(2V0), (29)

ν2 = −(3ν1V1 + ν0V2)/(2V0), (30)

ν3 = −(5ν2V1 + 4ν1V2 + ν0V3)/(2V0), (31)

ν4 = −(7ν3V1 + 9ν2V2 + 5ν1V3 + ν0V4)/(2V0), (32)

ν5 = −(9ν4V1 + 16ν3V2 + 14ν2V3 + 6ν1V4 + ν0V5)/(2V0), (33)

where V1 = β1 + β2β3 Xβ3−1
0 , V2 = β2β3(β3 − 1)Xβ3−2

0 , V3 = (β3 − 2)V2/X0, V4 = (β3 − 3)V3/X0,

and V5 = (β3 − 4)V4/X0 are the partial derivatives of V0 with respect to X0.

Proceeding, as in Proposition 3, we obtain ϕi = ∂i(f [X0]/σ[X0])/∂Xi
0. Recognize that ϕ0 =

f [X0]/σ[X0] = µ[X0]/V0 − V1/(4V0) = U0/V0, where U0 = µ[X0] − V1/4 = α0 − β1/4 + α1 X0 +
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α2 X2
0 + α3/X0 − β2β3 Xβ3−1

0 /4. Thus, ϕ0V0 = U0. Successive differentiation of this equation

produces the first five derivatives of ϕ0 with respect to the state variable X0,

ϕ1 = (U1 − ϕ0)V1/V0, (34)

ϕ2 = (U2 − 2ϕ1V1 − ϕ0V2)/V0, (35)

ϕ3 = (U3 − 3ϕ2V1 − 3ϕ1V2 − ϕ0V3)/V0, (36)

ϕ4 = (U4 − 4ϕ3V1 − 6ϕ2V2 − 4ϕ1V3 − ϕ0V4)/V0, (37)

ϕ5 = (U5 − 5ϕ4V1 − 10ϕ3V2 − 10ϕ2V3 − 5ϕ1V4 − ϕ0V5)/V0, (38)

where U1 = α1 + 2α2X0 − α3/X
2
0 − V2/4, U2 = 2α2 + 2α3/X

3
0 − V3/4, U3 = −6α3/X

4
0 − V4/4,

U4 = 24α3/X
5
0 −V5/4, and U5 = −120α3/X

6
0 −V6/4 are the partial derivatives of U0 with respect

to X0 and V6 = (β3 − 5)V5/X0. For µ[X0] and σ[X0] governed via (26)-(27), the recursive nature

of ϕi determines (25) of Proposition 3.

Finally, we characterize each λi = ∂iλ[y0]/∂yi
0 in (66)-(67) as a function of X0. Based on the

calculations in Appendix C, each required λi is:

λ0 = H0, (39)

λ1 = H1S0, (40)

λ2 = H2S
2
0 + λ1S1, (41)

λ3 = H3S
3
0 + 3λ2S1 + λ1(S0S2 − 2S2

1), (42)

λ4 = H4S
4
0 + 6λ3S1 + λ2(4S0S2 − 11S2

1) + λ1(S
2
0S3 − 6S0S1S2 + 6S3

1), (43)

λ5 = H5S
5
0 + 10λ4S1 + λ3(10S0S2 − 35S2

1) + λ2(5S
2
0S3 − 40S0S1S2 + 50S3

1 ) +

λ1(S
3
0S4 − 8S2

0S1S3 + 36S0S
2
1S2 − 6S2

0S2
2 − 24S4

1), (44)

λ6 = H6S
6
0 + 15λ5S1 + λ4(20S0S2 − 85S2

1) + λ3(15S
2
0S3 − 150S0S1S2 + 225S3

1 ) +

λ2(6s
3
0S4 − 63S2

0S1S3 + 346S0S
2
1S2 − 46S2

0S2
2 − 274S4

1 ) + λ1(S
4
0S5 −

10S3
0S1S4 + 6S2

0S2
1S3 − 20S3

0S2S3 − 240S0S
3
1S2 + 90S2

0S1S
2
2 + 120S5

1 ), (45)

where S0 through S7 are shown in (68)-(75), and H0 through H6 are shown in (84)-(90). The

analyticity of λi can now be used to build c1[y|y0; θ] through c4[y|y0; θ] in (62)-(65) and ϕi in (34)-

(38) are employed for constructing
∫ y
y0

µY [w] dw expansion in (25). Given the choice of µ[X; θ]

and σ[X; θ], we obtain the density approximation for GEN4 through (20). Density functions for

other continuous-time models are restricted special cases.

10



Before proceeding to empirical investigation, it is instructive to determine the accuracy of

the density approximation under the proposed scheme for determining cj[y|y0; θ] in (20). To

illustrate this aspect we pick two candidate continuous-time models by setting β0 ≡ 0 in model

AFF (i.e., the square-root model) and α0 ≡ 0 in model CEV2. Each candidate model has an

exact density which allows comparison to the approximate density. Guided by Aı̈t-Sahalia (1999)

and Bakshi and Ju (2002) we compare the maximum absolute error of the approximate density

relative to its exact density counterpart. Table 1 judges the worst possible approximation error

by presenting MAXE ≡ max
(

|pexact[x|x0] − papprox[x|x0]|
)

and the maximum exact conditional

density as max(pexact[x|x0]. The key finding is that our density approximation is accurate for both

∆ = 1/12 and ∆ = 1 regardless of the underlying stochastic process. Inspection of the results also

reveals little value-added by including c5[y|y0; θ] in
∑K

k=0 ck[γ[x] |γ[x0]; θ] ∆k

k! : the approximation

with K = 5 marginally improves over K = 4 in some cases. The reason appears to be that

the maximum absolute errors with K = 4 - which are in the order of 10−14 - have probably

reached machine precision. However, as would be expected, embedding each additional term in

the approximation tends to make the method progressively more accurate. To summarize the

proposed density approximation method not only achieves the desired degree of accuracy, but

applies to a class of economically relevant continuous-time models.

