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Do Mutual Funds Time the Market?
Evidence From Portfolio Holdings

Abstract

Existing literature has found no evidence of market-timing ability by mutual funds using tests based

on fund returns. This paper proposes alternative market-timing tests based on observed fund holdings. The

holdings-based measures are shown to be more powerful than the return-based measures, and are not subject

to “artificial timing” bias. Applying the holdings-based tests, we find strong evidence of mutual fund timing

ability. Our findings also suggest that market-timing funds tend to have higher returns and trade more ac-

tively. Furthermore, they seem to have market-timing information beyond those common return-predictive

economic variables documented in the academic studies. Finally, we quantify the potential economic value

of market-timing as a contingent claim. The magnitude of the estimated values indicates that market-timing

is potentially an important investment strategy deserving more academic attention.



Two strands of finance literature stand in curious contrast to each other. On the one hand, many studies

have argued that aggregate stock market returns are predictable and that such predictability should have a

significant impact on an investor’s optimal asset allocation.1 On the other hand, there is scant evidence

that investors take advantage of such predictability in their portfolio decisions. In particular, earlier studies

dating back to Treynor and Mazuy (1966) and Henriksson and Merton (1981), and recent studies such as

Becker, Ferson, Myers, and Schill (1999) and Jiang (2003), all find that mutual funds on average do not

exhibit significant market-timing ability.2 Fund managers are perceived as more skillful and better informed

investors. If they cannot explore market return predictability, it is unlikely that anyone else could.3

The market-timing measures in existing studies are mainly based on fund returns. In this paper, we argue

that these measures may not be powerful enough to detect market-timing ability for the following reasons.

First, existing timing tests, such as those of Henriksson and Merton (1981) and Treynor and Mazuy (1966)

(hereafter “return-based measures”), are based on nonlinear relations between fund returns and market re-

turns. Fund returns are volatile with observations available often at low frequency and over a relatively

short time period. This limits the statistical power of such tests. Second, as Jagannathan and Korajczyk

(1986) point out, the return-based measures may lead to incorrect inference when fund managers engage

in dynamic trading or invest in securities with option-like features, a phenomenon known as the “artificial

timing” bias.

To get around these problems, we use data on portfolio holdings to examine mutual fund market-timing
1For evidence of market return predictability, see, for example, Campbell (1987), Campbell and Schiller (1988a, 1988b),

Cochrane (1991), Fama and French (1987, 1988, 1989), Fama and Schwert (1977), Ferson (1989), Keim and Stambaugh (1986),

Lamont (1998), Lewellen (1999), and Pontiff and Schall (1998). For how such predictability should affect an investor’s asset al-

location decisions, see, for example, Kendal and Stambaugh (1996), Barberis (2000), Balduzzi and Lynch (1999), Campbell and

Viceira (1999), and Campbell, Chan, and Viceira (2003).
2In addition, Graham and Harvey (1996), Aragon (2003), Fung, Xu, and Yau (2002), and Blake, Lehmann, and Timmermann

(1999) find no evidence of market-timing ability by investment newsletters, hedge funds, or pension funds. The only exception,

to our knowledge, is Bollen and Busse (2001) who find positive timing ability for a sample of 230 domestic equity funds at daily

frequency.
3One may argue that institutional constraints on mutual funds, such as no-short-sale, might prevent them from timing the

market. However, market-timing can be achieved by adjusting portfolio holdings and the cash component without short-selling any

securities.
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activities. We estimate the beta of a fund as the weighted average of betas of individual stocks held by

the fund, and then measure the relations between fund betas and market returns (hereafter “holdings-based

measure”). Several studies, including Grinblatt and Titman (1989, 1994), Grinblatt, Titman, and Wer-

mers (1995), Daniel, Grinblatt, Titman, and Wermers (1997), Wermers (2000), and Ferson and Khang

(2002), have used information on portfolio holdings to evaluate mutual fund performance, in particular

stock-selection ability. There are several empirical advantages when the holdings data is used to evaluate

market timing. First, the tests based on portfolio holdings are more powerful than those based on fund

returns. When estimating stock betas, we can use stock returns that typically are available at a higher fre-

quency and over a longer period than for fund returns. Even though individual stock betas are still measured

with errors, the estimated fund beta, as a weighted average over betas of a large number of stocks, is of much

higher accuracy. Second, this approach avoids the “artificial timing” bias. “Artificial timing” refers to the

scenario where fund managers change fund betas in response to past or contemporaneous market returns,

while true market timing refers to the case where fund managers adjust fund betas according to information

about future market returns. Since the fund beta is measured at the beginning of a holding period in our

study, its covariance with the holding-period market return is not subject to “artificial timing”.

We compute both return-based and holdings-based timing measures for a sample of 2,294 mutual funds

over the period from 1980 to 2002. These funds have information on portfolio holdings from Thomson Fi-

nancial and information on fund returns from CRSP. Consistent with the previous literature, the return-based

tests indicate that on average mutual funds exhibit slightly negative, although not statistically significant,

timing ability. The holdings-based tests, however, have very different results. With 1-month forecasting

horizon, the average timing measures are positive but not significant. When we extend the forecasting hori-

zons to 3-, 6-, and 12-month, the average timing measures become significantly positive. Furthermore,

the proportion of funds with strongly positive timing measures is substantially higher than what one would

expect from a sample of funds without timing ability. To take into account cross-fund correlations of tim-

ing measures, the statistical inference is based on a bootstrapping procedure which also addresses the final
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sample issue. Different methods of estimating stock betas and fund betas are employed and the results are

robust.

The evidence of significant timing ability is consistent across funds with different investment objectives.

However, the aggressive growth funds tend to be the most active market timers, followed by growth funds,

growth and income funds, with balanced funds the least active. We also find that market timing is associated

with certain fund characteristics. Active market timers tend to have higher returns. In addition, market

timers trade more actively, as measured by portfolio turnovers. Funds with no loads or lower loads also tend

to have better timing ability.

Given the evidence on market return predictability documented in academic studies, we explore whether

the market-timing activity of mutual funds is based on several known return-predictive economic vari-

ables. We find that fund betas are positively correlated with the aggregate dividend yield and the aggregate

earnings-to-price ratio, but there is no significant evidence that fund managers condition fund betas on other

economic signals such as the short-term interest rate, term spread or credit spread. More importantly, even

after controlling for all those economic variables, the evidence of mutual fund market-timing ability remains

very significant. This suggests that mutual fund timing decisions may be based on private information be-

yond the documented economic variables. Identifying such conditional information remains an interesting

and challenging research project.

