
Optimal estimation for economic gains:
portfolio choice with parameter uncertainty

RAYMOND KAN and GUOFU ZHOU∗

First draft: May 2003
This version: January 2005

∗Kan is from the University of Toronto and Zhou is from Washington University in St. Louis.
We thank Devraj Basu, Stephen Brown, Alex David, Phil Dybvig, Heber Farnsworth, Lorenzo
Garlappi, Campbell Harvey, Philippe Jorion, Ambrus Kecskés, Marcin Kacperczyk, John Liechty,
Merrill Liechty, Hong Liu, Peter Müller, L̆uboš Pástor, Tim Simin, Marcel Rindisbacher, Robert
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Optimal estimation for economic gains:

portfolio choice with parameter uncertainty

Abstract

In this paper, we advocate incorporating the economic objective function into parameter

estimation by analyzing the optimal portfolio choice problem of a mean-variance investor

facing parameter uncertainty. We show that, in estimating the optimal portfolio weights,

the standard plug-in approach that replaces the population parameters by their sample esti-

mates can lead to significant utility losses. While Bayesian approach accounts for parameter

uncertainty by using predictive densities, its portfolio rule under diffused prior makes little

improvements. In contrast, our proposed new rule provides a significant improvement of

utility over the plug-in approaches. We further show that with parameter uncertainty, hold-

ing the sample tangency portfolio and the riskfree asset is never optimal. An investor can

benefit by holding some other risky portfolios that help reduce the estimation risk, suggest-

ing that the presence of estimation risk completely alters the theoretical recommendation of

a two-fund portfolio.



1. Introduction

Theoretical models often assume that an economic agent making an optimal financial

decision knows the true parameters of the model. But the true parameters are rarely if

ever known to the decision-maker. In reality, model parameters have to be estimated, and

hence the model’s usefulness depends partly on how good the estimates are. This gives rise

to an estimation risk in virtually all financial models. At present, the estimation risk is

commonly minimized based on statistical criteria such as minimum variance and asymptotic

efficiency. Can the parameters be estimated such that expected utility is maximized? This

paper provides some answers.

A leading example of parameter uncertainty arises from the classic portfolio choice prob-

lem of investors. Markowitz’s (1952) seminal work provides a mean-variance framework for

investors to obtain the optimal portfolio as a combination of the tangency portfolio and

a riskless asset (two-fund separation). Despite its limitation as a single-period model, the

mean-variance framework is one of the most important benchmark models used in practice

today (see, e.g., Litterman (2003)). However, the framework requires knowledge of both

the mean and covariance matrix of the asset returns, which in practice are unknown and

have to be estimated from the data. The standard approach, ignoring the estimation risk,

simply treats the estimates as the true parameters and plugs them into the optimal portfo-

lio formula. Using predictive distributions pioneered by Zellner and Chetty (1965), Brown

(1976) shows that the plug-in method is generally outperformed by the Bayesian decision

rule under a diffuse prior (Bawa, Brown, and Klein (1979) provide an extensive survey of

the early work). In fact, as our analytical derivation later will show, the Bayesian decision

rule is uniformly better than the plug-in method in that it always yields higher expected

utility no matter what the true parameter values are. This provides both direct and indirect

theoretical support for a number of recent studies, such as Kandel and Stambaugh (1996),

Barberis (2000), Pástor (2000), Pástor and Stambaugh (2000), Xia (2001), Tu and Zhou

(2004), and Kacperczyk (2004) that use the Bayesian predictive approach to account for

parameter uncertainty. Nevertheless, it is possible to estimate the parameters optimally in

such a way as to yield a decision rule that is uniformly better than the Bayesian approach

(under a diffuse prior), as we will show.
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While there exist alternative ways in dealing with parameter uncertainty,1 our study

focuses on the well-defined and yet unsolved problem in the classical mean-variance frame-

work: how should a mean-variance investor optimally estimate the portfolio weights given

the return data? Although the mean-variance framework is a simple model, it allows us to

obtain analytical results that provide insights into solving portfolio choice problems in more

general models.

In this paper, we first study, in the presence of parameter uncertainty, how to optimally

estimate the portfolio weights if the investor invests only in the usual two-funds: the riskless

asset and the sample tangency portfolio. Although TerHorst, DeRoon, and Werkerzx (2002)

analyze a similar problem, their study assumes a known covariance matrix. In contrast,

we allow for the more realistic case in which both asset mean and covariance are unknown.

Under the standard assumption of normality on the asset returns, we obtain a simple closed-

form formula for the optimal weights in the two-fund universe. Because both the plug-

in and Bayesian approaches are two-fund portfolios, they are dominated by our proposed

optimal portfolio. In particular, we find that a simplified form of the optimal portfolio, whose

construction does not rely on any unknown parameters, always yields greater expected utility

than both the plug-in and Bayesian approaches (under a diffuse prior) no matter what the

true parameter values.

The second problem we study is whether a three-fund portfolio can improve the expected

utility even further. If the true parameters are known, as assumed in theory, then the two-

fund separation holds and there is no point of analyzing a three-fund portfolio. However,

when the parameters are unknown, the tangency portfolio is obtained with estimation error.

Intuitively, additional portfolios could be useful if they provide diversification of the esti-

mation risk. Indeed, we show that the optimal portfolio weights can be solved analytically

in a three-fund universe that consists of the riskless asset, the sample tangency portfolio,

and the sample global minimum-variance portfolio. Therefore, a three-fund portfolio rule

can dominate all the previous two-fund rules. This finding has powerful implications. It

1For examples, Garlappi, Uppal, and Wang (2004) and Lutgens (2004) study robust portfolio rule that
maximizes the worst case performance for a model with parameters that fall within a particular confidence
interval. Harvey, Liechty, Liechty, and Müller (2004) study optimal portfolio problem under a Bayesian
setting when the returns follow a skew-normal distribution.
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says that the recommendation of a theoretical result, like holding a two-fund portfolio here,

can be altered completely in the presence of parameter uncertainty, to holding a three-fund

(perhaps even more) portfolio.

To better estimate the expected returns, Jorion (1986) provides an interesting Bayes-

Stein shrinkage estimator, and shows by simulation that the resulting portfolio rule can often

generate higher expected utility in repeated samples than the Bayesian approach (under a

diffuse prior). We provide a comparison of Jorion’s rule with our optimal three-fund rule

and show that Jorion’s rule is effectively also a three-fund portfolio rule. As both Jorion’s

rule and our optimal three-fund rule are not analytically tractable, we use simulations to

compare their performance. We find that Jorion’s rule is better than the Bayesian approach

under a diffuse prior, and that our optimal three-fund rule outperforms even Jorion’s rule.

In another attempt to provide better estimates of expected returns, MacKinlay and

Pástor (2000) makes an assumption on the covariance matrix based on the link between

expected return and covariance matrix under factor based models. With the use of this

special covariance matrix, they show that the resulting estimated tangency portfolio can

perform much better than the traditional sample tangency portfolio that are based on the

unrestricted estimates. However, the link imposes non-trivial nonlinear restrictions in esti-

mating the expected returns, and hence the associated estimation problem has to be solved

numerically. In this paper, we provide a simple analytical solution to the maximum like-

lihood estimation problem, which allows us to perform a large scale simulation study on

the MacKinlay and Pástor portfolio rule. We show that their portfolio rule has excellent

performance when the one-factor model holds reasonably well for the expected returns of

the assets. However, when the one-factor model does not provide a good approximation of

the expected returns, then our optimal three-fund rule significantly outperforms MacKinlay

and Pástor (2000) rule.

The remainder of the paper is organized as follows. Section 2 provides the optimal de-

cision rule when the investment universe is only the riskless asset and the sample tangency

portfolio. Section 3 solves the optimal portfolio rule when the investment universe is enlarged

by adding the sample global minimum-variance portfolio. Section 4 analyzes the shrinkage

estimators. Section 5 analyzes the portfolio rule of MacKinlay and Pástor (2000) and Sec-
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tion 6 compares the performance of all the portfolio rules with parameters calibrated from

real data, and Section 7 concludes.

2. Two-fund portfolio rules

In this section, we first discuss the mean-variance portfolio problem in the presence of

estimation risk. Then, we analyze the classical plug-in methods for estimating the optimal

portfolio weights of the mean-variance theory, review the Bayesian predictive solution and

compare it with the classical plug-in estimates. Finally, we provide our optimal portfolio

rule when the investor is concerned with investing in the universe of the riskless asset and

the sample tangency portfolio.

2.1. The problem

Consider the standard portfolio choice problem of an investor who chooses a portfolio

in the universe of N risky assets and a riskless asset. Denote by rft and rt the rates of

returns on the riskless asset and N risky assets at time t, respectively. We define excess

returns as Rt ≡ rt − rft1N , where 1N is an N -vector of ones. The standard assumption on

the probability distribution of Rt is that Rt is independent and identically distributed over

time. In addition, we assume Rt follows a multivariate normal distribution with mean µ and

covariance matrix Σ.

Given portfolio weights w, an N × 1 vector, on the risky assets, the excess return on the

portfolio at time t is Rpt = w′Rt. The investor is assumed to choose w so as to maximize

the mean-variance objective function

U(w) = E[Rpt]−
τ

2
Var[Rpt] = w′µ− τ

2
w′Σw, (1)

where τ is the coefficient of relative risk aversion. When µ and Σ are known, the solution to

the investor’s optimal portfolio choice problem is

w∗ =
1

τ
Σ−1µ, (2)

and the resulting utility is

U(w∗) =
1

2τ
µ′Σ−1µ =

θ2

2τ
, (3)
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where θ2 = µ′Σ−1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the

risky assets. Given the relative risk aversion parameter τ , this is the maximum utility that

the investor can obtain when the portfolio weights w∗ are computed based on the true

parameters.

In practice, w∗ is not computable because µ and Σ are unknown. To implement the

mean-variance theory of Markowitz (1952), the optimal portfolio weights are usually chosen

by a two-step procedure. Suppose an investor has T periods of observed returns data ΦT =

{R1, R2, · · · , RT} and would like to form a portfolio for period T + 1. First, the mean and

covariance matrix of the asset returns are estimated based on the observed data. Second,

these sample estimates are then treated as if they were the true parameters, and are simply

plugged into (2) to compute the optimal portfolio weights. We call such a portfolio rule the

plug-in rule. More generally, a portfolio rule is defined as a function of the historical returns

data ΦT ,

ŵ = f(R1, R2, · · · , RT ). (4)

Intuitively, the investor who uses ŵ should be worse off than the investor who knows the

true parameters. How do we assess the utility loss from using a given portfolio rule? Based

on standard statistical decision theory, we define the loss function of using ŵ as

L(w∗, ŵ) = U(w∗)− U(ŵ). (5)

As ŵ is not equal to w∗ in general, the utility loss is strictly positive. However, ŵ is a

function of ΦT , so the loss depends on the realizations of the historical returns data. It is

important for decision purposes to consider the average losses involving actions taken under

the various outcomes of ΦT . The expected loss function is called the risk function and it is

defined as

ρ(w∗, ŵ) = E[L(w∗, ŵ)] = U(w∗)− E[U(ŵ)], (6)

where the expectation is taken with respect to the true distribution of ΦT . Thus, for a given

µ and Σ (or a given w∗), ρ(w∗, ŵ) represents the expected loss over ΦT that is incurred in

using the portfolio rule ŵ.

The risk function provides a criterion for ranking various portfolio rules and the rule that

has the lowest risk is the most preferred. Brown (1976), Jorion (1986), Frost and Savarino
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(1986), Stambaugh (1997), and TerHorst, DeRoon, and Werkerzx (2002) are examples of

using ρ(w∗, ŵ) to evaluate portfolio rules. Instead of ranking portfolio rules using the risk

function ρ(w∗, ŵ), we can equivalently rank them by their expected utility E[U(ŵ)]. Note

that E[U(ŵ)] is the expected utility under the true distribution of returns across repeated

random samples of ΦT . It should not be confused with the expected utility based on the true

distribution or the predictive distribution. E[U(ŵ)] is in fact the average of the utility where

the average is taken over all possible realizations of ΦT . So, E[U(ŵ)] is the utility an investor

can achieve on average under parameter uncertainty when he follows the portfolio rule ŵ.

This is an objective criterion for evaluating two competing portfolio choice rules. In general,

one portfolio rule will generate higher expected utility than another over certain parameter

values of (µ,Σ), but lower over some other values. In this case, the two portfolio rules

do not uniformly dominate each other, and which one is preferable depends on the actual

values of µ and Σ. However, some portfolio rules are inadmissible in the sense that there

exists another portfolio rule that generates higher expected utility for every possible choice

of (µ,Σ). Clearly, inadmissible portfolio rules should be eliminated from consideration.

In the jargon of statistical decision theory (see, e.g., Berger (1985) and Lehmann and

Casella (1998)), our paper takes a frequentist approach, not a Bayesian one, in evaluating

portfolio rules. The standard Bayesian optimal portfolio is constructed to maximize the

expected utility based on the predictive distribution of RT+1 conditional on the historical

returns ΦT . By design, any other rules, including the rule based on the true parameters

of the model, are suboptimal in maximizing the utility based on the predictive distribution

obtained from a given prior. Therefore, to compare Bayesian portfolio rules under various

priors and to compare them with the rules obtained under the classical framework, the risk

function is a useful objective criterion. It answers the question of how various rules perform

in repeated samples as compared with the case when the true parameters are assumed to be

known.

2.2. Understanding estimation risk

Under the assumption that Rt is i.i.d. normal, the sample mean and covariance matrix
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µ̂ and Σ̂, defined as

µ̂ =
1

T

T∑
t=1

Rt, (7)

Σ̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′, (8)

are the sufficient statistics of the historical returns data ΦT . Therefore, we only need to

consider portfolio rules that are functions of µ̂ and Σ̂.

The standard plug-in portfolio rule is to replace µ and Σ in (2) by µ̂ and Σ̂ and the

estimated portfolio weights using the plug-in rule are

ŵ =
1

τ
Σ̂−1µ̂. (9)

Statistically, µ̂ and Σ̂ are the maximum likelihood estimators of µ and Σ, so ŵ is also

a maximum likelihood estimator of w∗ = Σ−1µ/τ . Therefore, asymptotically, ŵ is the

most efficient estimator of the unknown parameter vector w∗. In statistics, the maximum

likelihood estimator is usually regarded as a very good estimator. However, as will be shown

below, this estimator of w∗ is not optimal in terms of maximizing the expected utility.