3 Evaluating continuous-time volatility models

Starting with Heston (1993), there is a tradition to model equity volatility as a continuous-time

stochastic process with mean-reverting drift and square-root volatility. Despite the insight this

model has enabled, there is, however, a growing consensus that the square-root specification is

grossly misspecified (see Andersen, Benzoni and Lund (2002), Bakshi, Cao, and Chen (2000),

Bates (2000), Elerian, Chib, and Shephard (2001), Eraker, Johannes, and Polson (2003), and Pan

(2002), among others). With the exception of Jones (2003), who has provided evidence in favor of

CEV models of the volatility process, the lack of closed-form density approximations has impeded

progress on the testing of volatility processes beyond square-root. As such, several questions

still remain unresolved with respect to the documented rejection of square-root volatility models:

(i) Does the drift of the volatility process admit departures from linearity? (ii) Are volatility

models with general σ[X] more properly specified from empirical standpoints? (iii) What is the

empirical potential of variance processes in the Aı̈t-Sahalia (1996) class (26)-(27)? Issues connected

with volatility modeling have bearing on the search for better performing option pricing models,

parametric compensation for volatility risk, and the timing of volatility risks.

Before we can address aforementioned questions we need a suitable proxy for market volatility,
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which is intrinsically unobservable. Among the various possible choices at the daily frequency,

the empirical literature has appealed to (i) GARCH volatility constructed from daily returns, (ii)

intraday squared return measures (Andersen, Bollerslev, and Diebold (2003)), (iii) short-term near-

money Black-Scholes implied volatility (Pan (2002)), and (iv) S&P 100 index option volatility, VIX

(Jones (2003)). For reasons outlined in Jones (2003), we adopt the forward-looking VIX volatility

extracted from index option prices in our empirical work. Thus, it must be understood at the

outset that we are drawing conclusions about the desirability of stochastic volatility models based

on the estimated dynamics of the VIX index.

Given to us by Chris Jones, the VIX is sampled over the period of July 1, 1988 to January

10, 2000 (2907 observations) and expressed in decimals. To aid comparisons with the empirical

literature we let Xt ≡ VIX2
t for {t = i∆ | i = 0, · · · , n}.

The estimate of θ in (28) is based on the log-likelihood function:

max
θ

L [θ] ≡
n
∑

i=1

log
{

pX [∆,Xi∆|X(i−1)∆; θ]
}

(46)

where the transition density function, pX [∆,Xi∆|X(i−1)∆; θ], is approximated via (20) with

{c1[y0|y0; θ], · · · , c4[y0|y0; θ]} constructed separately for GEN4 and its nested variants. The effi-

ciency and optimality of the maximum-likelihood estimator is discussed, among others, in Aı̈t-

Sahalia (1999, 2002).1

Table 2 displays maximum-likelihood model parameters, the standard errors (in parenthesis),

the goodness-of-fit maximized log-likelihood values, and the rank-ordering of stochastic volatility

models based on the Akaike Information Criterion (AIC). For each candidate model the estimate

of β0 in the diffusion function
√

β0 + β1 Xt + β2 Xβ3

t was close to zero with no impact on log-

likelihood. For this reason we throughout impose β0 ≡ 0. In this case, the AFF specification

collapses to the square-root model dXt = (α0 − α1 Xt) dt +
√

β1XtdWt.

The failure of the square-root model is evident even in the presence of a high β1 value of 0.1827

(i.e., volatility of volatility parameter,
√

β1, is 0.4274). One drawback of this specification is that

it is insufficiently flexible in fitting higher-order volatility moments: With sample VIX skewness

and kurtosis of 2.39, and 9.67 respectively, this process can internalize large movements in the

1Demonstrating the computational superiority of the density approximation, the MLE computer code converged
rapidly (in less than 1 minute on a 1 GHZ laptop computer) regardless of the drift and diffusion combination.
Having a closed-form density approximation can therefore accelerate the speed of estimation several hundred fold
relative to simulation-based approaches. We refer the reader to the discussion in Durham and Gallant (2002) and
Li, Pearson, and Poteshman (2004) on the efficacy of alternative approaches and Brandt and Santa-Clara (2002) on
the difficulty in estimating models using simulation-based methods. With finer Euler discretization and reasonably
lengthy MCMC sampler draws, our computation time also measures favorably relative to the Bayesian methodology
of Jones (2003).
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underlying process only at the expense of an implausible level of β1. Negative and statistically

significant α1 = −8.0369 indicates speedy mean-reversion in the variance process and a model

long-run volatility level of
√

−α0/α1 = 19.77%.