With the strong evidence of positive timing ability for mutual funds, we further calibrate the potential

economic value of the market-timing strategy. Following Glosten and Jagannathan (1994), we quantify mar-

ket timing as a contingent claim on the market index. We find that the market-timing ability may contribute

to annual fund returns by as high as 1.23% for the median fund. The estimated values are likely not attained

by existing funds as we assume that funds continuously engage in market timing and there are no transaction

costs. The magnitude of the estimated value, nevertheless, indicates the potential importance of mutual fund

market-timing activities.

The remainder of the paper is organized as follows. Section I introduces both the return-based and
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holdings-based market-timing measures. Section II describes the data used in our analysis and the method-

ology for statistical inference. Section III reports the empirical results and performs robustness checks.

Section IV further discusses the characteristics of market timers, the conditioning information and the po-

tential economic value of market timing. Section V concludes.

I. Measures of Market Timing

A. Return-based Measures

Let rt and rmt denote the fund return and market return at time t. The Treynor-Mazuy market-timing

measure (see Treynor and Mazuy (1966)) is the estimated coefficient γ from the following regression:

rt = α + β0rmt + γr2

mt + et (1)

and the Henriksson-Merton measure (see Henriksson and Merton (1981)) is the estimated coefficient γ from:

rt = α + β0rmt + γ max(rmt, 0) + et (2)

where max(rmt, 0) is the positive part of the market excess return. These two measures are based on the

dynamic relations between the time-varying fund beta βt and the market return rmt:4

βt = β0 + γrmt + ηt for the Treynor-Mazuy measure (3)

βt = β0 + γIrmt>0 + ηt for the Henriksson-Merton measure (4)

where Irmt>0 is an indicator with value 1 when rmt > 0 and 0 otherwise. A significantly positive γ indicates

positive timing ability by mutual funds.

B. Holdings-based Measures

The return-based measures are useful when fund betas are not directly observed. However, when a fund’s

portfolio holdings are observed, we can estimate the fund beta and perform tests based directly on (3) and
4To see this, assume that the fund return follows the market model: rt = α + βtrmt + εt. Combine this with (3) and (4), we

obtain (1) and (2), respectively, with et = ηtrmt + εt.
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(4). To be specific, we estimate the fund beta as the weighted average of the beta estimates for stocks (and

other securities) held by the fund:

β̂t =

N∑

i=1

ωitb̂it (5)

where ωit is the portfolio weight for stock i at the beginning of period t, and b̂it is the estimated beta for

stock i at time t. As long as the stock beta estimates are unbiased, the fund beta is also unbiased. There are

several ways to estimate stock betas, which are detailed later in the paper.

In the spirit of (3) and (4), we measure market timing by estimating the coefficient γ directly from the

following regressions:

β̂t = α + γrmt + ηt (6)

β̂t = α + γIrmt>0
+ ηt (7)

The γ coefficients estimated from (6) and (7) are referred to as the holdings-based Treynor-Mazuy measure

and the holdings-based Henriksson-Merton measure, respectively.

C. Return-based Measures versus Holdings-based Measures

The main difference between the return-based measures and holdings-based measures hinges on their sta-

tistical properties and consequently the power of statistical inference. Suppose there are intra-period fund

returns in each period (e.g. daily fund returns during each month), estimating the fund beta βt each month

first and then using (6) or (7) to estimate γ is equivalent to substituting the βt equation into a fund-return gen-

erating process first and then estimating γ using (1) or (2). This result is derived in Amemiya (1978) under

a general setting of random coefficient models. In practice, however, the fund returns are often observed at

a low frequency, such as monthly or quarterly, and thus are not sufficient for the estimation of time-varying

fund betas. The advantage associated with the holdings-based measure is that with portfolio holdings, fund

betas can be estimated directly from stock betas, whereas stock betas can be estimated using higher fre-

quency of stock returns (e.g. daily returns). This typically leads to fund beta estimates with smaller standard
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errors. Relative to the conventional return-based measures in (1) or (2) which are often implemented using

the quarterly or monthly fund returns, the holdings-based measures using directly estimated fund betas are

in general more efficient statistically.

Formally, to compare the statistical properties we start with the benchmark in an ideal case where βt is

known. Let X be the vector of rmt and ι a vector of ones. The OLS estimator of γ based on model (3) is:

γ̂∗ = [(X − r̄mι)′(X − r̄mι)]−1(X − r̄mι)′(B − β̄ι) (8)

where B is the vector of βt, β̄ is the average of βt, and r̄m is the average of rmt. The variance of the

estimator is V ar(
√

T (γ̂∗ − γ)) = σ2
η[(X − r̄mι)′(X − r̄mι)]−1.

Of course, βt is unknown and has to be estimated in practice. When βt is estimated, the holdings-based

measures contain the estimation error of βt. Suppose β̂t = βt + ξt, where ξt is independent of ηt with

variance σ2

ξ . Using (6), the OLS estimator for γ (denoted by γ̃) is:

γ̃ = [(X − r̄mι)′(X − r̄mι)]−1(X − r̄mι)′(B̂ − β̄tι) (9)

where B̂ is the vector of β̂t, and β̄t is the average of β̂t. The variance of the estimator is V ar(
√

T (γ̃ −

γ)) = (σ2
η + σ2

ξ )[(X − r̄mι)′(X − r̄mι)]−1 > V ar(
√

T (γ̂∗ − γ)). The additional variance component is

[(X − r̄mι)′(X − r̄mι)]−1σ2

ξ which depends on the magnitude of the βt estimation error.

For the return-based measures, let Y be the vector of r2
mt, and Z be X augmented with a vector of ones

(ι): Z = [ι, X], and finally, R the vector of rt. The OLS estimator of γ under the Treynor-Mazuy measure

in model (1) is given by:

γ̂ = [Y ′M1Y ]−1Y ′M1R (10)

where M1 = I − Z(Z ′Z)−1Z ′, and I is an identity matrix. The variance of the estimator is V ar(
√

T (γ̂ −

γ)) = σ2
ε (Y

′M1Y )−1 + σ2
η(Y

′M1Y )−1Y ′M1diag(X2
1
, · · · , X2

T )M1Y (Y ′M1Y )−1, where σ2
η and σ2

ε are

the variances of ηt and εt, respectively. It can be shown that V ar(
√

T (γ̂−γ)) ≥ σ2
ε [Y

′M1Y ]−1 +σ2
η[(X −

r̄m)′(X − r̄m)]−1 > V ar(
√

T (γ̂∗ − γ)). In other words, the return-based measure γ̂ is less powerful than
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that based on γ̂∗. It also indicates that the introduction of the fund return generating process in the test is the

main contributor to the power loss of γ̂. The additional variance component of γ̂, [Y ′M1Y ]−1σ2
ε , is directly

determined by σε.