It is interesting to compare the standard plug-in estimator ŵ given by (9) with the

unknown but true optimal weights w∗. Under the normality assumption, it is well-known

that µ̂ and Σ̂ are independent of each other and they have the following exact distributions

µ̂ ∼ N(µ,Σ/T ), (10)

Σ̂ ∼ WN(T − 1,Σ)/T, (11)

where WN(T − 1,Σ) denotes a Wishart distribution with T − 1 degrees of freedom and

covariance matrix Σ. Since E[Σ̂−1] = TΣ−1/(T −N − 2) (see, e.g., Muirhead, 1982, p. 97),

we have

E[ŵ] =
T

T −N − 2
w∗, (12)

when T > N + 2. This implies that |ŵi| > |w∗
i |, so investors who do not know the true

parameters and estimate them by using (9) tend to take bigger positions in the risky assets

than those who know the true parameters.
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To understand the estimation risk from parameter uncertainties in µ and Σ, we analyze

the use of ŵ in three cases. The first case is a hypothetical one in which Σ is known and µ

is estimated. By fixing a value of Σ, this allows us to understand the cost from estimating

µ alone. The second case is also a hypothetical one in which µ is known and Σ is estimated,

allowing us to understand the cost from estimating Σ alone. The third case is the realistic

one in which neither Σ nor µ is known.

The first case is analytically the easiest among the three. When Σ is known, the portfolio

rule is ŵ = Σ−1µ̂/τ , so the estimation error in ŵ is only due to using µ̂ instead of µ. Since

µ̂′Σ−1µ̂ ∼ χ2
N(Tµ′Σ−1µ)/T , we have

E[U(ŵ) |Σ] = E[ŵ]′µ− τ

2
E[ŵ′Σŵ]

=
1

τ
µ′Σ−1µ− 1

2τ
E[µ̂′Σ−1µ̂]

=
1

τ
µ′Σ−1µ− 1

2τ

(
N + Tµ′Σ−1µ

T

)
=

θ2

2τ
− N

2τT
. (13)

As a result, the expected utility loss from using ŵ rather than w∗ is

ρ(w∗, ŵ|Σ) ≡ U(w∗)− E[U(ŵ)|Σ] =
N

2τT
, (14)

which means that the investor expects to lose a utility of N/(2τT ) on average. Intuitively,

as the sample size increases, µ̂ becomes a more accurate estimator of µ, so the loss decreases.

In the extreme case where T →∞, the true parameters are learned, so the loss is zero. On

the other hand, the greater the number of assets, the greater the number of elements of µ

that must be estimated, the more the errors in estimating the tangency portfolio, so the

greater the loss. Finally, the more risk averse the investor (the higher τ), the less he invests

in the risky assets, so the smaller the impact of the estimation risk.

There are two points worth noting. First, E[U(ŵ)|Σ] can be negative when θ2 <

N/T . Because non-participation in the risky assets yields zero utility, the negative value

of E[U(ŵ)|Σ] suggests that sometimes the investor is better off not investing in the risky

assets. Intuitively, when θ2 is small or N/T is large, the risk in estimating the parameters

outweighs the gain from investing in the risky assets. However, it should be emphasized that
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the non-participation result assumes the investor uses the above plug-in method to estimate

the optimal portfolio weights. There may exist an alternative portfolio rule that always yields

positive expected utility with participation in the risky assets. Second, the case of known

Σ is similar to a continuous-time set-up, such as Xia’s (2001), where the variance is known

because it can be learned without error from continuous observations. However, the drift

of a diffusion process depends only on the initial and ending observations and is estimated

with error. Equation (14) highlights analytically the impact of the number of assets relative

to the length of estimation period on the expected utility loss in discrete time.

To see how uncertainty about Σ alone affects expected utility, consider now the second

case where µ is known while Σ is estimated. The optimal weights are now ŵ = Σ̂−1µ/τ . Let

W = Σ− 1
2 Σ̂Σ− 1

2 ∼ WN(T − 1, IN)/T . The inverse moments of W are (see, e.g., Haff (1979))

E[W−1] =

(
T

T −N − 2

)
IN , (15)

E[W−2] =

[
T 2(T − 2)

(T −N − 1)(T −N − 2)(T −N − 4)

]
IN . (16)

Using these results and assuming T > N + 4, the expected utility is

E[U(ŵ)|µ] =
1

τ
E[µ′Σ̂−1µ]− 1

2τ
E[µ′Σ̂−1ΣΣ̂−1µ]

=
1

τ
E[µ′Σ− 1

2W−1Σ− 1
2µ]− 1

2τ
E[µ′Σ− 1

2W−2Σ− 1
2µ]

= k1
θ2

2τ
, (17)

where

k1 =

(
T

T −N − 2

)[
2− T (T − 2)

(T −N − 1)(T −N − 4)

]
. (18)

Note that 1− k1 is the percentage loss of the expected utility due to the estimation error of

Σ̂. It is straightforward to verify that k1 < 1 and it is a decreasing function of N and an

increasing function of T . Therefore, similarly to the earlier case where only µ was unknown,

the estimation error of Σ̂ (and hence the expected utility loss) also increases with the number

of assets and decreases with the length of the time series.

Compared with the previous case, the investor will still sometimes avoid investing in

the risky assets if he uses the portfolio rule ŵ = Σ̂−1µ/τ because k1 can be negative for N
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large relative to T . However, the cost of not knowing µ (assuming Σ is known) affects the

expected utility only by a fixed amount of N/(2τT ), irrespectively of the magnitude of the

true parameters. In contrast, not knowing Σ (assuming µ is known) reduces the expected

utility by a constant proportional amount that depends on the squared Sharpe ratio of the

tangency portfolio.

Finally, consider the realistic case where both µ and Σ are unknown and have to be

estimated from the data. Suppose the estimated optimal weights, ŵ, are now given by (9).

Using the inverse moment properties of the Wishart distribution and the fact that µ̂ and Σ̂

are independent, we have

E[U(ŵ)] =
1

τ
E[µ̂′Σ̂−1µ]− 1

2τ
E[µ̂′Σ̂−1ΣΣ̂−1µ̂]

=
1

τ
E[µ̂′Σ− 1

2W−1Σ− 1
2µ]− 1

2τ
E[µ̂′Σ− 1

2W−2Σ− 1
2 µ̂]

= k1
θ2

2τ
− NT (T − 2)

2τ(T −N − 1)(T −N − 2)(T −N − 4)
, (19)

assuming T > N + 4. Hence, the expected utility loss is

ρ(w∗, ŵ) = (1− k1)
θ2

2τ
+

NT (T − 2)

2τ(T −N − 1)(T −N − 2)(T −N − 4)
. (20)

This formula explicitly relates the expected utility loss to N , T , τ , and θ2. The qualitative

properties are the same as before. As N or θ2 increases, the loss increases, and as T or τ

increases, the loss decreases. Note that the second term of ρ(w∗, ŵ) is always greater than

ρ(w∗, ŵ|Σ), so the effects of estimation errors of µ̂ and Σ̂ on the utility loss are not additive

because ŵ is a multiplicative function of Σ̂−1 and µ̂. When Σ̂−1 is used instead of Σ−1 in

constructing ŵ, the estimation error of µ̂ is further magnified, which results in the investor

taking larger positions in the risky assets.

Note that in past studies of portfolio rules under estimation risk, the expected utility

or the risk function of the plug-in portfolio rule is obtained by simulation.2 In contrast, we

provide here an analytical expression. The advantage of the analytical solution is that it

allows us not only to provide insights about how to obtain better portfolio rules, but also to

2One exception is Brown (1978) who provides an infinite series summation formula for the expected utility
in the one risky asset case.
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address a number of important issues such as the impact of the error from estimating the

covariance matrix of the returns on the expected utility.

There is a general perception that estimation error in expected returns is far more costly

than estimation error in the covariance matrix. Indeed, many existing studies of portfolio

rules under estimation risk treat the estimation error in the covariance matrix as a second-

order effect and focus exclusively on the impact of the estimation error in the expected

returns by taking covariance matrix as known. Some simulation studies appear to provide

evidence to justify this perception. For example, Chopra and Ziemba (1993) estimate the

loss of expected utility from the estimation error of the means and find that it is much higher

than the loss that is due to estimation error of the covariances. However, with the aid of

our analytical formula for the expected utility, we show that the general perception can be

incorrect.

Table 1 reports the expected percentage loss of utility due to estimation errors in µ̂, in Σ̂,

and in both µ̂ and Σ̂, for various values of N and T . Panel A presents the results for θ = 0.2

and Panel B presents the results for θ = 0.4. The expected percentage loss is not a function

of the risk aversion coefficient, so the results in Table 1 are applicable for all values of τ .

The first column presents the percentage loss of expected utility due to estimation error in

µ̂ alone, i.e., 100(1 − E[U(ŵ)|Σ]/U(w∗)). The second column presents the percentage loss

of expected utility due to estimation error in Σ̂ alone, i.e., 100(1− E[U(ŵ)|µ]/U(w∗)). The

fourth column presents the percentage loss of expected utility due to estimation errors in

both µ̂ and Σ̂, i.e., 100(1−E[U(ŵ)]/U(w∗)). Since the effects of estimation errors in µ̂ and

Σ̂ are not additive, the third column reports the interactive effect of estimation errors in µ̂

and Σ̂, whose summation with the first two columns is equal to the fourth column.

Table 1 about here

Assuming θ = 0.2, Panel A shows that when N/T is small, the estimation error in µ̂

indeed accounts for most of the utility loss, often more than ten times the utility loss from

the estimation error in Σ̂. However, when N/T is large, the utility loss due to the estimation

error in Σ̂ is no longer negligible. More importantly, there is a very significant interactive

effect between the estimation errors in µ̂ and Σ̂. For example, when N = 10 and T = 60,
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the interactive effect is almost as large as that from estimating µ. Clearly, ignoring the

estimation error in Σ̂ will grossly underestimate the utility loss due to estimation error when

N/T is large. Panel B presents the corresponding results for θ = 0.4. With the increase

in θ, there are two main differences in the results. First, the percentage loss of expected

utility due to the estimation error in µ̂ alone is smaller, while the percentage loss of expected

utility due to the estimation error in Σ̂ alone is independent of θ. As a result, the estimation

error in Σ̂ is relatively more important than before. Second, the percentage loss in expected

utility due to the interactive effect also goes down with the increase in θ, so as a whole, the

percentage loss in expected utility due to both estimation errors in µ̂ and Σ̂ is a decreasing

function of θ2. Other than these two differences, the general pattern is the same: when N/T

is small, the estimation error in µ̂ is more costly than the estimation error in Σ̂; however,

when N/T is large, the estimation error in Σ̂ becomes larger and sometimes can be more

costly than the estimation error in µ̂. The results in Table 1 suggest that we should not

ignore the estimation error in Σ̂, especially when the ratio N/T is large.

2.3. Three classic plug-in rules

Besides the preceding standard plug-in estimate of the optimal portfolio weights that

plugs the maximum likelihood estimator of µ and Σ into the optimal portfolio formula (2) to

get the estimated portfolio rule (9), alternative estimates of Σ can be used to obtain different

plug-in rules. Two other common estimators of Σ are sometimes used. It is of interest that

they in fact can yield higher expected utility than using ŵ.

The second plug-in approach is to estimate Σ by using an unbiased estimator,

Σ̄ =
1

T − 1

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′ =
T

T − 1
Σ̂. (21)

Since Σ̄ is slightly greater than Σ̂, the resulting optimal portfolio weights invest less aggres-

sively in the risky assets than does ŵ:

w̄ ≡ 1

τ
Σ̄−1µ̂ =

1

τ

(
T − 1

T

)
Σ̂−1µ̂ =

(
T − 1

T

)
ŵ. (22)

However, because E[w̄] = T−1
T−N−2

w∗, such a portfolio rule still involves taking larger positions

in the risky assets relative to the true optimal portfolio. Assuming T > N + 4, the expected

12



utility associated with portfolio rule w̄ is

E[U(w̄)] = k2
θ2

2τ
− N(T − 1)2(T − 2)

2τT (T −N − 1)(T −N − 2)(T −N − 4)
, (23)

where

k2 =

(
T − 1

T −N − 2

)[
2− (T − 1)(T − 2)

(T −N − 1)(T −N − 4)

]
. (24)

Based on this expression, it can then be verified that E[U(w̄)] is greater than E[U(ŵ)], so

w̄ is a better choice than ŵ.

The third plug-in approach is to estimate Σ with

Σ̃ =
1

T −N − 2

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′ =
T

T −N − 2
Σ̂. (25)

Then, the plug-in estimator for the optimal portfolio weights is

w̃ ≡ 1

τ
Σ̃−1µ̂ =

T −N − 2

T
ŵ. (26)

Although Σ̃ is not an unbiased estimator of Σ, Σ̃−1 is an unbiased estimator of Σ−1, so w̃

is an unbiased estimator of w∗, i.e., E[w̃] = w∗. Hence, over repeated samples, the investor

who uses w̃ will on average invest the same amount of money in the risky assets as he would

invest in the true optimal portfolio. Assuming T > N + 4,

E[U(w̃)] = k3
θ2

2τ
− N(T − 2)(T −N − 2)

2τT (T −N − 1)(T −N − 4)
, (27)

where

k3 = 2− (T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
. (28)

It is straightforward to verify that E[U(w̃)] is greater than E[U(w̄)], so the portfolio rule w̃

is better than w̄, and hence is also better than ŵ.

In summary, we have evaluated the expected utilities of three classic plug-in estimators,

ŵ, w̄, and w̃, of the optimal portfolio weights w∗. Interestingly, it is w̃, the unbiased estimator

of the unknown optimal portfolio weights, achieves the highest expected utility, while the

maximum likelihood estimate yields the lowest.

2.4. Bayesian solution
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While the plug-in method ignores the estimation risk, the Bayesian approach based on the

predictive distributions pioneered by Zellner and Chetty (1965) provides a general framework

that integrates estimation risk into the analysis. Under the classical framework, the utility

U(ŵ) is evaluated conditional on the true parameter w∗ being equal to ŵ and uncertainty

about the goodness of this conditioning is completely ignored. In contrast, w∗ is regarded

as a random vector in the Bayesian framework. Given a standard diffuse (non-informative)

prior on the distribution of µ and Σ, uncertainty about the parameters is summarized by

the posterior distribution of the parameters given the data. Integrating out the parameters

over this distribution gives the so-called predictive distribution for future asset returns.