Keeping β3 free in the CEV class rectifies modeling deficiencies of the AFF specification (that

forces β3 ≡ 1/2) as seen through a large jump in the log-likelihood. Transitioning from AFF

to CEV2 increases the log-likelihood from 11400.28 to 12090.40, thereby rejecting AFF with a

significant log-likelihood ratio statistic. Specifically, we compute the log-likelihood ratio statistic

as minus twice the difference between the log-likelihood values of the restricted and the unrestricted

models:

L∗ ≡ −2 × (L[θR] − L[θU ]) (47)

which is distributed χ2 [dim[θU ] − dim[θR]]. That the data favors the CEV class of variance pro-

cesses over the AFF is further validated through high −n/2 AIC. Misspecification of σ[X] is

primarily responsible for the rejection of the affine volatility models.

Analyzing the MLE results across CEV1, CEV2 and CEV4 provides a number of fundamental

insights about the dynamics of market variance. First, the highly significant α2 and α3 suggest

the presence of non-linearities in the drift of the variance process. Consider CEV4: the estimate

of α2 is -166.72 (standard error of 60.53) and the estimate of α3 is 0.0031 (standard error of

0.0015). Compared to the linear drift model CEV2 - which has a log-likelihood of 12090.40

- adding two additional non-linear drift parameters raises the log-likelihood to 12094.24. The

resulting log-likelihood ratio statistic L∗ is 7.68, which is bigger than χ2[2] critical value of 6.0 (at

95% confidence level) and the linear drift model is rejected in favor of a non-linear drift in the

variance process.

Omitting a role for α1Xt + α2X
2
t + α3/Xt also worsens the performance of the stochastic

volatility models versus CEV4. The realized value of the test statistic L∗ is 9.18 which can be

compared to the χ2[3] critical value of 7.82. However, the same cannot be argued about linear drift

versus constant drift accounting for the constant elasticity of variance structure σ[Xt] = β2X
β3

t .

The log-likelihood is virtually insensitive to the addition of α1Xt to the CEV1 specification: the

small increase of L from 12089.65 to 12090.40 is insufficiently large to make L∗ = 1.5 statistically

significant with 1 degree of freedom.

The exponent parameter β3 is statistically significant in CEV1, CEV2, and CEV4 and ranges

between 1.2732 to 1.2781 and several fold relative to the reported standard errors. The magnitude

of β3 is comparable but slightly higher than that reported by Jones (2003). An overarching

conclusion is that β3 > 1 is needed to match the time-series properties of the VIX index with the
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CEV models (the one-sided t-test rejects the null hypothesis of β3 ≤ 1).

Recall the GEN class of variance processes shares the same drift and volatility structure as

models in the CEV class except that the GEN class embeds an additional linear-term in the σ[X]

specification. The implementation of GEN1, GEN2, and GEN4 brings out several incremental

facts about the behavior of the volatility processes. Comparing the log-likelihood and model

estimates across CEV1 and GEN1, CEV2 and GEN2, and CEV4 and GEN4 establishes that

the addition of β1Xt as in σ[Xt] =
√

β1Xt + β2X
β3

t provides additional flexibility in fitting VIX

dynamics. In each comparison, the L∗ statistic ranges between 6.86 and 9.66 which is highly

significant given χ2[1] = 3.84. Regardless of the functional form of the drift specification, this

result can be interpreted to mean that the shape of σ[X] =
√

β1Xt + β2X
β3

t is statistically more

attractive than σ[X] = β2X
β3

t in reconciling the path of the VIX index. The estimate of β1 lies

between 0.0141 and 0.0168 with a standard error of 0.0050 or 0.0051, making β1 significant across

all models in the GEN class.

Since the estimated value of β0 is zero in the GEN class, the volatility function of market vari-

ance approaches zero as the variance itself approaches zero. However, the significant positive value

of β1 indicates that the volatility of the index variance process approaches zero at a lower rate

than that in the CEV specifications. At higher variance levels, the volatility function in the GEN

specifications increases faster than that in the CEV specifications. So, the GEN specifications ac-

commodate greater volatility at both low and high variance levels. For the GEN specifications, the

linear term β1X becomes more pronounced than the nonlinear term β2X
β3 for X < (β1/β2)

1

β3−1 .

In the region X < 0.0136 in GEN4, the linear term β1X is more heavily weighted than the non-

linear component β2X
β3 and vice-versa. Therefore, β1 determines the behavior of the volatility

function at low variance levels.

Results from GEN1, GEN2, and GEN4 strengthen our earlier conclusions from CEV models

that support the existence of non-linearities in the drift function. As seen, the market variance data

prefers GEN4 over both GEN1 and GEN2, while GEN1 and GEN2 are indistinguishable based on

the log-likelihoods and log-likelihood ratio statistics. More precisely, the L∗ is 11.72 between GEN1

and GEN4 and 10.48 between GEN2 and GEN4. The estimated α2 of -166.72 (-209.35) for the

CEV4 (GEN4) model is intuitive and guarantees a negative drift function in periods of pronounced

market volatility. In the reverse when the market variance is low, µ[X] should contain a positive

drift which dictates the positivity of α3 and assures that zero is unattainable. The coexistence of

statistically significant α2 < 0 and α3 > 0 suggests that mean-reversion and non-linearity of the

drift function are robust phenomena in index volatility markets.