Therefore, whether the return-based measures or the holdings-based measures are more powerful de-

pends mainly on the relative magnitude of the fund return noise (εt) versus the beta estimation error (ξt). In

practice, the magnitude of ξt is often much smaller than that of εt, and therefore the holdings-based mea-

sures are likely to be more efficient. The main reason is as follows. Fund returns tend to be volatile, and the

observations are usually available at monthly frequency over a limited period of fund life. On the other hand,

under the holdings-based measures the fund beta is estimated from individual stock betas. When estimating

stock betas, we are not constrained by the length of fund life and can take advantage of the stock return

data available at higher sampling frequencies (e.g. daily frequency). It is well documented that beta as a

variance-covariance measure can be better estimated from data sampled at high frequency, see, for example,

earlier studies by Merton (1980), and French, Schwert, and Stambaugh (1987), and recent development in

Andersen, Bollerslev, Diebold, and Labys (2003).

We perform a simulation to compare the empirical properties of return-based and holdings-based timing

measures. The details of the simulation design are included in Appendix A. In the simulation we take into

account two realistic features of the data. First, the fund return data is available at the monthly frequency,

while the portfolio holdings data is available at the quarterly frequency. Second, the portfolio holdings data

exists for a shorter time period than the fund return data. The simulation results reported in Table A.I for

the return-based versus holdings-based timing measures confirm our conjecture. The standard errors of the

return-based measure based on (1) are several times larger than those of the holdings-based measure based

on (6).

Another difference between the return-based measures and the holdings-based measures is that the for-

mer are subject to the “artificial timing” bias, as pointed out by Jagannathan and Korajczyk (1986), while

the latter are not. To illustrate this, consider a fund manager without timing ability. Suppose the fund man-
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ager underwrites a call option on the market index and at the same time keeps the beta of the rest of the

portfolio constant. Such a strategy may enhance fund returns when the market turns out to be less volatile

than expected. The beta of the fund, however, is affected through the delta of the short call position (i.e.,

the sensitivity of the value of the position to changes in market index). Since the delta of a short call option

decreases when the market goes up, there is a negative correlation between the fund beta and the market

return. The regressions based on (1) and (2) would result in a negative γ and a misleading conclusion of

“negative timing”.

While we cannot infer that the findings of “negative timing” in previous empirical studies are due to

the above derivatives strategy, in practice many funds do engage in various hedging strategies using either

derivatives or derivatives-like portfolio insurances.5 It is also well-known that derivative-type payoff patterns

can also be generated via dynamic trading on the underlying securities. Some commonly used investment

strategies, seemingly innocuous, can also generate a nonlinear relationship between fund returns and market

returns. For example, a “positive-feedback” manager who increases market exposure after the market moves

up has a positive γ based on (1) or (2). Similarly, a contrarian manager who “buys low and sells high” at

the market level has a negative γ using the same regressions, regardless of whether he or she has any timing

ability.

The holdings-based measures do not suffer from this problem. When computing the fund beta in (5),

we use the beginning-of-period portfolio weights. Therefore the fund beta is measured at the beginning of a

period. The regression tests whether the fund beta is correlated with the subsequent market returns instead

of contemporaneous market returns. Any positive or negative covariance between fund beta and market

returns clearly cannot be attributed to “artificial timing”.6

There is also a third relevant issue. Fund returns are usually available at the monthly frequency. Goetz-

mann, Ingersoll, and Ivkovich (2000) show that tests based on monthly fund returns cannot detect daily or
5See, for example, Koski and Pontiff (1999) for the use of derivatives by mutual funds.
6In addition, the holdings-based measures are not biased by “window dressing” activities since “window dressing” is not based

on future market returns.
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weekly market-timing activities. On the other hand, for holdings-based measures, the forecasting horizon

can be daily or weekly. As the market returns are available at these frequencies, it is possible to examine

market-timing activities over shorter horizons, although this is not the focus of our paper.

II. Data and Methodology

A. The Data

We combine two mutual fund datasets in our analysis. The first is the fund holdings dataset from Thomson

Financial (hereafter the “Thomson dataset”). Its predecessor is the CDA/Spectrum data used by a number

of empirical studies, such as Daniel, Grinblatt, Titman, and Wermers (1997), Grinblatt and Titman (1989,

1993), and Wermers (2000, 2003). The Thomson dataset contains information on portfolio holdings for

equity mutual funds investing in the US market starting from 1980. Most mutual funds in the Thomson

dataset are US-based. However, there are also a number of foreign-based, mostly Canadian, funds. The

data frequency is mostly quarterly, although for some funds and in early years only semi-annual portfolio

information is available. The second dataset is the CRSP mutual fund dataset, which has information on

monthly returns and total net assets for all US-based mutual funds, starting from 1962. We merge these two

datasets to get information on both the stock holdings and returns for US domestic equity funds. The CRSP

dataset is free of survivorship bias. We are not aware of any survivorship problem in the Thomson dataset

either. As noted by Daniel, Grinblatt, Titman, and Wermers (1997), its predecessor, CDA/Spectrum, does

not have a survivorship problem. However, funds are added to the Thomson dataset at a slower pace than

to the CRSP dataset. Therefore, a recently started fund may be included in CRSP but not yet appears in

Thomson.

In the Thomson dataset, funds are classified into nine categories according to their self-declared invest-

ment objectives. Since our focus is on US equity funds, we only include funds with one of the following

four investment objectives: a) aggressive growth, b) growth, c) growth and income, and d) balanced. To

make sure that the investment objective codes are accurate in the Thomson dataset, we screen fund names
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and check alternative sources such as Morningstar and Yahoo mutual fund websites as well as websites

of fund management companies to determine the true investment objective of a fund and remove all index

funds, foreign-based funds, US-based international funds, fixed-income funds, real estate funds, precious

metal funds, and variable annuities from the sample.

We follow a few additional steps to further clean the Thomson dataset. Sometimes one fund has multiple

fund identification numbers. This often occurs when a fund alternates using fund names with and without

abbreviations when they report portfolio holdings. We manually identify such cases to combine the multiple

identification numbers into one. In addition, when a fund changes its name, the identification number in the

Thomson dataset can change, but the identification number in CRSP may remain the same. In this case we

adjust the Thomson data according to the CRSP criteria. Finally, if a fund ceases to exist, its identification

number may be re-assigned to another fund after some time. To avoid mixing two different funds together,

we identify all the cases where there is a gap of over one year between two consecutive reporting dates for

portfolio holdings under the same identification number, and then check whether the identification number

has been recycled. To ensure the accuracy of the holdings-based timing measures, we require funds to have

a minimum of 8 quarters of holdings data.

In the CRSP dataset, if a fund has multiple share classes, each share class has a unique identification

number. These multiple share classes have the same portfolio compositions but may differ in sales charges or

targeted investor clientele. In the Thomson dataset, they are treated as a single fund. We therefore combine

multiple share classes in the CRSP data into a single fund, and calculate the weighted average returns of the

fund using the total net asset values of the share classes as the weights. In addition, to ensure the accuracy

of the return-based timing measures, we require funds to have at least 24 monthly return observations.