The optimal portfolio is obtained by maximizing the expected utility under the predictive

distribution, i.e.,

ŵBayes = argmaxw

∫
RT+1

U(w)p(RT+1|ΦT ) dRT+1

= argmaxw

∫
RT+1

∫
µ

∫
Σ

U(w)p(RT+1, µ,Σ|ΦT ) dµdΣdRT+1, (29)

where U(w) is the utility of holding a portfolio w at time T +1, p(RT+1|ΦT ) is the predictive

density, and

p(RT+1, µ,Σ|ΦT ) = p(RT+1|µ,Σ,ΦT )p(µ,Σ|ΦT ), (30)

where p(µ,Σ|ΦT ) is the posterior density of µ and Σ. Thus the Bayesian approach maximizes

the average expected utility over the distribution of the parameters.

Unless otherwise stated, all references to the Bayesian portfolio rule in the rest of the

paper assume a diffuse prior. Brown (1976), Klein and Bawa (1976), and Stambaugh (1997)

show under the assumption of a standard diffuse prior on µ and Σ,

p0(µ,Σ) ∝ |Σ|−
N+1

2 , (31)

the predictive distribution of the asset returns follows a multivariate t-distribution. It can

be shown that the Bayesian solution to the optimal portfolio weights has the same formula

as for w∗ except that now the parameters have to be replaced by their predictive moments,

yielding

ŵBayes =
1

τ

(
T −N − 2

T + 1

)
Σ̂−1µ̂. (32)
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The Bayesian weights differ from the unbiased estimator w̃ only by a factor of T/(T +1). In

terms of optimal portfolio, the Bayesian solution also suggests a two-fund separation result:

investing only in the riskless asset and the sample tangency portfolio. However, since

E[ŵBayes] =

(
T

T + 1

)
w∗, (33)

the Bayesian solution is more conservative than the case where the true parameters are known

because it suggests taking smaller positions in the risky assets. Intuitively, the Bayesian

approach recognizes the estimation risk explicitly, and hence the risky assets become riskier,

while the riskless rate is known for sure. So, all else equal, the riskless asset becomes more

attractive and hence the Bayesian investor invests more in it.

Will the Bayesian portfolio rule outperform the classical plug-in methods in repeated

samples? Intuitively, this should be the case because the Bayesian portfolio rule incorporates

parameter uncertainty into decision-making while the plug-in methods simply ignore it.

Simulations by Brown (1976) and Stambaugh (1997) suggest that the Bayesian portfolio

rule often outperforms the plug-in method. We provide an analytical proof here to show

that the Bayesian portfolio rule always dominates the classical plug-in method. Using the

same technique for evaluating E[U(ŵ)],

E[U(ŵBayes)] = k4
θ2

2τ
− NT (T − 2)(T −N − 2)

2τ(T + 1)2(T −N − 1)(T −N − 4)
, (34)

where T > N + 4 and

k4 =

(
T

T + 1

)[
2− T (T − 2)(T −N − 2)

(T + 1)(T −N − 1)(T −N − 4)

]
. (35)

Therefore,

E[U(ŵBayes)]− E[U(w̃)] = (k4 − k3)
θ2

2τ
+

N(T − 2)(T −N − 2)(2T + 1)

2τT (T + 1)2(T −N − 1)(T −N − 4)
. (36)

It is easy to see that whenever T > N + 4,

k4 − k3 =
(T 2 + 6T − 4) +N [2T (T −N)− 3T − 2(N + 4)]

(T + 1)2(T −N − 1)(T −N − 4)
> 0 (37)

because 2T (T −N) > 8T > 3T + 2(N + 4). Hence, the explicit expressions for E[U(ŵBayes)]

and E[U(w̃)] show analytically that the Bayesian portfolio rule always strictly outperforms
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the earlier classical plug-in methods by yielding higher expected utility in repeated samples,

regardless of the values of the true parameters. Therefore, the three classical plug-in portfolio

rules are inadmissible and they should be replaced by better portfolio rules.

The uniform dominance result suggests that investors are better off using the Bayesian

portfolio rule than the classical plug-in rules. It turns out that the Bayesian portfolio rule is

still inadmissible because there exists a portfolio rule that uniformly dominates the Bayesian

portfolio rule. As shown below, we will obtain such a two-fund rule in closed-form based on

our techniques used earlier for evaluating expected utilities.

In a Bayesian framework, informative priors other than the diffuse one may be used.

Although there may be countless ways of doing so in principle, it is not an easy matter to

construct useful informative priors in practice. For examples, Pástor (2000) and Pástor and

Stambaugh (2000) provide interesting priors that incorporate certain beliefs on the usefulness

of the CAPM and study their impacts on asset allocation decisions. While understanding

how predictive moments are impacted by informative priors is interesting, it is difficult to

obtain analytical solution of the risk function for such portfolio rules. To limit the scope

of this paper, we will in what follows focus on the diffuse prior only, leaving the study of

informative Bayesian portfolio rules for future research.

2.5. Optimal two-fund rule

Theoretically, the estimator of w∗ can be any function of the sufficient statistics µ̂ and

Σ̂, i.e.,

ŵ = f(µ̂, Σ̂). (38)

The economic question of interest to the investor is to find a such a function f(µ̂, Σ̂) so

that the expected utility is maximized. This function can potentially be a very complex

nonlinear function of µ̂ and Σ̂, and there can potentially be infinitely many ways to construct

it. However, it is not an easy matter to determine the optimal f(µ̂, Σ̂), so we first limit our

attention to a special class of portfolio rules that hold just the riskless asset and the sample

tangency portfolio.

Both the earlier plug-in and the Bayesian rules suggest holding the riskless asset and the
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sample tangency portfolio. However, in terms of maximizing expected utility, the weights

on the sample tangency portfolio chosen by both the plug-in rule and the Bayesian rule are

not necessarily optimal. Indeed, consider the class of two-fund portfolio rules which have

weights

ŵ =
c

τ
Σ̂−1µ̂, (39)

where c is a constant scalar. For example, the first plug-in and the Bayesian rules specify

c1 = 1 and c2 = (T −N − 2)/(T + 1), respectively. Using a similar derivation as before, the

expected utility of this class of portfolio rules is

E[U(cΣ̂−1µ̂/τ)] =
cθ2

τ

(
T

T −N − 2

)
− c2

2τ

(
θ2 +

N

T

)[
T 2(T − 2)

(T −N − 1)(T −N − 2)(T −N − 4)

]
, (40)

assuming T > N + 4. Differentiating with respect to c, the optimal c is

c∗ =

[
(T −N − 1)(T −N − 4)

T (T − 2)

](
θ2

θ2 + N
T

)
, (41)

which is a product of two terms. If Σ is known, then c∗ will consist only of the second term,

which thus accounts for the estimation error in µ̂. Similarly, the first term of c∗ accounts for

the estimation error in Σ̂. Clearly, both terms are less than one. The value of the second

term depends on the relative magnitude of θ2 and N/T , while the value of the first term

depends on the relative magnitude of N and T , but not θ2.

Expected utility under the optimal choice of ŵ∗ = c∗Σ̂−1µ̂/τ is

E[U(ŵ∗)] =
θ2

2τ

[
(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

](
θ2

θ2 + N
T

)
, (42)

which is, of course, higher than the expected utility under both the classical plug-in and the

Bayesian rules. Compared to the case of no uncertainty,

E[U(ŵ∗)]

U(w∗)
=

[
(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

](
θ2

θ2 + N
T

)
< 1, (43)

which is a decreasing function of N and an increasing function of T and θ2. As a result, the

percentage loss of expected utility increases with the number of assets but decreases with

both the length of the time series and the squared Sharpe ratio of the tangency portfolio.
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Although c∗ is optimal, there does not exist a feasible portfolio rule using c∗ since θ is

unknown in practice. Nevertheless, c∗ provides important insights into the optimal decision.

In particular, it can yield a simple decision rule that dominates the Bayesian rule. Consider

the following rule, which is optimal when θ2 →∞:

ŵ∗ =
c3
τ

Σ̂−1µ̂, c3 =
(T −N − 1)(T −N − 4)

T (T − 2)
. (44)

This rule suggests investing ŵ∗ in the risky assets and 1 − 1′N ŵ∗ in the riskless asset. Like

the Bayesian rule, it is parameter independent (i.e., it only depends on N and T but not

on µ and Σ). However, it dominates the Bayesian rule not only when θ approaches infinity,

but also for all possible parameter values. The reason is that f(c) ≡ E[U(cΣ̂−1µ̂/τ)] in (40)

is a quadratic function of c, so the expected utility is a decreasing function of c for c ≥ c∗.

Therefore, to show dominance, it suffices to show that c2 > c3 > c∗. Indeed, when T > N+4,

c2 =
T −N − 2

T + 1
>
T −N − 4

T
>

(
T −N − 4

T

)(
T −N − 1

T − 2

)
= c3, (45)

and c3 > c∗ obviously. Thus, regardless of the value of θ2, the expected utility is always

greater for ŵ∗ than that under the Bayesian portfolio rule. The expected utility of w∗ can

be computed explicitly by (40) with c = c3.

The portfolio rule ŵ∗ can be viewed as a plug-in estimator that estimates Σ by using

Σ̂∗ ≡ Σ̂/c3. Incidentally, Haff (1979, Theorem 7) shows that when estimating Σ−1, Σ̂−1
∗

dominates all the estimators that are of the form cΣ̂−1, when the loss function is defined

as tr(cΣ̂−1Σ − IN)2. Although effectively the same estimator of Σ−1 is obtained here, our

motivation and the loss function are quite different from Haff’s.

The optimal scalar c∗ provides an additional insight on improving upon using c3. Without

information about the value of θ2, c3 represents the best choice of c that maximizes the

expected utility. However, if a priori θ2 ≤ θ̄2, but the exact value of θ2 is not known, then

c̄ = c3

(
θ̄2

θ̄2 + N
T

)
(46)

is a better choice of c because the expected utility f(c) is a decreasing function of c when

c ≥ c∗. Since c∗ < c̄ < c3, it follows that f(c∗) > f(c̄) > f(c3). If at the monthly frequency it

seems reasonable to believe that θ2 ≤ 1, then c̄ = c3T/(T+N) gives a higher expected utility.
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However, this choice requires bounding the Sharpe ratio, so it is not parameter independent,

and its performance depends on how the true Sharpe ratio deviates from θ̄. Hence, to avoid

ambiguous choices of θ̄, this type of rule will not be studied in the rest of the paper.

To illustrate the magnitude of the expected utility loss due to estimation risk for various

two-fund rules, we present two numerical examples. In the first one, we assume an investor

with a risk aversion coefficient of τ = 3 chooses a portfolio out of N = 10 risky assets and

a riskless asset. Assume further that the Sharpe ratio of the ex ante tangency portfolio is

θ = 0.2. Figure 1 plots the expected utilities (in percentage monthly return) of the investor

under various two-fund rules for different lengths of estimation window. If the investor

knows µ and Σ, he will hold w∗ for the risky assets to achieve a certainty equivalent utility

of 0.667%/month (dashed line). If the investor just knows θ, then he will hold the ex post

tangency portfolio using the optimal weight ŵ∗ = c∗Σ̂−1µ̂/τ and his utility is indicated by

the solid line. In comparison with using w∗, there is some expected utility loss from using

ŵ∗. Nevertheless, the expected utility is still positive, implying that it makes the investor

better off than holding the riskless asset alone. However, this is no longer the case if the

investor does not know θ, and if the investor holds the portfolio ŵ∗ that does not depend

on the value of θ. Although this rule is better than the three classic plug-in rules and the

Bayesian rule, it results in significant losses in expected utility as indicated by the dotted

line, especially when T is small. In fact, an estimation window of at least T = 250 months is

needed before such a portfolio rule dominates the riskless asset. Finally, the dashed-dotted

line shows the expected utility for the standard plug-in portfolio rule ŵ = Σ̂−1µ̂/τ . In this

case, an estimation window of at least T = 296 months is needed before this rule outperforms

the riskless asset.

Figure 1 about here

In the second example, we make the same assumptions as in the first example except

that there are now N = 25 risky assets, and the Sharpe ratio is assumed to be 0.3 instead

of 0.2 due to the increase in the number of risky assets. Figure 2 plots the expected utilities

of the investor under the four two-fund rules. For w∗ and ŵ∗, the increase in the Sharpe

ratio results in higher expected utilities for the investor. However, this is not necessarily true
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when there is parameter uncertainty and when ŵ∗ and ŵ are used as the estimated portfolio

weights. Indeed, by comparing the numbers in Figures 1 and 2, we can see that increasing

the number of assets can in fact lead to a decrease in the expected utility, especially when

T is small.

Figure 2 about here

These two examples illustrate that while ŵ∗ improves over ŵ, it is still a mediocre portfolio

rule because it delivers negative expected utility when the parameters are estimated with

fewer than 20 years of monthly data. While ŵ∗ seems a much better rule, it is not feasible as

it depends on the unknown parameter θ2. Therefore, it is important to find a good estimate

of θ2 that will allow the implementation of an approximate optimal two-fund rule. A natural

estimator of θ2 is its sample counterpart,

θ̂2 = µ̂′Σ̂−1µ̂. (47)

However, θ̂2 can be a heavily biased estimator of θ2 when T is small. In the Appendix, we

show that θ̂2 has the following distribution:

θ̂2 ∼
(

N

T −N

)
FN,T−N(Tθ2), (48)

where FN,T−N(Tθ2) is a noncentral F distribution with N and T − N degrees of freedom,

and a noncentrality parameter of Tθ2. Because of this, the unbiased estimator of θ2 is

θ̂2
u =

(T −N − 2)θ̂2 −N

T
. (49)

However, this estimator can take negative value so it is also undesirable as an estimator of

θ2.