Elasticity parameters obtained from CEV and GEN models exhibit a mutually coherent map-

ping: the β3 of GEN is slightly more than twice the CEV counterpart. The following interpretation
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holds for estimated β3 of GEN4. With β3 = 2.8822, the variance function σ2[X] is convex in vari-

ance, that is, ∂σ2[X;θ]
∂X = β1 + β2 β3X

β3−1 > 0 and ∂2σ2[X;θ]
∂X2 = β2 β3(β3 − 1)Xβ3−2 > 0. The

one-sided t-test overwhelmingly rejects the null hypothesis that β3 ≤ 2. This property has the

implication that a well-performing variance process should have its variance function increasing at

a rate faster than the level of market variance. Continuous-time volatility models violating such

a property are likely headed for inconsistencies in the empirical dimension.

Because the most general specification, GEN4, exemplifies nonlinearity in the drift and diffu-

sion function of the type described in (26)-(27), it rank-orders first with -n/2 AIC of 12092.07,

followed next by GEN1 and GEN2 with -n/2 AIC of 12089.21 and 12088.83. Our density-based

estimation implies that the linear AFF model displays unsatisfactory goodness-of-fit statistics and

has dynamics most inconsistent with the observed movements in the VIX index. While GEN4

admits a more complex representation, the nonlinearity parameters are vital to generating a more

realistic time-evolution of market volatility.

Before closing this section, note that the correct specification of interest-rate drift and diffusion

is at the root of a contentious literature. How do patterns of non-linearity compare between the

market variance and the interest-rate? To appreciate the similarities/differences, we explore two

angles. First, the shapes of µ[.] and σ[.] are plotted in Figure 1 for the GEN4 model. In this

exercise, we focus on the estimate of θ in our Table 2 and the corresponding daily interest-

rate estimates from Durham (2003): α0 = −3.3157, α1 = 0.7328, α2 = −0.0503, α3 = 6.2555,

β0 = 0.3667, β1 = −0.0275, β2 = 0.003, and β3 = 3.3732. The visual impression from subplots A

and B suggests that the mean-reversion in the interest-rate is relatively weaker in the tails of the

distribution. This point can be confirmed by computing 1
|µ[r]|

∂µ[r]
∂r = {−155, 25} at r = {0.01, 0.15},

versus 1
|µ[X]|

∂µ[X]
∂X = {−285, 45} at X = {0.082, 0.3162}. Furthermore, the close correspondence

between the shapes in subplot C and subplot D indicates that the exponent parameter, β3, is

instrumental to the volatility specification of both interest-rate and market variance. Second, we

compare model selection results for volatility and interest-rate dynamics. While Table 3 in Durham

(2003) reveals that models with constant drift realistically captures interest-rate movements, our

Table 2 shows that incorporating non-linearities in µ[X] offers goodness-of-fit improvements.

4 Concluding statements and summary

Density approximation is an issue whenever the researcher needs the state-price density for pricing

purposes or for constructing the likelihood function in maximum-likelihood estimation. Building

on Aı̈t-Sahalia (1999, 2002) we have provided a method to approximate the transition density, and

studied the empirical implications of estimating a much wider class of equity volatility models.

15



Our theoretical contribution in Proposition 1 and Proposition 2 shows how to express the

recursively defined expansion coefficients in terms of one-dimensional integrals. To enhance the

appeal of the methodology, the density approximation is derived in terms of the drift and diffusion

function of the original state variable. This is done without incurring burdensome integration

steps to reduce the state variable dynamics to a unit-variance process. Proposition 3 provides a

technical treatment of the case when the necessary integrals can be Taylor series approximated

and results in a solution for the expansion coefficients and the transition density. We illustrate the

power of the methodology by deriving the density approximation for the general continuous-time

model presented in Aı̈t-Sahalia (1996).

Novel to the literature on equity volatility, our empirical results substantiate variance dynamics

with nonlinear mean-reversion. Strong statistical evidence exists to support the presence of a

nonlinear diffusion coefficient structure: the variance of variance function is composed of a term

linear in variance plus a power function term in variance with an exponent that demands a

value greater than two. The combined continuous-time variance model with the said properties

furnishes reasonable goodness-of-fit statistics and produces superior performance metrics relative

to its nested variants.

Other than the most obvious outlets for assessing the usefulness of the density approximation,

our methods can be adapted to learn about the parametric nature of phenomena of significance

to economists (a partial list includes electricity prices, intraday power volatility, exchange rate

volatility distributions, and credit spreads) and for undertaking risk measurements under non-

linear drift and diffusion forcing processes. The field of density approximation is now amenable

to analytical characterizations under a large class of non-standard continuous-time models.
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Appendix A: Proof of Proposition 2

To outline a proof of the proposition, consider the determination of c2[y]:

c2[y] =
2

(y − y0)2

∫ y

y0

(w − y0)

(

λ[w] c1[w] +
1

2

∂2c1[w]

∂w2

)

dw

=
2

(y − y0)2

∫ y

y0

λ[w]

(
∫ w

y0

λ[z] dz

)

dw +
1

(y − y0)2

∫ y

y0

(w − y0)
∂2c1[w]

∂w2
dw. (48)

The first part of (48) is equivalent to c2
1[y] as proved below:

2

(y − y0)2

∫ y

y0

λ[w]

(
∫ w

y0

λ[z] dz

)

dw =
2

(y − y0)2

∫ y

y0

(
∫ w

y0

λ[z] dz

)

d

(
∫ w

y0

λ[z] dz

)

=
1

(y − y0)2

(
∫ w

y0

λ[z] dz

)2
∣

∣

∣

∣

∣

y

y0

= c2
1[y]. (49)

Continuing, the second component of c2[y] reduces, by a repeated application of integration by

parts, to:

∫ y

y0

(w − y0)
∂2c1[w]

∂w2
dw = (w − y0)

∂c1[w]

∂w

∣

∣

∣

∣

y

y0

− c1[w]|yy0
. (50)

Care must be exercised in evaluating the functions at the lower limit y0. For example, (w −
y0)∂c1[w]/∂w does not evaluate to zero at w = y0. To this end we note

∂c1[w]

∂w
=

λ[w] − c1[w]

w − y0
. (51)

Consequently it then follows that

∫ y

y0

(w − y0)
∂2c1[w]

∂w2
dw = λ[y] − 2c1[y] − λ[y0] + 2c1[y0] = λ[y] − 2c1[y] + λ[y0], (52)

where l’Hôpital’s rule implies c1[y0] = λ[y0]. Therefore,

c2[y] = c2
1[y] +

1

(y − y0)2
(λ[y] + λ[y0] − 2c1[y]). (53)
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Now we consider c3[y], which is recursively defined as

c3[y] =
3

(y − y0)3

∫ y

y0

(w − y0)
2

(

λ[w] c2[w] +
1

2

∂2c2[w]

∂w2

)

dw. (54)

For clarity consider each part of (54) separately. Using (53) and skipping intermediate steps,
3

(y−y0)3
∫ y
y0

(w − y0)
2λ[w]c2[w]dw simplifies to:

3

(y − y0)3

∫ y

y0

(w − y0)
2λ[w]

(

c2
1[w] +

λ[w] + λ[y0] − 2c1[w]

(w − y0)2

)

dw

= c3
1[y] +

3

(y − y0)3

∫ y

y0

λ[w](λ[w] + λ[y0] − 2c1[w]) dw. (55)

The second part of (54) has an analytical representation using integration by parts:

3

(y − y0)3

∫ y

y0

(w − y0)
2

(

1

2

∂2c2[w]

∂w2

)

dw =
3(w − y0)

2

2(y − y0)3
∂c2[w]

∂w

∣

∣

∣

∣

∣

y

y0

−

3(w − y0)c2[w]

(y − y0)3

∣

∣

∣

∣

y

y0

+
3

(y − y0)3

∫ y

y0

c2[w]dw. (56)

It is straightforward to show that

∂c2[w]

∂w
= − 2c2[w]

w − y0
+

2

w − y0

(

λ[w]c1[w] +
1

2

∂2c1[w]

∂w2

)

, (57)

and it holds that

∂2c1[w]

∂w2
=

λ′[w]

w − y0
− 2(λ[w] − c1[w])

(w − y0)2
. (58)

By a basic application of l’Hôpital’s rule at the lower limit y0

3

(y − y0)3

∫ y

y0

(w − y0)
2

(

1

2

∂2c2[w]

∂w2

)

dw =
3

(y − y0)2
(λ[y] c1[y] − 2c2[y]) −

3(λ[y] − c1[y])

(y − y0)4
+

3λ′[y]

2(y − y0)3
+

3

(y − y0)3

∫ y

y0

c2[w]dw. (59)

Combining (55) and (59) we finally have

c3[y] = c3
1[y] +

3

(y − y0)2
(c1[y](λ[y] + λ[y0]) − 2c2[y]) +

3

(y − y0)3

(
∫ y

y0

λ2[w] dw+

∫ y

y0

c2[w] dw −
∫ y

y0

2λ[w]c1[w]dw +
λ′[y]

2

)

− 3(λ[y] − c1[y]

(y − y0)4
. (60)
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Now

∫ y

y0

c2[w]dw =

∫ y

y0

2

(w − y0)2

∫ w

y0

(z − y0)

(

λ[z]c1[z] +
1

2

∂2c1[z]

∂z2

)

dz dw =

∫ y

y0

∫ y

y0

2

(w − y0)2
(z − y0)

(

λ[z]c1[z] +
1

2

∂2c1[z]

∂z2

)

1(z < w) dz dw =

2

∫ y

y0

(z − y0)

(

λ[z]c1[z] +
1

2

∂2c1[z]

∂z2

)

(

1

z − y0
− 1

y − y0

)

dz =

2

∫ y

y0

(

λ[z]c1[z] +
1

2

∂2c1[z]

∂z2

)

dz − (y − y0) c2[y] =

2

∫ y

y0

λ[z] c1[z]dz +
∂c1[z]

∂z
| y

y0
− (y − y0) c2[y] =

2

∫ y

y0

λ(z) c1[z]dz +
λ[y] − c1[y]

y − y0
− 1

2
λ′[y0] − (y − y0) c2[y]. (61)

Plugging (61) into (60) and rearranging

c3[y] = c3
1[y] +

3

(y − y0)2
(c1[y](λ[y] + λ[y0]) − 3 c2[y]) +

3

(y − y0)3

(

λ′[y] − λ′[y0]

2
+

∫ y

y0

λ2[w] dw

)

.