The Thomson and CRSP datasets use different fund identification number systems which cannot be

matched to each other by any automatic scheme. We manually match funds between the two databases

based on (1) fund names and (2) fund ticker symbols.7 To ensure matching quality, we also compare the
7Fund ticker symbols become available in the Thomson dataset starting in January 1999.
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investment objective, management company name, and total net assets information. The final matched

database has 2,294 unique funds with information on both portfolio holdings and returns.8

We use the CRSP value-weighted index return as a proxy for market returns. Individual stock returns,

and the 1-month T-bill yields (our proxy for the risk-free rate) are also from CRSP. We also obtain obser-

vations of several economic variables that are documented in the literature as predictive of market returns,

namely the term spread, credit spread, aggregate dividend yield on S&P 500 index, and earnings-to-price

ratio on S&P 500 index. They are from DRI/CITIBASE.

Table I reports the summary statistics for our mutual fund sample during the period from 1980 to 2002.

Out of a total of 2,294 funds, more than half (1,390) are growth funds. There are 255 aggressive growth

funds, 411 growth and income funds, and 208 balanced funds. By averaging first over the times series data

of each fund and then averaging across funds, we obtain the following characteristics: the average total

net assets (TNA) of the funds in our sample is $482.60 million, with an annual return of 9.96%, an annual

turnover ratio of 0.94, an annualized load of 0.30%,9 and an annual expense ratio of 1.31%. The funds invest

74.73% of assets in common stocks. In addition, the average fund age, calculated as the time between the

first and last monthly return observations in the CRSP dataset, is 13.46 years. This number appears to be

higher than that reported in the previous literature, which is likely due to the fact that we have aggregated

over different share classes to a single fund. The mean number of stocks held in a fund is 102.15, while the

median number is 61.90. For a typical fund, we have 131.96 months of return data and 27.24 quarters of

portfolio holdings data during the sample period.
8We compare the number of mutual funds in our final sample with those in other studies that also use matched data from CRSP

and Thomson/CDA. Wermers (2000) combines the CDA data with the CRSP dataset for the period between 1975 and 1994. His

sample contains 1,788 equity funds. Kacperczyk, Sialm, and Zheng (2003) match the CRSP dataset with the Thomson dataset for

the period between 1984 and 1999 and end up with 1,971 unique equity funds. Cohen, Coval, and Pastor (2004) also match the

Thomson dataset with the CRSP dataset for the period between 1980 and 2002Q2. They report 235 matched funds at the end of

1980 and 1,526 matched funds in 2002Q2. It appears that our mutual fund sample is at least as inclusive as those in the existing

literature.
9Following Sirri and Tufano (1998), the annualized load is the total load divided by 7.
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B. Statistical Inference: The Bootstrapping Approach

We now describe the methodology used in this paper for statistical inference based on the cross-sectional

distribution of the timing statistics.

Consider the holdings-based measure (γ̂) from (6) as an example. When there is only one fund, one

can make statistical inference on whether it has any significant timing ability based on the t-statistic of γ̂.

However, when there are a large number of funds, even though none of them has timing ability, just by

random chance there will be some funds with significant t-statistics. Therefore we can no longer single

out a fund and make inference based on its timing measure alone. This is analogous to the data-snooping

problem discussed in Lo and MacKinlay (1990), Sullivan, Timmermann, and White (1999), and Kosowski,

Timmermann, White, and Wermers (2001). One valid way of making inference is to test whether all the

timing statistics are jointly zero. However, the usual joint test (e.g., the Wald test) requires inversion of the

covariance matrix for the timing statistics. When the number of funds is large and the length of the time

series data is short, the covariance matrix is likely to be singular. Such a test is therefore infeasible.

In this paper, we base the statistical inference on the cross-sectional distribution of the timing statistics.

In other words, we examine whether the distribution of the timing statistics is significantly different from

what one would expect under the null hypothesis that no fund has timing ability. We focus on the following

cross-sectional statistics: the mean, median, standard deviation, skewness, kurtosis, the quartiles at 25% and

75%, as well as the extreme percentiles at 1%, 5%, 10%, 90%, 95%, and 99%. The statistical significance

at those extreme percentiles can tell us whether there are funds with strongly positive timing ability and

whether there are funds with perversely negative timing ability.

There are two additional issues associated with the statistical inference based on the cross-sectional dis-

tribution of the market-timing measures. One is the violation of the i.i.d. assumption across funds. The

other is the finite sample property of the test statistics. Consider the t-statistics for the timing measures,

which are asymptotically normal under quite general conditions. If the t-statistics are further i.i.d. across

funds, then their cross-sectional properties are easy to obtain. For example, the 90th percentile for the t-
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statistics of 1,000 funds should follow asymptotically the distribution of the 90th percentile of 1,000 i.i.d.

standard normal random variables. However, because the funds hold similar stocks, their betas are corre-

lated. As a consequence, the timing statistics are correlated across funds as well. In this case, although

the distribution for the 90th percentile statistic may still be asymptotically normal, the critical values under

the i.i.d. assumption are no longer valid. This issue is further complicated by the fact that funds may exist

for only a short period of time and some funds may not overlap with each other at all. The finite sample

distributions for the cross-sectional statistics, particularly those extreme percentiles, may differ significantly

from their asymptotic ones. To address both issues, we resort to a bootstrapping approach similar to that

proposed in Kosowski, Timmermann, White, and Wermers (2001). In the following, we explain in detail the

bootstrapping approach used in this paper.

First consider the holdings-based measure. Let bt = (β̂1t, β̂2t, ..., β̂Kt) denote the estimated betas for

K funds at the beginning of period t and rmt the market return over the period t to t + 1. Let Γ(bt, rmt)

be a cross-sectional statistic (say, the 90th percentile) for the holdings-based measure (γ̂ or its t-statistic)

computed using the sample fund betas bt and market returns rmt. In each bootstrap, we keep bt unchanged

but randomly resample the market returns r∗mt. With bt and r∗mt we compute the holdings-based measure

for all funds and calculate the bootstrapped cross-sectional statistic Γ∗

j (bt, r
∗

mt). This procedure is repeated

for a large number (J) of times to obtain a series of Γ∗

j (bt, r
∗

mt), j=1, ... J. Since the market returns are

randomly resampled, the fund beta bt should bear no relationship with the bootstrapped market return r∗mt.

As the procedure preserves the covariance structure for bt, the distribution of Γ∗

j (bt, r
∗

mt) approximates the

distribution of Γ(bt, rmt) under the null hypothesis of no timing ability with correlated fund betas. We

compute the bootstrapped p-value for Γ(bt, rmt) as:

p =
1

J

J∑

j=1

IΓ∗

j
>Γ (11)

where IΓ∗

j
>Γ is an indicator function with value 1 if Γ∗

j (bt, r
∗

mt) > Γ(bt, rmt) and 0 otherwise.