Note that the problem of estimating θ2 using θ̂2 is equivalent to the problem of estimating

the noncentrality parameter of a noncentral F -distribution using a single observation. This

problem has been studied by a number of researchers in statistics. For example, Rukhin

(1993) and Kubokawa, Robert, and Saleh (1993) both propose estimators that are superior to

the unbiased estimator of θ under the quadratic loss function, whereas Fourdrinier, Philippe,

20



and Robert (2000) and Chen and Kan (2004) provide superior estimators under Stein’s

type loss function. For our application, we use an adjusted estimator of θ2 that is due to

Kubokawa, Robert, and Saleh (1993). After some simplification as given in the Appendix,

this estimator can be written as

θ̂2
a =

(T −N − 2)θ̂2 −N

T
+

2(θ̂2)
N
2 (1 + θ̂2)−

T−2
2

TBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
, (50)

where

Bx(a, b) =

∫ x

0

ya−1(1− y)b−1dy (51)

is the incomplete beta function. The first part of this estimator is the unbiased estimator of

θ2 and the second part of the estimator is the adjustment to improve the unbiased estimator

when it is too small.

Figure 3 plots θ̂2
a and θ̂2

u as a function of θ̂2 for N = 10 and T = 100. It can be seen

that θ̂2
a is an increasing and convex function of θ̂2. When θ̂2 is equal to zero, θ̂2

a = 0. As θ̂2

gets larger, it becomes more like a linear function of θ̂2 and behaves almost like the unbiased

estimator θ̂2
u. To understand the intuition of why θ̂2

a is a better estimator of θ2, notice that

(T −N − 2)θ̂2 behaves almost like a χ2
N(Tθ2) random variable, and it has an expected value

of Tθ2 + N . When (T − N − 2)θ̂2 is large, it is more likely that part of its large value is

due to the upward bias of N , so we effectively use the unbiased estimator θ̂2
u. However,

when (T −N − 2)θ̂2 is small, we should not subtract N from (T −N − 2)θ̂2 because a small

(T −N − 2)θ̂2 (say less than N) indicates that (T −N − 2)θ̂2 is less than its expected value

of N . Therefore, our estimator θ̂2
a should be higher than θ̂2

u when θ̂2
u is small or negative,

causing θ̂2
a to be a nonlinear function of θ̂2.

Figure 3 about here

With this estimator of θ2, the optimal c∗ can be estimated using

ĉ∗ = c3

(
θ̂2
a

θ̂2
a + N

T

)
, (52)

and the associated feasible two-fund optimal portfolio weights are

ŵII =
1

τ
ĉ∗Σ̂−1µ̂. (53)
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In comparison with c3, ĉ
∗ is random and data-dependent, so the expected utility of using ŵII

is intractable. Nevertheless, ŵII is expected to outperform ŵ∗ by design. This must be the

case when the estimate of θ2 is accurate enough. The simulation results reported in Section 6

confirms that this is indeed the case.

Recently, Garlappi, Uppal, and Wang (2004, Proposition 3) propose an interesting two-

fund rule that is optimal for an investor who exhibits uncertainty aversion. Their approach

is very distinctive in that they directly incorporate parameter uncertainty in the utility

function. Their two-fund portfolio rule is given by3

ŵua =
cua
τ

Σ̄−1µ̂, (54)

where

cua =

{
1− (ε/θ̂2)

1
2 if θ̂2 > ε,

0 if θ̂2 ≤ ε,
(55)

with ε = NF−1
N,T−N(p)/(T−N), and F−1

N,T−N(·) is the inverse cumulative distribution function

of a central F -distribution with N and T−N degrees of freedom and p is a probability. Under

the null hypothesis that θ = 0, θ̂2 ∼ NFN,T−N/(T − N), so using the above portfolio rule,

an investor will choose not to invest in the risky assets with probability p if the Sharpe ratio

is actually zero. Therefore, p is used to indicate the investor’s aversion to uncertainty and

an investor with high aversion to uncertainty will choose a higher p. In this paper, we use

p = 0.99, which is a value that provides good performance based on the empirical results in

Garlappi, Uppal, and Wang (2004).4 This portfolio rule makes intuitive sense. It suggests

that when there is uncertainty about θ2, an investor needs to have enough confidence that

θ 6= 0 (i.e., a large enough θ̂2) before he is willing to invest in the sample tangency portfolio.

Otherwise, he will choose to invest in just the riskless asset.

In terms of maximizing the mean-variance expected utility, the uncertainty aversion two-

fund rule cannot outperform our theoretical optimal two-fund rule. However, since our

optimal two-fund rule has to be estimated, so it is not entirely clear that the uncertainty

3Although Garlappi, Uppal, and Wang (2004) do not explicitly state which estimator of Σ they use, it is
clear from their context that they use the unbiased estimator of Σ. See also Lutgens (2004, Theorem 1) for
a similar portfolio rule.

4We also try p = 0.95 and the results are qualitatively the same.
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aversion two-fund rule is always inferior to our estimated optimal two-fund rule. This issue

will be addressed by using simulations in Section 6.

3. Three-fund separation: investing on the ex post frontier

Theoretically, if an investor knows the true parameters, he should only invest in the

riskless asset and the tangency portfolio, but the parameters are unknown in practice. A

natural approach guided by the standard mean-variance theory is to invest in two funds: the

riskless asset and the sample tangency portfolio. This problem was analyzed in detail in the

previous section.

However, investing only in the two funds generates a loss in expected utility, as shown

below. Intuitively, if there is parameter uncertainty, use of another risky portfolio can help

to diversify the estimation risk of the sample tangency portfolio. This is because while both

portfolios have estimation errors, their estimation errors are not perfectly correlated. To the

extent that the risk-return trade-offs are not constant across the two portfolios, expected

utility is higher when the two portfolios are optimally combined. The relative weights in

the two portfolios depend on the estimation errors of the two portfolios, their correlation,

and their risk-return trade-offs. In addition to the sample tangency portfolio, which risky

portfolio should be used? We choose to use the sample global minimum-variance portfolio

for two reasons. First, the weights of the global minimum-variance portfolio only depend

on Σ̂ but not µ̂, so the weights can be estimated with higher accuracy. Second, if we limit

ourselves to consider just portfolios on the ex post minimum-variance frontier, then the

sample global minimum-variance portfolio is a natural candidate. Similar to the ex ante

frontier portfolios, every sample frontier portfolio is a linear combination of two distinct

sample frontier portfolios. Hence, it suffices to consider only the sample tangency and global

minimum-variance portfolios.5

Consider a portfolio rule of the form

ŵ = ŵ(c, d) =
1

τ
(cΣ̂−1µ̂+ dΣ̂−11N), (56)

5It should be emphasized that our method can also be used to analyze other combinations of risky
portfolios, and it is possible that other choices of risky portfolios can lead to even higher expected utility
than the one that we propose.
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where c and d are constants to be chosen optimally. Since the weights of the sample tangency

and global minimum-variance portfolios are proportional to Σ̂−1µ̂ and Σ̂−11N , respectively,

the portfolio rule ŵ(c, d) invests in these two sample frontier portfolios and the riskless asset.

Under this class of portfolio rules, the expected utility is

E[U(ŵ(c, d))] = E[ŵ(c, d)]′µ− τ

2
E[ŵ(c, d)′Σŵ(c, d)]

=

(
T

T −N − 2

)
1

2τ

[
2(cµ′Σ−1µ+ dµ′Σ−11N)− T (T − 2)

(T −N − 1)(T −N − 4)

×
((

µ′Σ−1µ+
N

T

)
c2 + 2(µ′Σ−11N)cd+ (1′NΣ−11N)d2

)]
, (57)

where T > N +4. Differentiating with respect to c and d, the optimal choice of c and d that

maximizes the expected utility is

c∗∗ = c3

(
ψ2

ψ2 + N
T

)
, (58)

d∗∗ = c3

(
N
T

ψ2 + N
T

)
µg, (59)

where

ψ2 = µ′Σ−1µ− (µ′Σ−11N)2

1′NΣ−11N
= (µ− µg1N)′Σ−1(µ− µg1N) (60)

is the squared slope of the asymptote to the ex ante minimum-variance frontier, and µg =

(1′NΣ−1µ)/(1′NΣ−11N) is the expected excess return of the ex ante global minimum-variance

portfolio. Therefore, the optimal portfolio weights are

ŵ∗∗ =
c3
τ

[(
ψ2

ψ2 + N
T

)
Σ̂−1µ̂+

(
N
T

ψ2 + N
T

)
µgΣ̂

−11N

]
. (61)

Since d∗∗ 6= 0 unless µg = 0, this portfolio rule suggests the use of the sample global

minimum-variance portfolio no matter what the true parameters µ and Σ are (except when

µg = 0). The higher N/T , the greater the investment required in the global minimum-

variance portfolio. Intuitively, the greater the number of assets, the greater the difficulty in

estimating the weights of the tangency portfolio, and hence the greater the reliance on the

optimal portfolio that assumes constant means across assets. This was first pointed out by

Jobson, Korkie, and Ratti (1979), who suggest investing only in the sample global minimum-

variance portfolio. Since c∗∗ > 0 whenever T > N + 4, so investing in just the sample global
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minimum-variance portfolio is a clearly suboptimal policy under our analysis. The optimal

amount to invest in the sample tangency portfolio depends on the relative magnitude of ψ2

and N/T . The greater the slope of the asymptote to the minimum-variance frontier, the

more the investor invests in the sample tangency portfolio because it is potentially more

rewarding than investing in the sample global minimum-variance portfolio.

Under the optimal weights ŵ∗∗, the expected utility is

E[U(ŵ∗∗)] =
θ2

2τ

(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

1−
N
T

θ2 +
(
θ2

ψ2

)(
N
T

)
 , (62)

where T > N + 4. In the presence of parameter uncertainty in both µ and Σ, this is the

highest expected utility obtained so far. However, this level of expected utility is unattainable

because ψ2 and µg are not known and have to be estimated to implement the above strategy.

To estimate µg, we use its sample counterpart

µ̂g =
µ̂′Σ̂−11N

1′N Σ̂−11N
. (63)

For ψ2, we can also use its sample counterpart

ψ̂2 = (µ̂− µ̂g1N)′Σ̂−1(µ̂− µ̂g1N). (64)

In the Appendix, we show that

(T −N + 1)ψ̂2

N − 1
∼ FN−1,T−N+1(Tψ

2), (65)

so ψ̂2 shares the same problem with θ̂2 as being a heavily biased estimator when T is small.

Therefore, similarly to θ̂2
a, we use

ψ̂2
a =

(T −N − 1)ψ̂2 − (N − 1)

T
+

2(ψ̂2)
N−1

2 (1 + ψ̂2)−
T−2

2

TBψ̂2/(1+ψ̂2)((N − 1)/2, (T −N + 1)/2)
(66)

to estimate ψ2. The associated three-fund optimal portfolio weights are then given by

ŵIII =
c3
τ

[(
ψ̂2
a

ψ̂2
a + N

T

)
Σ̂−1µ̂+

(
N
T

ψ̂2
a + N

T

)
µ̂gΣ̂

−11N

]
. (67)
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Like ŵII, ŵIII is random since the weights of the sample tangency and global minimum-

variance portfolios depend on the realization of µ̂g and ψ̂2. However, since ŵ∗∗ dominates

ŵ∗, ŵIII is expected to dominate ŵII. But analytical comparison is difficult because ψ̂2
a and

µ̂g are dependent on random data samples. Section 6 provides simulations on E[U(ŵIII)],

and the results indeed show that the expected utilities under this three-fund rule ŵIII tend

to be higher than those under the two-fund rule ŵII.

4. Shrinkage estimators

Since Stein’s (1956) seminal work, it is known that when N > 2, the sample mean µ̂

is not the best estimator of the population mean µ in terms of the quadratic loss function.

This is because Stein’s estimator or a shrinkage estimator that shrinks the sample mean

appropriately to a constant can have a smaller expected quadratic loss than the sample

mean. As a result of Stein’s surprising finding, there is a large literature on various shrinkage

estimators and the related Bayesian estimators (of which Berger (1985) provides an excellent

survey from a Bayesian decision perspective).

In the finance literature, Jorion (1986, 1991) develops an estimator of µ that is motivated

by both a shrinkage consideration and a Bayesian analysis (under a suitable informed prior).

Jorion’s Bayes-Stein estimator of µ is

µ̂BS = (1− v)µ̂+ vµ̂g1N , (68)

where v is the weight given to the shrinkage target µ̂g, and 1− v is the weight on the sample

mean. The target used by Jorion (1986) is the average excess return of the sample global

minimum-variance portfolio,

µ̂g =
1′N Σ̃−1µ̂

1′N Σ̃−11N
=

1′N Σ̂−1µ̂

1′N Σ̂−11N
, (69)

and the weight is

v =
N + 2

(N + 2) + T (µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)
, (70)

where Σ̃ is defined as in (25). From a shrinkage point of view, combining µ̂BS with Σ̃ gives

an estimator of the optimal portfolio weights.
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Jorion’s method, however, is in fact a Bayesian estimation of the optimal portfolio

weights, because he replaces Σ in the classic optimal weights formula (equation (2)) with

the predictive variance of the asset returns,

Var[RT+1|Σ, λ,ΦT ] =

(
1 +

1

T + λ

)
Σ +

λ

T (T + 1 + λ)

1N1′N
1′NΣ−11N

, (71)

where λ is a precision parameter in the informative prior which leads to the shrinkage esti-

mator µ̂BS

p0(µ|Σ, µg, λ) ∝ exp

[
−1

2
(µ− 1Nµg)

′(λΣ−1)(µ− 1Nµg)

]
. (72)

Theoretically, Var[RT+1|ΦT ] should be used after integrating out both Σ and λ from their

posterior distributions, but this integration is a formidable task, so the natural approach is to

simply use Var[RT+1|Σ, λ,ΦT ] instead. Although Σ and λ are unknown in Var[RT+1|Σ, λ,ΦT ],

they can be replaced by their sample estimates. In this way, Jorion’s empirical Bayes-Stein

estimator of the optimal portfolio weights is

wBS =
1

τ
(Σ̂BS)−1µ̂BS, (73)

where

Σ̂BS =

(
1 +

1

T + λ̂

)
Σ̃ +

λ̂

T (T + 1 + λ̂)

1N1′N
1′N Σ̃−11N

(74)

and λ̂ = (N + 2)/[(µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)].