The proof of c4[y|y0; θ] is rather unwieldy and omitted to save on space (available from the authors).

Appendix B: Expressions for cj [y|y0; θ] in Proposition 3

c1[y|y0; θ] = λ0 +
λ1D

2
+

λ2D
2

6
+

λ3D
3

24
+

λ4D
4

120
+

λ5D
5

720
+

λ6D
6

5040
, (62)

c2[y|y0; θ] = c2
1[y0] +

λ2

6
+

λ3D

12
+

λ4D
2

40
+

λ5D
3

180
+

λ6D
4

1008
, (63)

c3[y|y0; θ] = c3
1[y0] +

(

λ2
1

4
+

λ0λ2

2
+

λ4

40

)

+

(

λ1λ2

2
+

λ0λ3

4
+

λ5

80

)

D +

(

3λ2
2

20
+

λ1λ3

5
+

3λ0λ4

40
+

λ6

280

)

D2 +

(

5λ2λ3

48
+

13λ1λ4

240
+

λ0λ5

60

)

D3 +

(

23λ2
3

1344
+

11λ2λ4

420
+

19λ1λ5

1680
+

λ0λ6

336

)

D4 +

(

λ3λ4

120
+

λ2λ5

192
+

13λ1λ5

6720

)

D5

+

(

43λ2
4

4320
+

7λ3λ5

4320
+

13λ2λ6

15120

)

D6, (64)

c4[y|y0; θ] = c4
1[y0] +

(

λ0λ
2
1 + λ2

0λ2 +
3λ2

2

20
+

λ1λ3

5
+

λ0λ4

10
+

λ6

280

)

+

19



(

λ2
3

2
+ 2λ0λ1λ2 +

λ2
0λ3

2
+

λ2λ3

4
+

3λ1λ4

20
+

λ0λ5

20

)

D +

(

11λ2
1λ2

12
+

3λ0λ
2
2

5
+

4λ0λ1λ3

5
+

23λ2
3

336
+

19λ2λ4

168
+

3λ1λ5

56
+

λ0λ6

70

)

D2 +

(

7λ1λ
2
2

15
+

19λ2
1λ3

60
+

5λ0λ2λ3

12
+

13λ0λ1λ4

60
+

λ3λ4

20
+

λ5
0λ5

30
+

λ2λ5

30
+

11λ1λ6

840

)

D3 +

(

13λ3
2

180
+

3λ1λ2λ3

10
+

5λ0λ2λ3

12
+

13λ0λ1λ4

60
+

23λ0λ
2
3

336
+

19λ2
2λ4

420
+

11λ0λ2λ4

105
+

11λ1λ6

840
+

23λ2
4

2880
+

λ2
0λ6

168
+

19λ0λ1λ5

420
+

19λ3λ5

1440
+

37λ2λ6

5040

)

D4 +

(

λ2
2λ3

15
+

157λ1λ
2
3

3360
+

181λ1λ2λ4

2520
+

λ0λ3λ4

30
+

79λ2
1λ5

5040
+

λ0λ2λ5

48
+

7λ4λ5

1800
+

13λ0λ1λ6

1680
+

137λ3λ6

50400

)

D5 +

(

9λ2λ
2
3

448
+

391λ2
2λ4

25200
+

79λ1λ3λ4

3600
+

43λ0λ
2
4

10800
+

139λ1λ2λ5

10800
+

7λ0λ3λ5

1080
+

71λ2
5

158400
+

13λ0λ2λ6

3780
+

281λ4λ6

369600

)

D6. (65)

In terms of µ[X0] and σ[X0], each required λi can be recursively derived as:

λ0 = −(f2[X0] + f ′[X0]σ[X0])/2, (66)

λi = λ′
i−1 σ[X0], i = 1, 2, 3, 4, 5, 6, (67)

which completes the characterization of the density approximation.

Appendix C: Expressions for λj in the GEN4 Model
To this end, let

S0 = σ[X0] =
√

β0 + β1X0 + β2X
β3

0 . (68)

Then S2
0 = β0 + β1X0 + β2X

β3

0 = V0. Differentiation leads to the following derivatives of S0 with

respect to X0:

S1 = V1/(2S0), (69)

S2 = (V2 − 2S2
1)/(2S0), (70)

S3 = (V3 − 6S1S2)/(2S0), (71)
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S4 = (V4 − 8S1S3 − 6S2
2)/(2S0), (72)

S5 = (V5 − 10S1S4 − 20S2S3)/(2S0), (73)

S6 = (V6 − 12S1S5 − 30S2S4 − 20S2
3 )/(2S0), (74)

S7 = (V7 − 14S1S6 − 42S2S5 − 70S3S4)/(2S0), (75)

where V7 = (β3 − 6)V6/X0.