For the return-based measure, we adopt a parametric bootstrap approach. First, given fund returns, we
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estimate the following model for each fund:

rt = α + β0rmt + et (12)

We retain the OLS estimates of parameters α̂ and β̂0, as well as the residuals êt for all the funds. Then, we

resample without replacement the market returns r∗mt and construct the bootstrapped fund returns, r∗t , as:

r∗t = α̂ + β̂0r
∗

mt + êt (13)

Let r∗t denote the vector of bootstrapped returns to all funds in period t. With r∗t and r∗mt we estimate the

return-based timing measures for all funds, and calculate the bootstrapped cross-sectional statistic Γ∗

j (r∗t , r∗mt).

The distribution of Γ∗

j (r∗t , r∗mt) is obtained after a large number of bootstraps. Since r∗mt is drawn randomly,

(13) ensures that γ = 0 in the bootstrapped data and at the same time preserves the covariance structure

of fund returns under the null hypothesis. We then compute the return-based timing measure γ using boot-

strapped fund returns and market returns, with the bootstrapped p-value computed similarly as in (11).

The timing measures (γ̂) are non-pivotal statistics and heteroscedastic across funds as their distributions

depend on nuisance parameters such as the variance of the error terms. On the other hand, their t-statistics

are pivotal and have asymptotic standard normal distributions. Statistical theory (e.g. Hall (1992)) sug-

gests that bootstrapped pivotal statistics have better convergence properties. This makes the cross-sectional

inference based on t-statistics more efficient than that based on γ̂ estimates. Therefore, while we have

bootstrapped p-values of the cross-sectional statistics for both γ̂ and their t-statistics, we focus more on the

latter.

It is noted that in the above bootstrapping procedure, while the market returns are resampled, we have

kept bt and êt fixed. As the length of the time series data varies across funds, it is difficult to jointly resample

bt (or êt) for all funds while keeping the length of the bootstrapped time series fixed for any given fund.

However, performing the joint resampling procedure for a subsample of funds with relatively long time

series observations, we find no material changes for the bootstrapped distributions, and consequently no

material changes for the statistical inference.

14



III. Empirical Results of Market Timing

A. Return-based Measures

To obtain the return-based measures, we perform regressions (1) and (2) using monthly fund returns and

market returns to obtain the estimate of γ̂ for each fund. The t-statistic for γ̂ is computed using the Newey-

West heteroscedasticity and autocorrelation-consistent variance estimator, with a lag order of 6, which is

equivalent to a 6-month time lag. We then calculate the statistics (1, 5, and 10th percentiles, 1st quartile,

mean, median, 3rd quartile, 90, 95, and 99th percentiles, standard deviation, skewness, and kurtosis) on

the cross-sectional distribution of γ̂ as well as the t-statistics. The statistical inference is based on the

bootstrapped p-values following the procedure described in Section II.B with 2,000 replications.

Figure 1 plots the density of the cross-sectional distribution of the t-statistics estimated from all funds,

together with that of the bootstrapped t-statistics. Both density functions are estimated using a Gaussian

kernel following the bandwidth choice of Silverman (1986). The comparison of these two density functions

provides an informal but intuitive inference about the timing ability of the mutual funds. For the Treynor-

Mazuy t-statistics, the sample density plot is visibly left-shifted relative to the bootstrapped one, indicating

somewhat overall negative timing ability. For the Henriksson-Merton t-statistics, the density plot is also

left-shifted, but to a lesser extent.

Table II reports the cross-sectional statistics for the return-based measures, the t-statistics, and their

corresponding bootstrapped p-values. Consistent with the previous literature, the mean and median for the

timing statistics are slightly negative, but not statistically significant based on the bootstrapped p-values.

The cross-sectional standard deviations for both the Treynor-Mazuy and the Henriksson-Merton t-statistics

are substantially higher than those under the null. For the Treynor-Mazuy t-statistics, the cross-sectional

kurtosis is significantly higher. However, none of the extreme percentiles, the lower ones (1, 5 and 10th)

and the higher ones (90, 95, and 99th), are statistically significant. In summary, the return-based measures

do not provide clear evidence of positive or negative timing ability. Of course, as discussed in Section II.C,

this is quite possibly due to their lack of statistical power.
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B. Holdings-based Measures

To obtain the holdings-based measures, we first focus on the Treynor-Mazuy measure in (6), with monthly,

quarterly, semi-annual, and annual forecasting horizons. In other words, the market return rmt is measured

for 1-, 3-, 6-, and 12-month after the reporting date of portfolio holdings. The betas of individual stocks

are estimated on a rolling basis using the 12-month daily returns prior to the date of portfolio holdings. To

account for the effect of nonsynchronous trading, we estimate the market model for each stock using market

returns up to five daily leads and five daily lags, in addition to the contemporaneous term. That is,

riτ = ai +
5∑

q=−5

biqrm,t−q + eiτ (14)

Following Dimson (1979), the stock beta is the sum of the estimated coefficients b̂iq, q=-5, ..., 5:

b̂i =
5∑

q=−5

b̂iq (15)

We require a stock to have at least 60 daily observations during the estimation period, otherwise we assume

a value of one for the stock beta.10 Non-stock securities are assumed to have a beta of zero.

The portfolio betas are then computed according to (5), and the timing coefficient γ is estimated from

(6) using OLS. To account for heteroscedasticity and autocorrelation, the t-statistic for γ̂ is computed using

the Newey-West covariance estimator with a lag order of 2, which is equivalent to a 6-month time lag as in

the return-based regressions. Finally, the bootstrapped p-values for the cross-sectional statistics are obtained

following the procedure described in Section II.B.

Figure 2 plots the density of the cross-sectional distribution of the t-statistics estimated from all funds,

together with that of the bootstrapped t-statistics. The density functions are estimated the same way as in

the case of return-based measures. Clearly, for all four forecasting horizons (1-, 3-, 6-, and 12-month),

the sample density functions are right-shifted relative to the bootstrapped ones, indicating overall positive

timing ability by mutual funds.
10We set the beta to one here since the unconditional expectation for stock betas is close to one. We also consider alternative beta

values for stocks with insufficient data. See the discussion in Section III.C.4.
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Table III reports the cross-sectional statistics for γ̂ as well as their t-statistics. At the 1-month forecast-

ing horizon, the mean and median t-statistics are positive, but not statistically significant according to the

bootstrapped p-values. None of the extreme percentiles is statistically significant either. At the 3-month

forecasting horizon, however, the bootstrapped p-values for the mean, median, the 25, 75, 90, 95, and 99th

percentiles all become much smaller. The same is true for those cross-sectional statistics at the 6- and 12-

month forecasting horizons. Therefore, at the intermediate horizons of 3 to 12 months, the holdings-based

measures provide clear evidence of positive timing ability by mutual funds, with some funds exhibiting

strong positive timing ability. There is no evidence that some funds have perversely strong negative timing

ability based on the bootstrapped p-values for the lower extreme percentiles (1, 5, and 10th). Finally, we

note that since γ̂ is heteroscedastic across funds, the kurtosis for the cross-sectional distribution of γ̂ is very

large. In contrast, the kurtosis for the pivotal t-statistics is quite small.