Jorion’s (1986) approach effectively provides a three-fund rule. Alternatively, our esti-

mated optimal three-fund rule can be thought of as a shrinkage rule with a particular choice

of shrinkage estimator of µ and a particular choice of Σ. To see why, rewrite (67) as

ŵIII =
c3
τ

[(
ψ̂2
a

ψ̂2
a + N

T

)
Σ̂−1µ̂+

(
N
T

ψ̂2
a + N

T

)
µ̂gΣ̂

−11N

]

=
1

τ
Σ̂−1
∗

[(
T ψ̂2

a

N + T ψ̂2
a

)
µ̂+

(
N

N + T ψ̂2
a

)
µ̂g1N

]
. (75)

With this expression, we can see that the main difference between our estimated optimal

three-fund rule and Jorion’s shrinkage rule is that our estimated optimal three-fund rule

calls for the use of Σ̂∗ instead of Σ̂BS to estimate Σ and the use of the Bayes-Stein shrinkage

estimator µ̂BS with a value of v = N/(N + T ψ̂2
a) to estimate µ.
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Jorion’s shrinkage portfolio rule is also a three-fund rule, but it can be suboptimal be-

cause it is not constructed for holding optimal proportions in the three funds. Rather, it is

motivated by using the standard two-fund optimal portfolio formula with a better estimate

for the mean, and this better estimate has the average excess return of the sample global

minimum-variance portfolio as the shrinkage target. Since the weights assigned to the sample

global minimum-variance and tangency portfolios by Jorion’s portfolio rule are not optimal,

we expect our optimal three-fund rule to perform better. As the rules are complex functions

of µ̂ and Σ̂, it is difficult to prove it analytically. However, the expected utilities of the two

rules can be easily estimated using simulated data sets. In our simulation experiments, the

optimal three-fund rule indeed outperforms Jorion’s rule.

5. MacKinlay and Pástor portfolio rule

When a factor-based asset pricing model holds, there is a link between expected return

and the covariance matrix. MacKinlay and Pástor (2000) exploits this link and imposes

an exact one-factor structure to provide a more efficient estimator of the expected returns.

Specifically, they assume

Σ = σ2IN + aµµ′, (76)

where a and σ2 are positive scalars. Under this assumption, we have

Σ−1 =
1

σ2

(
IN −

aµµ′

σ2 + aµ′µ

)
(77)

and the weights of the tangency portfolio are given by

wT =
Σ−1µ

1′NΣ−1µ
=

µ

1′Nµ
. (78)

Therefore, one can simply replace Σ by IN to obtain the weights of the tangency portfolio.

While MacKinlay and Pástor (2000) focus their analysis on the tangency portfolio, we extend

here their analysis to the case of the optimal portfolio for a given risk aversion coefficient.

To obtain the weights of the optimal portfolio, we need to know also a and σ2 because

w∗ =
1

τ
Σ−1µ =

1

τ(σ2 + aµ′µ)
µ. (79)
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The maximum likelihood estimator of a, σ2 and µ are obtained by maximizing the log-

likelihood function

lnL = −NT
2

ln(2π)− T

2
ln
(
|aµµ′ + σ2IN |

)
− 1

2

T∑
t=1

(Rt − µ)′(aµµ′ + σ2IN)−1(Rt − µ). (80)

As the analytical solution to the maximum likelihood estimator is non-trivial, MacKinlay

and Pástor (2000) suggest the use of a constrained quasi-Newton method to obtain the

estimates. However, when the number of assets is large, this numerical procedure can be

very time-consuming and may also fail to find the global maximum. In the Appendix, we

reduce the multiple variable optimization problem to a single variable optimization problem

that greatly reduces the computation time and the possibility of finding a local maximum.

Let ã, σ̃2 and µ̃ be the maximum likelihood estimators, the MacKinlay and L̆uboš portfolio

rule is given by

ŵML =
1

τ(σ̃2 + ãµ̃′µ̃)
µ̃. (81)

Instead of using the maximum likelihood estimator, we propose the use of a simplified

version of ŵML that does not require numerical optimization. Let Û = Σ̂ + µ̂µ̂′. Suppose

λ̂1 is the largest eigenvalue of Û and q̂1 is the associated eigenvector. We estimate µ using

µ̃ = (q̂′1µ̂)q̂1 and the weights of the optimal portfolio are estimated by

ŵML =
µ̃

τ(λ̂1 − µ̃′µ̃)
. (82)

In our simulations, we find that our simplified estimator produces numerically identical

estimates to the maximum likelihood ones. While the technical details are given in the

appendix, we provide the intiution of our simplified estimator here. Note that when Σ =

σ2IN+aµµ′, it is easy to verify that the largest eigenvalue of U = Σ+µµ′ is λ1 = (a+1)µ′µ+σ2

and the corresponding eigenvector is q1 = (µ′µ)−
1
2µ which is proportional to µ. Therefore, it

makes sense to choose µ̃ to be proportional to q̂1, the sample estimator of q1. Our simplified

estimator makes it clear that under the assumption of the exact one-factor structure, we can

use both the information in Σ̂ and µ̂ to provide a more accurate estimator of µ.

The benefit of using the MacKinlay and Pástor portfolio rule depends on how well (76)

approximates the structure of Σ. In other words, it crucially depends on how much infor-

mation that Σ̂ contains about µ. When expected returns are well approximated by an exact
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one-factor structure, we can expect the MacKinlay and Pástor portfolio rule to provide sig-

nificant benefits in improving expected utility. However, if the exact one-factor structure

does not hold, then there could be significant loss. This is because by imposing a mis-

specifed factor structure, the MacKinlay and Pástor portfolio rule will not converge to the

true optimal portfolio as T increases. As analytical expression of the expected utility for the

MacKinlay and Pástor portfolio rule is unavailable, we compare its performance together

with other portfolio rules in the following section using simulations.

6. Comparison of alternative portfolio rules

In this section, we evaluate the expected utilities of 14 portfolio rules for a mean-variance

investor with parameters calibrated from real data. While the rules are developed under the

standard normality assumption, we also examine their performance under a more plausible

multivariate t-distribution, and find the qualitative results are quite robust to the departure

from the normality assumption.

In what follows, we assume that the mean-variance investor has a relative risk aversion

of τ = 3. The expected utilities for other values of τ can be obtained by simply rescaling

the expected utilities calculated for τ = 3, so the relative rankings of the portfolio rules are

independent of the choice of τ . In evaluating these portfolio rules, we consider two scenarios.

In the first scenario, we assume there are N = 10 risky assets, with their mean and covariance

matrix chosen based on the sample estimates from the monthly excess returns on the 10

NYSE size-ranked portfolios from 1926/1–2003/12. For this set of 10 risky assets, our choice

of µ and Σ give θ = 0.159, ψ = 0.130, and µg = 0.00444.6 In the second scenario, we assume

there are N = 25 risky assets. Because Fama and French’s (1993) 25 portfolios, formed

based on size and book-to-market ratio, are the standard test assets in recent empirical asset

pricing studies, we assume that the investor invests in these 25 portfolios. The mean and

covariance matrix of these 25 portfolios are chosen based on the sample estimates from the

monthly excess returns from 1932/1–2003/12.7 For this set of 25 risky assets, our choice of

6The individual elements of µ and Σ are not reported because it can be shown that except foe the
MacKinlay and Pástor portfolio rule, the expected utilities of all other portfolio rules are only a function of
θ, ψ, and µg.

7We are grateful to Ken French for making this data available on his website.

30



µ and Σ give θ = 0.344, ψ = 0.267, and µg = 0.00889.

Out of the 14 portfolio rules that have been discussed in this paper, the expected utilities

can be derived analytically for nine, and for the remaining five, we rely on an efficient

simulation method which proceeds as follows. For different lengths of the estimation window

T , generate µ̂ and Σ̂ from (10) and (11). Then, construct the optimal portfolio using the

various portfolio rules and compute each corresponding utility. The average utilities across

different simulations are then used to approximate the expected utilities. The following

simulation results are based on 100,000 simulated samples.

Table 2 reports the results for the 10 asset case. The first three portfolio rules assume

that the investor knows some of the parameters. If he knows µ and Σ, the expected utility of

his optimal portfolio is given by equation (3), which is 0.419%/month as reported in the first

row (“Parameter-certainty Optimal”). If the investor only knows θ, he can invest an optimal

amount in the sample tangency portfolio, and the resulting expected utility is reported in

the second row (“Theoretical Optimal Two-fund”). Investing in the ex post instead of the

ex ante tangency portfolio generates a substantial loss in expected utility. The loss is a

decreasing function of the length of the estimation period, but even for T = 480 months, the

expected utility from the optimal two-fund rule is only 0.224%/month versus 0.419%/month

from holding the ex ante tangency portfolio. The third row reports the expected utility

of a portfolio that invests optimally in the sample tangency and global minimum-variance

portfolios (“Theoretical Optimal Three-Fund”). Implementing this rule requires knowing ψ

and µg. Compared to the optimal two-fund rule, the gain in expected utility is phenomenal

when T is small. When T is large, less weight is put on the sample global minimum-variance

portfolio, so the difference between the expected utilities of the optimal two-fund and three-

fund rules is not that big. Note that these three rules cannot be implemented in practice, so

their expected utilities are only provided as reference points.

Table 2 about here

In the next eight rows, we report the expected utilities of various two-fund rules. The

first three rows are for the plug-in methods that estimate µ by µ̂, Σ by Σ̂, Σ̄ = T Σ̂/(T − 1),

and Σ̃ = T Σ̂/(T −N − 2). The next row is for the Bayesian rule under a diffuse prior which
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essentially estimates Σ by (T + 1)Σ̂/(T −N − 2). The fifth row reports the expected utility

of using the parameter-free optimal two-fund rule, which estimates Σ using Haff’s estimator

of the covariance matrix Σ̂∗ = Σ̂/c3. All five rules are poor, although the parameter-free

optimal two-fund rule dominates all the others.

When the sample size is as large as T = 360 months, a history of thirty-years worth

of data, one might think it can provide sufficiently accurate estimates of the parameters

such that the plug-in methods should work reasonably well. On the contrary, due to the

volatilities of the estimates, the expected utilities of using the plug-in methods are in fact

negative! This also includes the Bayesian portfolio rule. As the sample decreases from 360

months, the problem is exacerbated. Clearly, sample estimates cannot blindly be substituted

for population parameters without significantly decreasing utility.

The next two-fund rule is the “Estimated Optimal Two-fund” rule, which is obtained

by replacing the true θ2 in the optimal two-fund rule by the estimated θ2. Although the

estimated optimal two-fund rule does not deliver the same level of expected utility as the

theoretical optimal two-fund rule, it is implementable and performs substantially better

than all the plug-in rules. It starts to yield positive expected utility when T > 120 months,

whereas all the other plug-in rules need T > 360 months to yield positive expected utility.

Nevertheless, when T is small, the estimate of θ2 is very volatile, so the estimated optimal

two-fund rule still delivers negative expected utility for T ≤ 120 months.

The second-last two-fund rule is the “Uncertainty Aversion Two-fund” rule of Garlappi,

Uppal, and Wang (2004). It is the best rule when T = 60 months, even though the expected

utility is still negative. But it is dominated by the estimated optimal two-fund rule when

T > 120 months. The reason is that it invests heavily in the riskless asset. However, it

should be pointed out that the uncertainty aversion rule was not designed for maximizing

the expected utility of a mean-variance investor, so its under-performance is expected, which

does not contradict in any way that it is the best rule under Garlappi, Uppal, and Wang’s

(2004) uncertainty aversion utility function.

The last two-fund rule is the “Global Minimum-Variance” portfolio rule, which invests
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Σ−1
∗ 1N µ̂g/τ in the risky assets and the rest in the riskless asset.8 This portfolio rule invests

only in the sample global minimum-variance portfolio and the riskless asset, so it is also a

two-fund rule. In the Appendix, we show that the expected utility of this global minimum-

variance portfolio rule is given by

(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

1

2τ

(
θ2 − ψ2 +

(T−N−5)ψ2

T−N−1
− T−4

T

T −N − 3

)
. (83)

With the parameter specifications here, the simulation results show that this rule is generally

dominated by the estimated optimal two-fund rule.

The next two rows in Table 2 report the expected utilities of the two three-fund rules.

The first rule is Jorion’s shrinkage estimator of the optimal portfolio, which substantially

outperforms the plug-in rules and the Bayesian rule. However, it only starts to outperform

the estimated optimal two-fund rule when T > 360. Therefore, a better estimator of µ alone

is not sufficient to beat the estimated optimal two-fund rule. The second three-fund rule is

the “Estimated Optimal Three-fund” rule, which is obtained by replacing ψ2 and µg in the

theoretical optimal three-fund rule with their estimates. When T is small, the estimated

optimal three-fund rule provides an often substantial improvement over Jorion’s rule. When

T is large, the shrinkage rule and the estimated optimal three-fund rule generate virtually

identical expected utilities.

The final row reports the expected utility of the MacKinaly and Pástor portfolio rule.

Under this portfolio rule, the expected returns are not estimated using µ̂ but also estimated

with the information in Σ̂. As it turns out under our choices of µ and Σ for the 10 asset

case, the one-factor model provides a very good approximation of the expected return. We

find that the average absolute expected return error using the best fitted one-factor model is

only 0.040%/month. Although when T → ∞, the expected utility under this portfolio rule

will converge to only 0.272%/month but not 0.419%/month, the use of the information in

Σ̂ to estimate µ helps tremendously when T is small. When 120 ≤ T ≤ 480, it substantially

outperforms all the other rules.

8It can be shown that within the class of portfolio rules dΣ̂−11N/τ , the d that maximizes expected utility
is d∗ = c3µg, which implies that the optimal weights are Σ̂−1

∗ 1Nµg/τ . Our implementable version of the
global minimum-variance portfolio rule is obtained by replacing µg with µ̂g.
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From the expected utilities of the eleven implementable portfolio rules, an investor is

better off by investing just in the riskless asset if T ≤ 60 because all the portfolio rules that

call for investing in the risky assets generate negative expected utility. When T ≥ 120, the

MacKinlay and Pástor is the best rule, with the optimal three-fund rule as the second best

overall rule.

From Table 2, the theoretical optimal expected utility is unattainable using existing rules.