Let F0 = f [X] = µ[X0]/σ[X0] − σ′[X0]/2 = U0/S0. So S0F0 = U0. Obeying the above

successive differentiation rules we arrive at:

F0 = U0/S0, (76)

F1 = (U1 − F0S1)/S0, (77)

F2 = (U2 − 2F1S1 − F0S2)/S0, (78)

F3 = (U3 − 3F2S1 − 3F1S2 − F0S3)/S0, (79)

F4 = (U4 − 4F3S1 − 6F2S2 − 4F1S3 − F0S4)/S0, (80)

F5 = (U5 − 5F4S1 − 10F3S2 − 10F2S3 − 5F1S4 − F0S5)/S0, (81)

F6 = (U6 − 6F5S1 − 15F4S2 − 20F3S3 − 15F2S4 − 6F1S5 − F0S6)/S0, (82)

F7 = (U7 − 7F6S1 − 21F5S2 − 35F4S3 − 35F3S4 − 21F2S5 − 7F1S6 − F0S7)/S0, (83)

where U6 = 720α3/X
7
0 − V7/4, U7 = −5040α3/X

8
0 − V8/4 and V8 = (β3 − 7)V7/X0.

We can now conveniently write

H0 = −(f2[X0] + f ′[X0]σ[X0])/2 = −(F 2
0 + F1S0)/2. (84)

The first six derivatives of H0 with respect to X0 are:

H1 = −(2F0F1 + F2S0 + F1S1)/2, (85)

H2 = −(2F 2
1 + 2F0F2 + 2F2S1 + F3S0 + F1S2)/2, (86)

H3 = −(6F1F2 + 2F0F3 + F4S0 + 3F3S1 + 3F2S2 + F1S3)/2, (87)

H4 = −(6F 2
2 + 8F1F3 + 2F0F4 + F5S0 + 4F4S1 + 6F3S2 + 4F2S3 + F1S4)/2, (88)

H5 = −(20F2F3 + 10F1F4 + 2F0F5 + F6S0 + 5F5S1 + 10F4S2 + 10F3S3 +

5F2S4 + F1S5)/2, (89)

H6 = −(20F 2
3 + 30F2F4 + 12F1F5 + 2F0F6 + F7S0 + 6F6S1 + 15F5S2 +

20F4S3 + 15F3S4 + 6F2S5 + F1S6)/2. (90)
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TABLE 1: Maximum Absolute Errors of the Density Approximation

Maximum absolute errors of the approximations are based on K = 1, 2, 3, 4, 5 and the Euler approxima-
tion. The approximate density is based on (20) with cj[γ[x]|γ[x0]; θ] presented in Proposition 2. Entries
corresponding to max(p|x0) are the maximum conditional density. Computations involving Panels A and
B use α0 = 0.145 × 0.0732, α1 = −0.145, β0 = 0, and β1 = 0.065212. For the calculations performed in
Panels C and D the initial stock price is fixed at x0 = $50, the initial volatility level is β2 xβ3−1

0 = 0.3, and
α1 and β2 are allowed to vary. Tabulating the results by changing the elasticity of volatility coefficient β3

provided the same conclusions and, therefore, omitted.

Panel A: dXt = (α0 + α1 Xt) dt +
√

β1Xt dWt, t = 1/12

x0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

max(p|x0) (101) 15.0 10.7 8.71 7.55 6.75 6.17 5.71 5.34 5.04
K = 1 (10−3) 6.46 1.32 0.67 0.36 0.18 0.32 0.15 1.13 2.70
K = 2 (10−6) 143 10.3 3.90 0.98 0.82 2.71 3.86 2.54 3.96
K = 3 (10−8) 89.7 4.11 1.34 0.26 0.31 0.15 1.36 2.83 3.26
K = 4 (10−10) 90.9 5.35 0.36 0.14 0.26 0.33 0.21 0.75 2.06
K = 5 (10−12) 153 8.27 6.57 5.95 8.55 9.82 14.9 5.94 5.98
Euler 7.17 3.73 2.55 1.93 1.59 1.35 1.17 1.04 0.94

Panel B: dXt = (α0 + α1 Xt)dt +
√

β1XtdWt, t = 1

x0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

max(p|x0) (101) 4.39 3.25 2.69 2.35 2.11 1.94 1.80 1.68 1.59
K = 1 (10−2) 28.7 7.19 2.61 1.78 0.81 1.35 1.19 4.83 11.1
K = 2 (10−3) 79.8 4.96 2.23 0.71 0.50 1.35 2.00 1.83 2.45
K = 3 (10−4) 51.1 4.45 0.78 0.29 0.17 0.20 0.83 1.71 2.25
K = 4 (10−6) 117 41.7 5.1 0.67 1.44 2.27 1.81 5.38 14.4
K = 5 (10−7) 154 9.85 4.23 0.61 0.26 0.70 1.70 2.00 3.43
Euler 8.21 4.70 3.42 2.76 2.35 2.07 1.87 1.72 1.60

Panel C: dXt = α1Xt + β2X
β3

t dWt, t = 1/12

α1 0.04 0.04 0.04 0.06 0.06 0.06 0.08 0.08 0.08
β2 0.50 0.70 0.90 0.50 0.70 0.90 0.50 0.70 0.90

max(p|x0) (10−2) 9.20 9.22 9.24 9.19 9.20 9.22 9.18 9.19 9.21
K = 1 (10−8) 1.48 0.55 0.11 15.05 6.26 1.12 47.50 22.69 6.24
K = 2 (10−11) 4.26 0.17 0.09 3.41 18.33 0.04 19.28 6.56 1.49
K = 3 (10−13) 1.56 0.32 2.83 2.64 0.36 2.31 7.10 1.24 2.02
K = 4 (10−14) 2.23 3.22 28.28 1.50 2.12 2.31 1.37 3.43 20.42
K = 5 (10−14) 2.28 3.22 28.28 1.54 2.12 2.31 1.34 3.42 20.42
Euler (10−3) 2.77 3.93 5.11 2.73 3.88 5.05 2.69 3.83 5.00