C. Robustness Check

In this section, we perform robustness checks on the results reported in the previous section, with a series of

variations in the estimation and testing procedure.

1. Alternative Stock Beta Estimates for Holdings-based Measures

We perform the holdings-based analysis using two alternative methods to estimate individual stock betas.

First, we use monthly returns instead of daily returns, and perform the following regression:

riτ = ai + bi1rmτ + bi2rmτ−1 + eiτ (16)

The estimated stock beta is then b̂i = b̂i1 + b̂i2. The regressions are performed on a rolling basis using the 60

monthly stock returns prior to the date of portfolio holdings. We require a stock to have at least 12 monthly

return observations, otherwise we assume a value of one for the stock beta.

Second, we continue to use the model (14) with daily returns. However, the rolling regression is per-

formed using the 3-month, instead of 12-month, daily returns prior to the date of portfolio holdings. A

minimum of 22 daily returns are required, otherwise we assume a value of one for the stock beta.

17



The two alternative estimators may capture different time series features of the stock betas. Since betas

are time-varying, the estimator from 5 years of monthly data may better capture the low-frequency com-

ponent, while the estimator from 3 months of daily data is more likely to capture the short-term dynamic

component.

Table IV reports the cross-sectional distribution of the t-statistics for the holdings-based measure with

two alternative stock beta estimators. Again we test the timing ability for 1-, 3-, 6-, and 12-month forecasting

horizons . When stock betas are estimated using 3 months of daily data, the results are generally consistent

with those reported in Table III. At the 1-month horizon, there is no significant evidence of timing. At 3-,

6-, and 12-month horizons, there is evidence of positive timing ability by mutual funds, and also evidence

of strong timing ability for certain funds. When stock betas are estimated using 5 years of monthly data, the

results are consistent with those in Table III for 1-, 3-, and 6-month horizons. At the 12-month horizon, the

sample mean and median t-statistics are no longer significant. But the sample statistics for the 75, 90, 95,

and 99th percentiles remain significantly higher than the bootstrapped ones.

2. The Holdings-based Henriksson-Merton Measure

We also perform analysis using the holdings-based Henriksson-Merton timing measure based on (7), with 1-,

3-, and 6-month forecasting horizons. The 12-month horizon is not performed because at this horizon market

returns are mostly positive, and the indicator function Irmt>0 has mostly a value of one. The individual stock

betas are estimated using 1 year of daily returns, 5 years of monthly returns, and 3 months of daily returns.

The results are reported in Table V. At the 1-month horizon, the mean and median t-statistics are positive

but not significant. The extreme percentiles are not significant either. At the 3-month horizon, the p-values

for the mean and median t-statistics are smaller than for the 1-month horizon but still above 10%. There is

some evidence of significant timing at higher extreme percentiles. For example, when the stock betas are

estimated from the past 3-month daily returns, the 90 and 95th percentile statistics have p-values of 0.09.

At the 6-month horizon, we find significantly positive mean and median t-statistics, except when the stock

betas are estimated using the past 5-year monthly returns. Under all three stock beta estimators, the p-values
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for the 75, 90, 95, and 99th percentile statistics are very small.

In summary, under the holdings-based Henriksson-Merton measure, the evidence of positive timing

ability is slightly weaker, but remains generally consistent with that under the holdings-based Treynor-

Mazuy measure. There is a reasonable explanation for the weaker evidence using the Henriksson-Merton

type measure. Model (7) assumes that fund managers condition fund betas only on the binary signal of

whether or not the future market return is positive. If the true data-generating process for the fund beta is

(3), the test based on (7) has relatively low power.

3. Return-based Measures: Extended Forecasting Horizons

Comparing the results in Tables II and III, one may notice that at 1-month forecasting horizon, the evidence

of timing is weak for both return-based and holdings-based measures. Stronger evidence of timing in Table

III appears to be obtained using longer forecasting horizons. Existing literature has implicitly focused only

on the 1-month forecasting horizon when using the return-based measures. An interesting question naturally

arises: if we extend the forecasting horizons, will the results for the return-based measures be consistent with

the holdings-based measures?

We aggregate monthly returns into overlapping 3-, 6-, and 12-month returns and then perform regres-

sions (1) and (2) using the aggregated returns. The results are reported in Table VI. Interestingly, we do find

some evidence of positive timing ability. For example, although at the 3-month horizon the mean and median

t-statistics are still negative, at the 6- and 12-month horizons they become positive. At the 6-month horizon,

the p-values for the 90, 95, and 99th percentile statistics become very small for both the Treynor-Mazuy and

Henriksson-Merton measures. At the 12-month horizon, we do not calculate the Henriksson-Merton mea-

sure due to the lack of variation in the value of the indication function Irmt>0. But for the Treynor-Mazuy

measure, the p-values indicate that the 75, 90, and 95th percentile statistics are significantly higher than the

bootstrapped ones.

Overall, due to the lack of statistical power, the evidence of positive timing for the return-based measures

is weaker than that for the holdings-based measures. With extended horizons, the return-based measures are
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more agreeable with the holdings-based measures. By focusing only on the monthly horizon, we could have

missed some important aspects of mutual fund market-timing activity.

4. Other Issues

In addition to the above robustness checks, a few other variations in the estimation and testing procedure are

also considered. For brevity, we only summarize them as follows.

First, for the results reported in Table III, IV and V, we impose minimum requirement of stock returns

when estimating individual stock betas. When such requirement is not met, we assume a value of one for

the stock beta. In addition, when we cannot match a stock in fund holdings with the CRSP stock return

data, we also assume a value of one for the stock beta. Such stocks account for a very small portion of

fund holdings in value. To ensure the robustness of our results, we also experiment with the following

variations in handling unmatched stocks or stocks with insufficient data: (1) setting their values to zero, and

(2) estimating their betas using the post forecasting-period stock returns whenever they are available. The

results are shown to be robust.

Second, when computing the Newey-West heteroscedasticity and autocorrelation-consistent t-statistics

of the timing measures, we use 6 lags for the return-based measures and 2 lags for the holdings-based

measures. Both are equivalent to a 6-month time lag. As the regressions involve overlapping data, the

lag orders may not be sufficiently high to capture serial correlations in the data when we examine long

forecasting horizons, such as 12-month. Since the bootstrapping procedure is also based on overlapping

data, the bootstrapped p-values and therefore the statistical inference should be robust to the choice of lag

order. As an extra caution, we also set the lag order equal to larger values with the time lag up to 12-month

as well as a data-dependent value of 0.5T 1/3, and the resulting p-values are indeed similar.