This is particularly apparent when T = 60, but as the sample size increases, the problem

diminishes. When T = 480, the expected utility of the estimated and theoretical optimal

three-fund rules become very close, suggesting that using estimated ψ2 and µg is less of

a problem. Nevertheless, the expected utility of the estimated optimal three-fund rule is

0.206%/month, still about 20% less than the expected utility of 0.258%/month from the

theoretical optimal three-fund rule. So there is still room for improvement in our estimated

optimal three-fund rule, especially when T is small.

Table 3 presents the corresponding results for the 25 asset case. As the number of risky

assets increases, two effects occur. The first effect is that there are more parameters to

estimate and hence there is more estimation risk, which in turn leads to lower expected

utility. The second effect is that with more assets, the Sharpe ratio of the tangency portfolio

increases, which in turn leads to higher expected utility in the absence of estimation risk. In

our example, the Sharpe ratio of the tangency portfolio in the 25 asset case is about twice as

big as it is in the 10 asset case. As a result, the expected utilities for the first three portfolio

rules in Table 3 are all higher than their counterparts in Table 2 because the first three

portfolio rules assume that some of the parameters are known, so there is little estimation

risk. This is not the case for the implementable portfolio rules. For example, when T is

small, the plug-in rules in the 25 asset case generate far lower expected utilities than in the

10 asset case. Although the numbers in Tables 2 and 3 are different, the general picture

is largely the same. Specifically, the plug-in portfolio rules are all very poor, the estimated

optimal two-fund and three-fund rules perform far better than all the plug-in rules and the

uncertainty aversion two-fund rules across all T , with the estimated optimal three-fund rule

having an edge even over Jorion’s shrinkage portfolio rule. The estimated optimal three-fund

rule performs particularly well in the 25 asset case, losing out only to the global minimum-
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variance portfolio rule when T = 60, and dominating all the other implementable portfolio

rules across T , including the MacKinlay and Pástor portfolio rule. As a result, an investor

facing such a portfolio problem is better off using the estimated optimal three-fund rule for

T ≥ 120.

Table 3 about here

One may wonder why the MacKinlay and Pástor portfolio rule does not perform well

in the 25 asset case. This has to do with the choice of µ and Σ for the Fama-French 25

size and book-to-market ranked portfolios. It is entirely plausible that we may need more

than one factor to explain the expected returns of the Fama-French portfolios. In fact, using

the best fitted one-factor model, we find the average absolute expected return error to be

0.155%/month for the 25 portfolios, far larger than the 0.040%/month in the previous 10

asset case. More importantly, even ignoring estimation errors, the expected utility under the

MacKinlay and Pástor portfolio rule is still only 0.371%/month, so it is not surprising that

this rule does not deliver very good performance for the 25 asset case.

Now let us examine how the performance of the rules may change if the return data

follow a multivariate t rather than a multivariate normal distribution. Ever since Fama

(1965), many studies find that stock returns have fat-tailed distributions and they are not

well approximated by the normal distribution. Blattberg and Gonedes (1974) seems the first

in finance to use a t-distribution to model stock returns. In comparison with GARCH models

and the like, Kan and Zhou (2004) find that there is little GARCH effect in the monthly

stock returns data and a multivariate t-distribution with eight degrees of freedom models

the returns of the 25 Fama-French portfolios well. Since the interest here is to examine the

robustness of the results to the departure from the normality assumption, we in what follows

take a more conservative approach by using a multivariate t-distribution with five degrees

of freedom, which represents a significant departure from normality.

Table 4 about here

Table 5 about here
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Tables 4 and 5 provide the expected utilities under the same assumptions for Tables 2

and 3 except now the stock returns follow a multivariate t-distribution with five degrees of

freedom rather than multivariate normal. Under the multivariate t-distribution, we have

no analytical formulas for the expected utilities and hence they are all computed based

on 100,000 simulated draws of the data sets. By comparing the results in Tables 2 and 4

with those in Tables 3 and 5, we find that the performance rankings of the portfolio rules

remain largely the same under the two different distribution assumptions. However, the

expected utilities of the feasible portfolio rules are in general smaller under the multivariate

t-distribution assumption than those under the normality assumption. This is intuitive

because under the multivariate t-distribution assumption, the estimation errors of µ̂ and Σ̂

are in general greater than those under the normality assumption (see, e.g., Kan and Zhou

(2004)).

In summary, the simulation results suggest that parameter estimates based on statistical

criteria alone, such as the maximum likelihood estimator, perform poorly at an economically

unacceptable level. Among the 11 implementable rules, the estimated optimal three-fund

rule, newly developed based on utility maximization, performs remarkably (when T > 120),

and offers 65% improvement in the expected utility over the popular maximum likelihood

estimator even when T is as large as 480 (N = 25). However, when expected returns of

the assets can be well approximated by a one-factor model, then it is beneficial to exploit

the link between expected returns and covariance matrix. In this case, the MacKinlay

and Pástor portfolio rule significantly dominates all the other rules. When a multivariate

t-distribution with five degrees of freedom is assumed as the true distribution, the same

qualitative conclusions follow, suggesting the results are robust to the departure from the

normality assumption.

7. Conclusion

Models for financial decision making often involve unknown parameters that have to

be estimated from the data. However, estimation is typically separated from the decision

making, and the goodness of the estimates is commonly judged using statistical criteria such

as minimum variance and asymptotic efficiency. We argue that it is important to estimate
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parameters by combining the estimation with the economic objectives at hand. In particular,

we show that, in the standard mean-variance framework, the usual maximum likelihood

estimate of the optimal portfolio weights is outperformed by alternative sample estimates.

These, in turn, are uniformly dominated by the Bayesian approach under a diffuse prior,

which accounts for the parameter uncertainty by using predictive densities. The Bayesian

solution, in turn, is uniformly dominated by a new two-fund rule that holds the riskless asset

and the sample tangency portfolio optimally.

While mean-variance portfolio theory recommends a two-fund solution, we construct

an optimal three-fund portfolio rule that improves expected utility over the two-fund rules.

Using reasonable choices of parameters, we show that an implementable version of our three-

fund rule dominates many of the existing portfolio rules. Nevertheless, we believe there exist

even better rules that we encourage future research to discover. Our finding that a three-

fund portfolio rule can dominate a two-fund portfolio rule has powerful implications. It says

that the recommendation of a theoretical result, like holding a two-fund portfolio here, can

be altered completely in the presence of parameter uncertainty, to a holding a three-fund

(perhaps even more) portfolio.

Many potential extensions are possible. For example, our analysis can be extended to

more complex dynamic portfolio choice problems, such as a set-up like Barberis (2000). In

fact, economically better estimates can potentially be sought in any other financial decisions,

either in investments or in corporate finance, that involve estimation of unknown parameters

with precise economic objectives. Hence, this paper poses many problems for future research.

For example, our methodology can be applied to determine the mean-variance optimal hedge

ratio in hedging. It can also be used to estimate the discount rate for maximizing the net

present value of an investment project. In the asset pricing literature, the market risk

premium estimated from sample mean excess returns is generally considered to be too high,

but this is in general not the market risk premium an investor use in maximizing the expected

utility. Accounting for parameter uncertainty (and perhaps model uncertainty too), what

would be the risk premium estimate? These are interesting topics for future research.
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Appendix

Proof of (48): Using Theorem 3.2.13 of Muirhead (1982), we have

µ̂′Σ−1µ̂

µ̂(T Σ̂)−1µ̂
∼ χ2

T−N , (A.1)

which is independent of µ̂. Therefore, we can write

µ̂′Σ̂−1µ̂ =
T (µ̂′Σ−1µ̂)

χ2
T−N

, (A.2)

where the numerator and denominator are independent. Since T µ̂′Σ−1µ̂ ∼ χ2
N(Tµ′Σ−1µ),

θ̂2 = µ̂′Σ̂−1µ̂ ∼
(

N

T −N

)
FN,T−N(Tθ2). (A.3)

This completes the proof. Q.E.D.

Proof of (50): Theorem 3.1 of Kubokawa, Robert, and Saleh (1993) states that if w ∼
χ2
p(δ)/χ

2
n, where the numerator and denominator are independent, then the unbiased esti-

mator of δ is (n − 2)w − p but under quadratic loss, this unbiased estimator is dominated

by

δ̂a = (n− 2)w − φ0(w), (A.4)

where

φ0(w) = (n− 2)

∫ w
0
t

p
2 (1 + t)−

n+p
2 dt∫ w

0
t

p
2
−1(1 + t)−

n+p
2 dt

. (A.5)

To simplify φ0(w), write the integral in the numerator as∫ w

0

t
p
2 (1 + t)−

n+p
2 dt =

∫ w

0

(
t

1 + t

) p
2

(1 + t)−
n
2 dt. (A.6)

Using integration by parts on this integral gives

φ0(w) = p− 2w
p
2 (1 + w)−

n+p−2
2∫ w

0
t

p
2
−1(1 + t)−

n+p
2 dt

. (A.7)

For the integral in the denominator, we use a change of variables of y = t/(1 + t) to obtain∫ w

0

t
p
2
−1(1 + t)−

n+p
2 dt =

∫ w
1+w

0

y
p
2
−1(1− y)

n
2
−1dy = Bw/(1+w)(p/2, n/2). (A.8)

38



Therefore, the adjusted estimator of δ is

δ̂a = (n− 2)w − p+
2w

p
2 (1 + w)−

n+p−2
2

Bw/(1+w)(p/2, n/2)
. (A.9)

Our adjusted estimator θ̂2
a is then obtained by letting δ̂a = T θ̂2

a, δ = Tθ2, w = θ̂2, p = N ,

and n = T −N in the equation above. The adjusted estimator ψ̂2
a is similarly obtained. This

completes the proof. Q.E.D.

Proof of (65): Let

Ã =
(
[µ̂, 1N ]′Σ−1[µ̂, 1N ]

)−1
=

[
µ̂′Σ−1µ̂ µ̂′Σ−11N

1′NΣ−1µ̂ 1′NΣ−11N

]−1

, (A.10)

Â =
(
[µ̂, 1N ]′Σ̂−1[µ̂, 1N ]

)−1

=

[
µ̂′Σ̂−1µ̂ µ̂′Σ̂−11N

1′N Σ̂−1µ̂ 1′N Σ̂−11N

]−1

. (A.11)

From Theorem 3.2.11 of Muirhead (1982), conditional on µ̂,

Â ∼ W2(T −N + 1, Ã/T ). (A.12)

Let Ãij and Âij be the (i, j)th element of Ã and Â, respectively. It is straightforward to

verify that

Ã11 =
1

ψ̃2
, Â11 =

1

ψ̂2
, (A.13)

where ψ̃2 = µ̂′Σ−1µ̂− (µ̂′Σ−11N)2/(1′NΣ−11N). From (A.12),

Â11

Ã11/T
=
T ψ̃2

ψ̂2
≡ w ∼ χ2

T−N+1, (A.14)

and w is independent of µ̂. Since

v ≡ T ψ̃2 = T µ̂′Σ− 1
2

[
IN − Σ− 1

2 1′N(1′NΣ−11N)−11′NΣ− 1
2

]
Σ− 1

2 µ̂ ∼ χ2
N−1(Tψ

2), (A.15)

we have

ψ̂2 =
T ψ̃2

w
=
v

w
∼
(

N − 1

T −N + 1

)
FN−1,T−N+1(Tψ

2). (A.16)

This completes the proof. Q.E.D.

Almost analytical solution to the maximum likelihood estimation problem in (80):
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Under the assumption of Σ in (76), one of the N eigenvalues of Σ is σ2 + aµ′µ and the

rest are all σ2. Therefore, we have

ln
(
|aµµ′ + σ2IN |

)
= (N − 1) ln(σ2) + ln(σ2 + aµ′µ). (A.17)

In addition, using the identity

T∑
t=1

(Rt − µ)(Rt − µ)′ = T [Σ̂ + (µ̂− µ)(µ̂− µ)′], (A.18)

we can write

T∑
t=1

(Rt − µ)′(aµµ′ + σ2IN)−1(Rt − µ)

= tr

(
(aµµ′ + σ2IN)−1

T∑
t=1

(Rt − µ)(Rt − µ)′

)
= T

[
tr((aµµ′ + σ2IN)−1Σ̂) + (µ̂− µ)′(aµµ′ + σ2IN)−1(µ̂− µ)

]
=

T

σ2

[
tr(Σ̂)− aµ′Σ̂µ

σ2 + aµ′µ
+ (µ̂− µ)′(µ̂− µ)− a[(µ̂− µ)′µ]2

σ2 + aµ′µ

]

=
T

σ2

[
tr(Û) +

σ2(µ′µ− 2µ̂′µ)− aµ′Ûµ

σ2 + aµ′µ

]
, (A.19)

where Û = Σ̂ + µ̂µ̂′. Instead of maximizing (80), we can minimize

f(µ, a, σ2) = (N−1) ln(σ2)+ln(σ2 +aµ′µ)+
1

σ2

[
tr(Û) +

σ2(µ′µ− 2µ̂′µ)− aµ′Ûµ

σ2 + aµ′µ

]
(A.20)

to obtain the maximum likelihood estimates.

For a fixed µ, f is only a function of a and σ2. Setting the derivatives equal to zero, we

can find the maximum likelihood estimator of a and σ2 when conditional on a given value

of µ. Conditional on µ, the maximum likelihood estimator of σ2 and a are given by

σ̃2 =
tr(Û)− µ′Ûµ

µ′µ

N − 1
, (A.21)

ã = 1− 2
µ̂′µ

µ′µ
+

µ′Ûµ

(µ′µ)2
− σ̃2

µ′µ
. (A.22)
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Substituting these values in (A.20), we can write f as a function of µ alone.

f(µ) = N + ln

(
µ′µ− 2µ̂′µ+

µ′Ûµ

µ′µ

)
+ (N − 1) ln

tr(Û)− µ′Ûµ
µ′µ

N − 1


= N − (N − 1) ln(N − 1) + ln

(
µ′µ− 2µ̂′µ+

µ′Ûµ

µ′µ

)

+ (N − 1) ln

(
tr(Û)− µ′Ûµ

µ′µ

)
. (A.23)

Let Q̂Λ̂Q̂′ be the spectral decomposition of Û , where Λ̂ = Diag(λ̂1, . . . , λ̂N) are the eigen-

values of Û in descending order, and the columns of Q̂ are the corresponding eigenvectors.