Panel D: dXt = α1Xt + β2X
β3

t dWt, t = 1

α1 0.04 0.04 0.04 0.06 0.06 0.06 0.08 0.08 0.08
β2 0.50 0.70 0.90 0.50 0.70 0.90 0.50 0.70 0.90

max(p|x0) (10−2) 2.63 2.68 2.75 2.59 2.63 2.70 2.55 2.58 2.64
K = 1 (10−7) 8.19 2.51 0.49 65.17 26.24 4.66 206.58 95.23 25.89
K = 2 (10−9) 28.51 0.85 0.32 19.05 1.51 0.16 125.72 37.89 7.80
K = 3 (10−10) 13.20 0.05 0.00 17.29 1.46 0.03 43.33 6.92 0.11
K = 4 (10−12) 63.43 0.24 0.00 55.15 6.52 0.01 49.19 8.88 0.19
K = 5 (10−14) 456.61 0.57 0.39 0.04 1.16 0.52 325.76 2.23 0.37
Euler (10−3) 2.82 4.14 5.53 2.68 3.94 5.30 2.54 3.76 5.07
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TABLE 2: Estimation Results for Market Index Variance

The encompassing model, GEN4, is dXt =
(

α0 + α1 Xt + α2 X2
t + α3X

−1
t

)

dt +

√

β0 + β1 Xt + β2 Xβ3

t dWt. Nest-

ing CEV1 and CEV2, the CEV4 model is dXt =
(

α0 + α1 Xt + α2 X2
t + α3 X−1

t

)

dt+β2 Xβ3

t dWt. The AFF model
is dXt = (α0 + α1 Xt) dt +

√
β0 + β1Xt dWt. Throughout β0 ≡ 0 as the estimate of β0 was zero and has no impact

on log-likelihood. The market index volatility is proxied by the daily VIX index. The daily data is sampled over the
period of July 1, 1988 to January 10, 2000 (2907 observations). We take Xt = VIX2

t and the VIX series is scaled by
100 to convert it into a decimal. The approximate density is analytical and displayed in (20) with cj [γ[x]|γ[x0]; θ]
presented in Proposition 2. Reported volatility model parameters and standard errors (in parenthesis) are based on
maximizing the log-likelihood L [θ] ≡

∑n

i=1 log
{

pX [∆, Xi∆|X(i−1)∆; θ]
}

. The Akaike Information Criterion (AIC)
is computed as −2/n (L[θ] − dim[θ]). Thus, a more properly specified model has higher -n

2 AIC. Likelihood ratio test
statistic for comparing nested models is L∗ ≡ −2 × (L[θR] − L[θU ]) ∼ χ2[df ], where df is the number of exclusion

restrictions and the 95% criterion values are
df 1 2 3 4

χ2[df ] 3.84 6.0 7.82 9.50
. dim[θ] is reported in curly brackets

below L.

Model L -n
2 AIC α0 α1 α2 α3 β1 β2 β3

AFF 11400.28 11397.28 0.3141 -8.0369 0.1827
{3} (0.0397) (1.1977) (0.0000)

CEV1 12089.65 12086.65 0.0664 4.7825 1.2781
{3} (0.0114) (0.1365) (0.0214)

CEV2 12090.40 12086.40 0.0941 -1.4607 4.7046 1.2732
{4} (0.0255) (1.1939) (0.1365) (0.0217)

CEV4 12094.24 12088.24 -0.3400 15.2476 -166.7249 0.0031 4.7645 1.2766
{6} (0.1846) (6.3934) (60.5296) (0.0015) (0.1381) (0.0218)

GEN1 12093.21 12089.21 0.0654 0.0142 47.0436 2.8302
{4} (0.0117) (0.0050) (10.4937) (0.1183)

GEN2 12093.83 12088.83 0.0920 -1.3540 0.0141 44.9773 2.8161
{5} (0.0267) (1.2159) (0.0051) (10.0673) (0.1187)

GEN4 12099.07 12092.07 -0.5537 21.3224 -209.3476 0.0051 0.0168 53.9726 2.8822
{7} (0.2162) (7.3014) (68.6506) (0.0018) (0.0050) (12.4970) (0.1226)
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Figure 1: Drift and diffusion functions for market variance and short interest rate

for the GEN4 model. Subplots A and B plot the drift function, µ[.], of market variance

and interest-rate, respectively. We plot the diffusion function, σ[.] in Subplots C and D. All

calculations for the market variance process are based on the maximum-likelihood estimation

results reported in Table 2. The daily parameter estimates for the interest-rate process are

taken from the simulated maximum-likelihood approach of Durham (2003): α0 = −3.3157,

α1 = 0.7328, α2 = −0.0503, α3 = 6.2555, β0 = 0.3667, β1 = −0.0275, β2 = 0.003, and

β3 = 3.3732. The plotted µ[r] and σ[r] are scaled by 100 to maintain consistency with the

interest-rate series, which is in decimal form.
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