Finally, we also perform market-timing analysis in the presence of additional factors other than the

market return, namely the size and book-to-market factors (SMB and HML), and find no material changes

in our results.
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IV. Fund Characteristics, Conditioning Information and Economic Value

of Market Timing

A. Characteristics of Market Timers

To examine whether there is any systematic difference in market-timing activities across funds of different

investment styles, we perform holdings-based timing analysis within each group with different investment

objectives, namely aggressive growth, growth, growth and income, and balanced.

Table VII reports the cross-sectional distribution of the t-statistics for the holdings-based Treynor-Mazuy

timing measure, where stock betas are estimated using the past 12 months of daily returns. Bootstrapped

p-values are also reported. At the 1-month horizon, growth, growth and income, and balanced funds do not

have significant evidence of timing ability. For the balanced funds, the mean and median t-statistics are even

slightly negative. However, for aggressive growth funds, they are significantly positive. The 75, 90, 95, and

99th percentile statistics are significantly higher than the bootstrapped ones. At the 3-, 6- and 12-month

forecasting horizons, there is evidence of positive average timing ability in all fund groups. The p-values for

the higher extreme percentiles are mostly small, indicating that there exist some funds in each group with

strong timing ability. Ranking funds according to the mean and median t-statistics, we find that aggressive

growth funds are the most active market timers, followed by the growth funds, growth and income funds,

and the balanced funds. The p-values reveal the same pattern.

Next, we examine whether the market-timing activities are associated with a few other fund character-

istics. Our hypotheses are as follows. First, smaller funds may be more flexible in adjusting fund betas

and therefore may be more active market timers. Second, a successful market timer may have higher total

returns. Third, funds with strong timing ability may be able to charge higher fees, leading to higher expense

ratios. Fourth, active timers trade more aggressively, leading to higher turnover ratios. Fifth, some funds

impose higher loads to discourage investors from getting in and out of the funds frequently. Those funds are

more likely to invest in illiquid securities and less likely to time the market.

We test these hypotheses using the following panel data regression that intends to gauge the effect of
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various fund characteristics on the fund timing measure:

β̂it = ai + (b0 + b1Turnover + b2Load + b3Expense + b4RET + b5 ln(TNA))rmt + eit (17)

where β̂it is the beta estimate of fund i with stock betas estimated using the past 12-month daily returns,

Turnover is the annual turnover ratio, Load is the annualized load of a fund, Expense is the annual expense

ratio, RET is the fund return, and ln(TNA) is the natural log of the total net assets value. The panel data

model is specified with fixed effects ai to capture the individual fund characteristics. Turnover, Load,

Expense, RET, and TNA are the averages over their respective time series for each fund during the sample

period. The panel data in our sample is unbalanced as not all funds co-exist during the entire sample period.

Table VIII reports the coefficient estimates with t-statistics in the parentheses next to the coefficient esti-

mates. The error term eit in the panel data model is assumed to have a flexible structure with cross-sectional

heteroscedasticity and correlation as well as autocorrelation. The standard errors of the coefficient estimates

are estimated following the robust procedure in Chamberlain (1985). For all four forecasting horizons, two

variables emerge with consistently high t-statistics: Load and RET. The t-statistics for Turnover are high in

three out of four horizons. Expense and TNA occasionally have high t-statistics but not consistent across

horizons. Thus, the results seem to support our Hypotheses 2, 4, and 5. That is, market timing ability does

contribute to higher returns of a fund, active timers tend to trade more actively, and they also tend to be

no-load or low-load funds.

B. Conditioning Information of Mutual Fund Market Timing

Academic studies have long suggested that aggregate market returns are predictable and that such pre-

dictability may significantly affect an investor’s asset allocation decisions. Empirical studies have also

identified many economic variables that are predictive of market returns. We therefore turn to the following

two questions. First, do fund managers adjust fund betas in response to those economic variables? Second,

do fund managers rely on such return-predictive economic variables in their market timing?

We focus on several return-predictive economic variables documented in the finance and economics
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literature. They include the short-term interest rate, term premium, credit premium, aggregate dividend

yield, and aggregate earnings-to-price ratio. Following the literature, we use the 1-month T-bill yield as the

short-term interest rate. The term premium is the yield spread between the 10-year T-bond and the 1-month

T-bill. The credit premium is the average yield spread between Moody’s Baa-rated corporate bonds and

Moody’s Aaa-rated corporate bonds. The aggregate dividend yield and earnings-to-price ratio are based on

the S&P 500 stocks.

To address the first question, we use the following panel data model to examine whether fund managers

adjust fund betas based on those variables:

β̂it = ai + bMt−1 + eit (18)

where Mt−1 is the vector of the economic variables and b a vector of coefficients. Similar to (17), the

error term eit is assumed to have a flexible structure and the standard errors are estimated following the

same robust procedure. The regression has an R2 of 0.03 with coefficient estimates -7.81 (-1.01) for the

short rate, -18.30 (-1.63) for the term premium, -12.02 (-0.43) for the credit premium, 50.91 (2.45) for the

aggregate dividend yield, and 4.38 (2.05) for the aggregate earnings-to-price ratio, respectively, where the

numbers in parentheses are the t-statistics of the coefficient estimates. The results indicate that the aggregate

dividend yield and the aggregate earnings-to-price ratio have a significantly positive impact on fund betas,

while the short-term interest rate, term spread, and credit spread do not.

To address the second question of whether or not fund managers rely on economic variables to time the

market, we perform the following regression for each fund:

β̂t = a + bMt−1 + γrmt + et (19)

where the fund subscript is dropped, Mt−1 is a vector of five economic variables and b is a vector of co-

efficients. Our interest is whether the timing measure γ remains significant after controlling for the return-

predictive economic variables. The same intuition is also behind the conditional return-based market-timing

test of Ferson and Schadt (1996). We first estimate γ and its Newey-West t-statistics (with a lag order of 2)
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for each fund, and then compute their cross-sectional statistics.