By defining z = Q̂′µ and ẑ = Q̂′µ̂, we can find the maximum likelihood estimator by simply

minimizing g(z), which is defined as

g(z) = ln

(
z′z − 2ẑ′z +

z′Λ̂z

z′z

)
+ (N − 1) ln

(
N∑
i=1

λ̂i −
z′Λ̂z

z′z

)
. (A.24)

Note that g(z) only depends on the data through ẑ and Λ̂, so the objective function can be

evaluated very efficiently. In order to minimize g(z), we first conditional on z′Λ̂z/(z′z) = c,

where λ̂1 ≥ c ≥ λ̂N . Conditional on z′Λ̂z/(z′z) = c, g(z) can be written as

g(z|c) = ln(z′z − 2ẑ′z + c) + (N − 1) ln

(
N∑
i=1

λ̂i − c

)
, (A.25)

so we only need to minimize z′z − 2ẑ′z subject to the constraint z′Λ̂z/(z′z) = c.

Forming the Lagrangian, we have

h(z, φ) = z′z − 2ẑ′z − φ(z′Λ̂z − cz′z). (A.26)

Taking the partial derivative with respect to z, we obtain the first order condition

∂h

∂z
= 2z − 2ẑ − 2φ(Λ̂z − cz) = 0N . (A.27)

Premultiplying the first order condition by z′, we note that the optimal z satisfies

z̃′z̃ = z̃′ẑ. (A.28)
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Solving the first order equation, we have

z̃ = [IN − φ(Λ̂− cIN)]−1ẑ. (A.29)

Substituting (A.29) into the constraint z′(Λ̂− cIN)z = 0, we obtain the equation

p(φ) =
N∑
i=1

(λ̂i − c)ẑ2
i

[1− φ(λ̂i − c)]2
= 0, (A.30)

which can be written as a polynomial equation in φ of order 2N − 2. From the second order

equation, we have
∂h(z, φ)

∂z∂z′
= 2[(1 + cφ)IN − φΛ]. (A.31)

In order for φ to be associated with the minimum (i.e., the above matrix to be positive

definite), we need φ ∈ (uN , u1), where ui = 1/(λ̂i − c). Therefore, although p(φ) can have

as many as 2N − 2 roots, we only need to search for the root in the interval (uN , u1). Note

that limφ→u+
N
p(φ) = −∞, limφ→u−1

(φ) = ∞, and p(φ) is increasing in φ for uN < φ < u1,

so there is only one root in the interval (uN , u1) and we can simply use a line search to find

this root. Denote this optimal root as φ̃(c), we can then write the objective function g(z) as

a function of c alone

g(c) = ln

(
c−

N∑
i=1

ẑ2
i

1− φ̃(c)(λ̂i − c)

)
+ (N − 1) ln

(
N∑
i=1

λ̂i − c

)
, (A.32)

by using the fact that z̃′z̃ = ẑ′z̃ at the optimal solution. Instead of minimizing over N + 2

variables, we can now minimize the objective function over only one variable.

In summary, we obtain the maximum likelihood estimator by minimizing g(c) over λ̂1 ≥
c ≥ λ̂N .9 Let c∗ = argmincg(c), the maximum likelihood estimator of µ̃ is then given by

µ̃ = Q̂z̃ = Q̂[IN − φ̃(c∗)(Λ̂− c∗IN)]−1ẑ. (A.33)

The maximum likelihood estimator of σ2 and a are then given by

σ̃2 =

∑N
i=1 λi − c∗

N − 1
, (A.34)

ã =
c∗ − σ̃2

µ̃′µ̃
− 1. (A.35)

9For c = λ̂1, we have g(λ̂1) = ln(λ̂1 − ẑ2
1) + (N − 1) ln(

∑N
i=2 λ̂i). For c = λ̂N , we have g(λ̂N ) =

ln(λ̂N − ẑ2
N ) + (N − 1) ln(

∑N−1
i=1 λ̂i).
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Finally, the weights of the estimated optimal portfolio are given by

ŵML =
µ̃

τ(σ̃2 + ãµ̃′µ̃)
=

µ̃

τ(c∗ − µ̃′µ̃)
. (A.36)

In simulations, we find it is always the case that c∗ = λ̂1 when the one-factor structure

provides a reasonable approximation. In this case, we have µ̃ = (q̂′1µ̂)q̂1, where q̂1 is the

eigenvector of Û associated with λ̂1, and ŵML = µ̃/[τ(λ̂1 − µ̃′µ̃)].

Proof of (83): The expected utility of the “global minimum-variance” portfolio rule is given

by

E
[
U
(c3
τ

Σ̂−11N µ̂g

)]
=
c3
τ
E[µ̂g1

′
N Σ̂−1µ]− c23

2τ
E[µ̂2

g(1
′
N Σ̂−1ΣΣ̂−11N)]. (A.37)

Using the fact that µ̂ and Σ̂ are independent and E[µ̂µ̂′] = µµ′ + Σ/T , we can write the two

terms in (A.37) as

E[µ̂g1
′
N Σ̂−1µ] = E

[
µ̂′Σ̂−11N

1′N Σ̂−11N
(1′N Σ̂−1µ)

]
= E

[
(1′N Σ̂−1µ)2

1′N Σ̂−11N

]
(A.38)

and

E[µ̂2
g(1

′
N Σ̂−1ΣΣ̂−11N)] = E

[
(µ′Σ̂−11N)2

(1′N Σ̂−11N)2
1′N Σ̂−1ΣΣ̂−11N

]
+ E

[
(1′N Σ̂−1ΣΣ̂−11N)2

T (1′N Σ̂−11N)2

]
.

(A.39)

Let

ν =
Σ− 1

2 1N

(1′NΣ−11N)
1
2

, (A.40)

η =
Σ− 1

2 (µ− µg1N)

ψ
. (A.41)

It is easy to verify that ν and η are orthonormal vectors. Denote Q to be an N × (N − 1)

orthonormal matrix with its columns orthogonal to ν and its first column is equal to η. Then

[ν, Q] form an orthonormal basis of RN . Let W = Σ− 1
2 Σ̂Σ− 1

2 ∼ WN(T − 1, IN)/T . We now

define an N ×N matrix A as

A =
(
[ν, Q]′W−1[ν, Q]

)−1
. (A.42)

Using Theorem 3.2.11 of Muirhead (1982), we have A ∼ WN(T − 1, IN)/T . Partition A

into two by two submatrices and denote its (i, j)th block as Aij, with the first element of A
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denoted as A11. Using Theorem 3.2.10 of Muirhead (1982), we have

u ≡ A11 − A12A
−1
22 A21 ∼ χ2

T−N/T, (A.43)

z ≡ −A− 1
2

22 A21 ∼ N(0N−1, IN−1/
√
T ), (A.44)

A22 ∼ WN−1(T − 1, IN−1)/T, (A.45)

and they are independent of each other. Let e1 = [1, 0′N−1]
′ and c = 1′NΣ−11N . Using the

partitioned matrix inverse formula, it can be verified that

1′N Σ̂−11N = cν ′W−1ν =
c

u
, (A.46)

1′N Σ̂−1µ = cµgν
′W−1ν + c

1
2ψη′W−1ν =

cµg + c
1
2ψe′1A

− 1
2

22 z

u
, (A.47)

1′N Σ̂−1ΣΣ̂−11N = cν ′W−2ν = cν ′W−1[νν ′ +QQ′]W−1ν =
c(1 + z′A−1

22 z)

u2
. (A.48)

Using these expressions, we can express (A.38) as

E

[
(1′N Σ̂−1µ)2

1′N Σ̂−11N

]
= E


(
c

1
2µg + ψe′1A

− 1
2

22 z
)2

u

 (A.49)

=
T

T −N − 2
E

[
E

[(
c

1
2µg + ψe′1A

− 1
2

22 z
)2
∣∣∣∣A22

]]
=

T

T −N − 2
E
[
cµ2

g + ψ2e′1(TA22)
−1e1

∣∣A22

]
(A.50)

=
T

T −N − 2

(
θ2 − ψ2 +

ψ2

T −N − 1

)
. (A.51)

The last equality follows from the fact that θ2−ψ2 = cµ2
g and E[(TA22)

−1] = IN/(T−N−1).

Similarly, the first term in (A.39) can be expressed as

E

[
(µ′Σ̂−11N)2

(1′N Σ̂−11N)2
1′N Σ̂−1ΣΣ̂−11N

]

= E

[
(c

1
2µg + ψe′1A

− 1
2

22 z)
2(1 + z′A−1

22 z)

u2

]

=
T 2E[(cµ2

g + 2ψc
1
2µge

′
1A

−1
22 z + ψ2z′A

− 1
2

22 e1e
′
1A

− 1
2

22 z)(1 + z′A−1
22 z)]

(T −N − 2)(T −N − 4)

=
T 2E[(cµ2

g + ψ2z′A
− 1

2
22 e1e

′
1A

− 1
2

22 z)(1 + z′A−1
22 z)]

(T −N − 2)(T −N − 4)
. (A.52)
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Using Theorem 3.2.12 of Muirhead (1982), we have z′A−1
22 z = u1/u2, where u1 ∼ χ2

N−1 and

u2 ∼ χ2
T−N+1, and they are independent of each other. Using this result, the first term in

the expectation is

cµ2
gE[1 + z′A−1

22 z] = cµ2
g

(
1 + E

[
u1

u2

])
= cµ2

g

(
1 +

N − 1

T −N − 1

)
=

(T − 2)(θ2 − ψ2)

T −N − 1
.

(A.53)

The second term in the expectation is

E[ψ2z′A
− 1

2
22 e1e

′
1A

− 1
2

22 z(1 + z′A−1
22 z)]

= ψ2
(
E[z′A

− 1
2

22 e1e
′
1A

− 1
2

22 z] + E[z′A
− 1

2
22 e1e

′
1A

− 1
2

22 zz
′A−1

22 z)]
)

= ψ2
(
E[e′1(TA22)

−1e1] + E[e′1(TA22)
−1e1tr((TA22)

−1)] + 2E[e′1(TA22)
−2e1]

)
= ψ2

[
1

T −N − 1
+

(T −N)(N − 1)− 2(N − 2)

(T −N)(T −N − 1)(T −N − 3)
+

2(T − 2)

(T −N)(T −N − 1)(T −N − 3)

]
=

(T − 2)ψ2

(T −N − 1)(T −N − 3)
, (A.54)

where the second last equality follows the results in Theorem 3.2 of Haff (1979). Therefore,

we have

E

[
(µ′Σ̂−11N)2

(1′N Σ̂−11N)2
1′N Σ̂−1ΣΣ̂−11N

]

=
T 2(T − 2)

(T −N − 1)(T −N − 2)(T −N − 4)

[
θ2 −

(
T −N − 4

T −N − 3

)
ψ2

]
. (A.55)

For the second term in (A.39), it can be expressed as

E

[
(1′N Σ̂−1ΣΣ̂−11N)2

T (1′N Σ̂−11N)2

]
= E

[
(1 + z′A−1

22 z)
2

Tu2

]

=

TE

[
1 + 2

(
u1

u2

)
+
(
u1

u2

)2
]

(T −N − 2)(T −N − 4)

=
T
[
1 + 2(N−1)

T−N−1
+ (N−1)(N+1)

(T−N−1)(T−N−3)

]
(T −N − 2)(T −N − 4)

=
T (T − 2)(T − 4)

(T −N − 1)(T −N − 2)(T −N − 3)(T −N − 4)
.(A.56)

Combining all the above results, the expected utility is explicitly evaluated as:

E
[
U
(c3
τ

Σ̂−11N µ̂g

)]
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=
c3T

τ

(
θ2

T −N − 2
− ψ2

T −N − 1

)
− c23T

2(T − 2)

2τ(T −N − 1)(T −N − 2)

×
[(

θ2

T −N − 4
− ψ2

T −N − 3

)
+

T − 4

T (T −N − 3)(T −N − 4)

]
. (A.57)

After some simplification, we obtain (83). This completes the proof. Q.E.D.
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Table 1
Percentage loss of expected utility due to estimation errors in means and covariance matrix of
returns

The table presents the percentage loss of expected utility from holding a sample tangency portfolio
of N risky assets with the parameters estimated using T periods of historical returns instead of
using the true parameters. The first column reports the percentage loss due to the use of the sample
average returns µ̂ instead of true expected returns. The second column reports the percentage loss
due to the use of the sample covariance matrix Σ̂ instead of the true covariance matrix. The third
column reports the interactive effect from using µ̂ and Σ̂. The fourth column reports the total
percentage loss of expected utility from using µ̂ and Σ̂. Panel A assumes the Sharpe ratio (θ) of
the N risky assets is 0.2 and Panel B assumes θ = 0.4.

Panel A: θ = 0.2

Percentage Loss of Expected Utility

N T µ̂ Σ̂ Interaction µ̂ and Σ̂

1 60 41.67 4.31 6.18 52.15
120 20.83 1.90 1.46 24.19
240 10.42 0.89 0.36 11.66
360 6.94 0.58 0.16 7.68
480 5.21 0.43 0.09 5.73

2 60 83.33 6.85 17.61 107.80
120 41.67 2.93 4.09 48.69
240 20.83 1.35 0.99 23.17
360 13.89 0.88 0.43 15.20
480 10.42 0.65 0.24 11.31

5 60 208.33 16.64 89.69 314.66
120 104.17 6.44 19.62 130.23
240 52.08 2.84 4.61 59.53
360 34.72 1.81 2.01 38.54
480 26.04 1.33 1.12 28.49

10 60 416.67 42.99 387.46 847.12
120 208.33 13.95 75.36 297.64
240 104.17 5.65 16.85 126.67
360 69.44 3.51 7.23 80.19
480 52.08 2.54 4.00 58.62

25 60 1041.67 336.67 5211.57 6589.91
120 520.83 55.53 591.64 1168.01
240 260.42 17.18 110.77 388.37
360 173.61 9.81 45.19 228.61
480 130.21 6.81 24.39 161.42
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Table 1
Percentage loss of expected utility due to estimation errors in means and covariance matrix of
returns (continued)

Panel B: θ = 0.4

Percentage Loss in Expected Utility

N T µ̂ Σ̂ Interaction µ̂ and Σ̂

1 60 10.42 4.31 1.55 16.27
120 5.21 1.90 0.37 7.47
240 2.60 0.89 0.09 3.58
360 1.74 0.58 0.04 2.36
480 1.30 0.43 0.02 1.75

2 60 20.83 6.85 4.40 32.09
120 10.42 2.93 1.02 14.37
240 5.21 1.35 0.25 6.81
360 3.47 0.88 0.11 4.46
480 2.60 0.65 0.06 3.32

5 60 52.08 16.64 22.42 91.14
120 26.04 6.44 4.90 37.39
240 13.02 2.84 1.15 17.01
360 8.68 1.81 0.50 11.00
480 6.51 1.33 0.28 8.12

10 60 104.17 42.99 96.86 244.02
120 52.08 13.95 18.84 84.87
240 26.04 5.65 4.21 35.91
360 17.36 3.51 1.81 22.68
480 13.02 2.54 1.00 16.56

25 60 260.42 336.67 1302.89 1899.98
120 130.21 55.53 147.91 333.65
240 65.10 17.18 27.69 109.98
360 43.40 9.81 11.30 64.51
480 32.55 6.81 6.10 45.47
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Table 2
Expected utilities of various portfolio rules with 10 risky assets when returns follow multivariate
normal distribution

The table reports the expected utilities (in percentages per month) of 14 portfolio rules that choose
an optimal portfolio of 10 risky assets and a riskless asset for different lengths of the estimation
period (T ). The excess returns of the 10 risky assets are assumed to be generated from a multivariate
normal distribution, with the mean and covariance matrix chosen based on the sample estimates
of 10 size-ranked NYSE portfolios. The investor is assumed to have a risk aversion coefficient
of three. The expected utilities of the first eight rules and the global minimum-variance rule are
obtained analytically. For the other five rules, the expected utilities are approximated using 100,000
simulations.

Portfolio Rule T = 60 T = 120 T = 180 T = 240

Parameter-certainty Optimal 0.419 0.419 0.419 0.419
Theoretical Optimal Two-fund 0.044 0.088 0.122 0.150
Theoretical Optimal Three-fund 0.133 0.168 0.191 0.209

1st Plug-in, Σ̂ −5.122 −1.531 −0.748 −0.411
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −4.936 −1.498 −0.735 −0.404
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −3.110 −1.156 −0.596 −0.329
Bayesian (diffuse prior) −2.996 −1.130 −0.584 −0.323
Parameter-free Optimal Two-fund −1.910 −0.879 −0.476 −0.263
Estimated Optimal Two-fund −0.185 −0.007 0.060 0.102
Uncertainty Aversion Two-fund −0.001 0.004 0.007 0.012
Global Minimum-Variance −0.152 −0.010 0.040 0.064

Jorion’s Shrinkage −0.899 −0.220 −0.030 0.062
Estimated Optimal Three-fund −0.343 −0.053 0.051 0.107
MacKinlay-Pástor −0.060 0.118 0.171 0.198

Portfolio Rule T = 300 T = 360 T = 420 T = 480

Parameter-certainty Optimal 0.419 0.419 0.419 0.419
Theoretical Optimal Two-fund 0.173 0.193 0.210 0.224
Theoretical Optimal Three-fund 0.224 0.237 0.248 0.258

1st Plug-in, Σ̂ −0.225 −0.107 −0.025 0.034
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −0.221 −0.104 −0.023 0.036
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −0.174 −0.072 0.000 0.054
Bayesian (diffuse prior) −0.170 −0.069 0.002 0.055
Parameter-free Optimal Two-fund −0.132 −0.043 0.022 0.070
Estimated Optimal Two-fund 0.133 0.157 0.177 0.194
Uncertainty Aversion Two-fund 0.017 0.024 0.032 0.040
Global Minimum-Variance 0.079 0.089 0.096 0.101

Jorion’s Shrinkage 0.117 0.155 0.182 0.203
Estimated Optimal Three-fund 0.143 0.169 0.189 0.206
MacKinlay-Pástor 0.213 0.223 0.230 0.235
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Table 3
Expected utilities of various portfolio rules with 25 risky assets when returns follow multivariate
normal distribution

The table reports the expected utilities (in percentages per month) of 14 portfolio rules that choose
an optimal portfolio of 25 risky assets and a riskless asset for different lengths of the estimation
period (T ). The excess returns of the 25 risky assets are assumed to be generated from a multivariate
normal distribution, with the mean and covariance matrix chosen based on the sample estimates
of Fama and French’s 25 size and book-to-market ranked portfolios. The investor is assumed to
have a risk aversion coefficient of three. The expected utilities of the first eight rules and the global
minimum-variance rule are obtained analytically. For the other five rules, the expected utilities are
approximated using 100,000 simulations.

Portfolio Rule T = 60 T = 120 T = 180 T = 240

Parameter-certainty Optimal 1.977 1.977 1.977 1.977
Theoretical Optimal Two-fund 0.241 0.559 0.778 0.937
Theoretical Optimal Three-fund 0.531 0.852 1.019 1.133

1st Plug-in, Σ̂ −46.367 −6.537 −2.305 −0.837
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −44.716 −6.387 −2.254 −0.812
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −12.247 −3.037 −1.072 −0.215
Bayesian (diffuse prior) −11.785 −2.955 −1.039 −0.197
Parameter-free Optimal Two-fund −2.736 −1.166 −0.289 0.214
Estimated Optimal Two-fund −0.047 0.415 0.668 0.851
Uncertainty Aversion Two-fund −0.038 0.071 0.181 0.320
Global Minimum-Variance 0.186 0.490 0.591 0.641

Jorion’s Shrinkage −3.692 −0.201 0.509 0.829
Estimated Optimal Three-fund −0.022 0.600 0.849 1.002
MacKinlay-Pástor 0.038 0.217 0.269 0.296

Portfolio Rule T = 300 T = 360 T = 420 T = 480

Parameter-certainty Optimal 1.977 1.977 1.977 1.977
Theoretical Optimal Two-fund 1.060 1.156 1.234 1.299
Theoretical Optimal Three-fund 1.221 1.290 1.347 1.395

1st Plug-in, Σ̂ −0.108 0.324 0.610 0.811
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −0.093 0.334 0.617 0.817
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) 0.266 0.574 0.788 0.945
Bayesian (diffuse prior) 0.277 0.582 0.793 0.949
Parameter-free Optimal Two-fund 0.537 0.760 0.924 1.048
Estimated Optimal Two-fund 0.991 1.101 1.190 1.262
Uncertainty Aversion Two-fund 0.466 0.599 0.716 0.816
Global Minimum-Variance 0.671 0.691 0.705 0.716

Jorion’s Shrinkage 1.018 1.145 1.238 1.309
Estimated Optimal Three-fund 1.114 1.200 1.271 1.330
MacKinlay-Pástor 0.311 0.321 0.329 0.334
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Table 4
Expected utilities of various portfolio rules with 10 risky assets when returns follow multivariate
t-distribution

The table reports the expected utilities (in percentages per month) of 14 portfolio rules that choose
an optimal portfolio of 10 risky assets and a riskless asset for different lengths of the estimation
period (T ). The excess returns of the 10 risky assets are assumed to be generated from a multivariate
t-distribution with five degrees of freedom, with the mean and covariance matrix chosen based on
the sample estimates of 10 size-ranked NYSE portfolios. The investor is assumed to have a risk
aversion coefficient of three. The expected utilities are approximated using 100,000 simulations.

Portfolio Rule T = 60 T = 120 T = 180 T = 240

Parameter-certainty Optimal 0.419 0.419 0.419 0.419
Theoretical Optimal Two-fund 0.051 0.093 0.127 0.153
Theoretical Optimal Three-fund 0.118 0.159 0.185 0.204

1st Plug-in, Σ̂ −6.223 −1.796 −0.874 −0.488
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −5.997 −1.758 −0.859 −0.480
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −3.786 −1.362 −0.701 −0.396
Bayesian (diffuse prior) −3.647 −1.332 −0.688 −0.389
Parameter-free Optimal Two-fund −2.330 −1.042 −0.564 −0.321
Estimated Optimal Two-fund −0.236 −0.026 0.052 0.097
Uncertainty Aversion Two-fund −0.001 0.004 0.008 0.013
Global Minimum-Variance −0.238 −0.041 0.022 0.052

Jorion’s Shrinkage −1.163 −0.297 −0.069 0.037
Estimated Optimal Three-fund −0.468 −0.096 0.027 0.090
MacKinlay-Pástor −0.095 0.105 0.164 0.192

Portfolio Rule T = 300 T = 360 T = 420 T = 480

Parameter-certainty Optimal 0.419 0.419 0.419 0.419
Theoretical Optimal Two-fund 0.175 0.194 0.210 0.223
Theoretical Optimal Three-fund 0.220 0.233 0.245 0.254

1st Plug-in, Σ̂ −0.279 −0.148 −0.057 0.006
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −0.275 −0.144 −0.055 0.008
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −0.222 −0.109 −0.029 0.027
Bayesian (diffuse prior) −0.218 −0.106 −0.005 0.029
Parameter-free Optimal Two-fund −0.175 −0.076 −0.027 0.046
Estimated Optimal Two-fund 0.129 0.154 0.175 0.191
Uncertainty Aversion Two-fund 0.019 0.027 0.035 0.044
Global Minimum-Variance 0.070 0.081 0.090 0.096

Jorion’s Shrinkage 0.099 0.141 0.171 0.193
Estimated Optimal Three-fund 0.131 0.159 0.181 0.198
MacKinlay-Pástor 0.208 0.219 0.227 0.232

55



Table 5
Expected utilities of various portfolio rules with 25 risky assets when returns follow multivariate
t-distribution

The table reports the expected utilities (in percentages per month) of 14 portfolio rules that choose
an optimal portfolio of 25 risky assets and a riskless asset for different lengths of the estimation
period (T ). The excess returns of the 25 risky assets are assumed to be generated from a multivariate
t-distribution with five degrees of freedom, with the mean and covariance matrix chosen based on the
sample estimates of Fama and French’s 25 size and book-to-market ranked portfolios. The investor
is assumed to have a risk aversion coefficient of three. The expected utilities are approximated
using 100,000 simulations.

Portfolio Rule T = 60 T = 120 T = 180 T = 240

Parameter-certainty Optimal 1.977 1.977 1.977 1.977
Theoretical Optimal Two-fund 0.287 0.592 0.791 0.938
Theoretical Optimal Three-fund 0.417 0.764 0.949 1.073

1st Plug-in, Σ̂ −68.535 −9.347 −3.495 −1.532
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −66.113 −9.142 −3.427 −1.499
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −18.376 −4.553 −1.849 −0.712
Bayesian (diffuse prior) −17.694 −4.440 −1.804 −0.687
Parameter-free Optimal Two-fund −4.278 −1.956 −0.785 −0.136
Estimated Optimal Two-fund −0.228 0.355 0.633 0.824
Uncertainty Aversion Two-fund −0.077 0.109 0.254 0.409
Global Minimum-Variance −0.071 0.338 0.486 0.559

Jorion’s Shrinkage −6.410 −0.871 0.161 0.601
Estimated Optimal Three-fund −0.426 0.402 0.721 0.907
MacKinlay-Pástor 0.001 0.199 0.258 0.288

Portfolio Rule T = 300 T = 360 T = 420 T = 480

Parameter-certainty Optimal 1.977 1.977 1.977 1.977
Theoretical Optimal Two-fund 1.049 1.137 1.212 1.274
Theoretical Optimal Three-fund 1.166 1.237 1.298 1.349

1st Plug-in, Σ̂ −0.587 −0.038 0.322 0.580
2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −0.568 −0.025 0.332 0.586
3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −0.097 0.288 0.555 0.753
Bayesian (diffuse prior) −0.082 0.298 0.563 0.759
Parameter-free Optimal Two-fund 0.264 0.536 0.736 0.890
Estimated Optimal Two-fund 0.962 1.068 1.156 1.229
Uncertainty Aversion Two-fund 0.558 0.686 0.797 0.886
Global Minimum-Variance 0.603 0.633 0.654 0.670

Jorion’s Shrinkage 0.847 1.007 1.123 1.213
Estimated Optimal Three-fund 1.036 1.131 1.210 1.274
MacKinlay-Pástor 0.305 0.316 0.324 0.330
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Fig. 1. Expected utility under various two-fund rules with 10 risky assets. The figure plots the
expected utility (in percentage monthly returns) of an investor using different two-fund portfolio
rules as a function of the length of the estimation period (T ). The investor has a relative risk
aversion of 3 and chooses an optimal portfolio of 10 risky assets and one riskless asset. The dashed
line shows the expected utility of an investor who invests in the ex ante tangency portfolio, which
has a Sharpe ratio (θ) of 0.2. The solid line shows the expected utility of an investor who knows
θ and invests an optimal proportion in the sample tangency portfolio. The dotted line shows the
expected utility of an investor who invests an optimal proportion in the sample tangency portfolio,
with the weight being only a function of N and T . The dashed-dotted line shows the expected
utility of an investor who holds the sample tangency portfolio with a weight determined by plugging
the sample means and covariance matrix of the returns into the optimal weight formula.
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Fig. 2. Expected utility under various two-fund rules with 25 risky assets. The figure plots the
expected utility (in percentage monthly return) The figure plots the expected utility (in percentage
monthly returns) of an investor using different two-fund portfolio rules as a function of the length
of the estimation period (T ). The investor has a relative risk aversion of 3 and chooses an optimal
portfolio of 25 risky assets and one riskless asset. The dashed line shows the expected utility of an
investor who invests in the ex ante tangency portfolio, which has a Sharpe ratio (θ) of 0.3. The solid
line shows the expected utility of an investor who knows θ and invests an optimal proportion in the
sample tangency portfolio. The dotted line shows the expected utility of an investor who invests
an optimal proportion in the sample tangency portfolio, with the weight being only a function of
N and T . The dashed-dotted line shows the expected utility of an investor who holds the sample
tangency portfolio with a weight determined by plugging the sample means and covariance matrix
of the returns into the optimal weight formula.
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Fig. 3. Representation of two estimators of squared population Sharpe ratio for different values of
squared sample Sharpe ratio. The figure plots two estimators of the squared population Sharpe
ratio of the tangency portfolio (θ2) as a function of its sample counterpart θ̂2 when there are 10
assets and the sample size is 100. The dotted line is for the estimator θ̂2

u, which is an unbiased
estimator of θ2. The solid line is for the adjusted estimator θ̂2

a that is due to Kubokawa, Robert,
and Saleh (1993).

59