The statistical inference of the timing measure in (19) is based on the following parametric bootstrap

procedure extended from that in Section II.B. First, we estimate the following models using OLS for the

monthly series of macroeconomic variables and market returns:

Mjt = aj + bjMjt−1 + ejt, j = 1, ..., 5 (20)

rmt = ar +
5∑

j=1

brjMjt−1 + ert (21)

where Mjt denotes the j − th macroeconomic variable. We retain the parameter estimates âj , b̂j , âr, and

b̂rj , as well as the estimated residuals êjt and êrt. Then, in each bootstrap, we jointly resample the estimated

residuals for êrt and êjt−1, with j=1, ..., 5. Denote the resampled series by e∗rt and e∗jt−1
, we then construct

the monthly series of bootstrapped economic variables M ∗

jt and the bootstrapped market return r∗mt as:

M∗

jt = âj + b̂jMjt−1 + e∗jt, j = 1, ..., 5 (22)

r∗mt = âr +
5∑

j=1

b̂rjM
∗

jt−1 + e∗rt (23)

We perform the market-timing test of (19) for each fund, using the bootstrapped M ∗

jt and r∗mt as regressors,

and compute the bootstrapped p-values for the Newey-West t-statistics based on 2,000 replications. Since

the conditional timing test (19) has more regressors than the original test (6), we increase the minimum

requirement of holdings data from 8 to 10 quarters. This reduces the total number of funds in the sample by

113.

The cross-sectional distribution of the t-statistics for γ are reported in Table IX with the bootstrapped

p-values. The results suggest that adding macroeconomic control variables does not substantially change

the test statistics of the timing measures. For example, at the 1-month forecasting horizon, the p-values

for the mean and median t-statistics are above 0.1. At 3-, 6-, and 12-month forecasting horizons, those

p-values are below 0.1. Many other statistics, such as those for the 90, 95 and 99th percentiles, remain

significant. In other words, the market-timing ability of mutual funds does not disappear after controlling

for the return-predictive economic variables.
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Combining the results from (18) and (19), while there is evidence that fund managers do adjust fund be-

tas in response to certain economic variables, they do not solely rely on those variables in timing the market.

There are two possible explanations. First, we have not exhausted all the conditional return-predictive sig-

nals documented in the academic studies. It is possible that mutual fund market-timing activities are related

to other conditional signals not examined here. Second and perhaps more likely, fund managers are using

a set of conditional information beyond the documented economic variables. Identifying such conditional

information is an interesting and yet challenging task. We leave this for future research.

C. Potential Economic Value of Market Timing

The above findings indicate that fund managers not only have positive timing ability but also likely use

private signals to time the market. Such ability is of economic value. Merton (1981) points out that the

value of market timing can be quantified as that of a contingent claim on the market index. Glosten and

Jagannathan (1994) provide a general continuous-time framework for implementing this intuition. Here we

follow their approach to assess the potential economic value of market timing. To be specific, suppose the

fund return process is:

rt − rf = β0(rmt − rf ) + γ(rmt − rf )2 + et (24)

where rf is the constant risk free rate, γ = 0 indicates no timing ability, and γ > 0 indicates positive timing

ability. Therefore, market timing generates additional terminal payoff γ(rmt − rf )2 to a fund, with maturity

equal to the forecasting horizon (1-, 3-, 6-, or 12-month). Further assume that the market index Pm follows

a geometric Brownian motion,

dPm/Pm = umdt + σmdW (25)

Then, the value of market timing V can be derived as:

V = γEQ[(rmt − rf )2] = γ(1 + rf )(eσ2
m − 1) (26)

where EQ[.] denotes the expectation under the risk-neutral measure.
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We compute V̂ = γ̂(eσ̂2
m − 1) for each fund, where γ̂ is estimated using regression (6) with stock betas

estimated from the past 1-year daily returns, and σ̂2
m is estimated from monthly returns of the CRSP value-

weighted index between 1964 and 2002. We then examine the properties of the cross-sectional distribution

for V̂ . Similar to γ̂, V̂ is heteroscedastic across funds. We therefore also base our inference on the re-scaled

variable, V̂ /σv, where σv is the standard deviation of V̂ and obtained via bootstrapping. The bootstrapping

procedure is a slight modification of that used for γ. The difference is that while the resampled market

returns for the subperiod of 1980-2002 are used to compute γ, the resampled returns for the whole period

1964-2002 are used to compute σ2
m. Denote the estimated value of timing for a fund in the j-th bootstrap by

V̂j . Its standard deviation σv is estimated across all bootstraps. Using the same bootstrapping procedure, we

also obtain bootstrapped p-values for the cross-sectional statistics for V̂ and V̂ /σv.

The results are reported in Table X. The value of V̂ is in annualized percentage terms. The mean and

median values of V̂ are quite high. For example, at the 3-month horizon V̂ has a median of 1.22%. Suppose

the annualized risk free rate is 4%, equation (26) implies that the annualized economic value of timing is

about 1.23% for the median fund. The economic value is statistically significant based on the bootstrapped

p-values. Further, the estimates of V̂ for different horizons are of similar size.

We caution that the results reported in Table X are potential economic value of market timing. In the

Glosten and Jagannathan (1994) framework, fund managers are assumed to be able to adjust fund betas

continuously, and there are no transaction costs. With discrete-time trading and realistic transaction costs,

the full value of market timing may not be attainable. In addition, fund betas are assumed to follow the

data-generating process in (3). A more realistic beta process is probably somewhere between (3) and (4).

The latter would imply a lower value of timing. Finally, the market index may not follow a simple geometric

Brownian motion. Realistic features, such as stochastic volatility and jumps, may further affect the value

of timing as a contingent claim. Nonetheless, the magnitude of the potential economic values suggests the

importance of market-timing strategy by mutual funds.
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V. Conclusion

In this paper, we examine mutual fund timing ability using both fund returns data and portfolio holdings

data. Consistent with the previous literature, the return-based measures indicate that on average mutual

funds do not have positive timing ability. On the other hand, the holdings-based measures provide evidence

of significantly positive timing ability by mutual funds. The results also suggest that there are some funds

with strong timing ability; the proportion of those funds in our sample far exceeds what one would expect if

no fund has any timing ability.

We offer two explanations for the different results between the return-based measures and the holdings-

based measures. First, the holdings-based measures are more accurate and statistically more powerful in

detecting market timing ability. Second, the return-based measures may suffer from “artificial timing” bias,

while the holdings-based measures do not. For these reasons, the positive evidence based on the holdings-

based measures should weigh more heavily in shaping our belief about mutual fund timing ability.

Classifying the funds according to investment objectives, we find that aggressive growth funds are the

most active market timers, followed by growth funds, growth and income funds, with balanced funds the

least active. There is also evidence that market timers trade more actively, have higher returns, and tend to be

of no loads or low loads. However, the market timing funds seem to have market-timing information beyond

those common return-predictive economic variables documented in the academic studies. What conditional

information is used by fund managers to time the market remains an interesting and open question.

Finally, we quantify the potential economic value of timing as a contingent claim on the market index.

We find that market timing may contribute to annual fund performance by as high as 1.23% for the median

fund. By making simplifying assumptions and omitting transaction costs, our estimate is probably higher

than the attainable value by mutual funds. Nonetheless, the magnitude of the estimated value indicates that

market-timing is an important investment strategy deserving more academic attention.
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Appendix A. Simulation of Return-based versus Holdings-based Measures

We simulate daily returns for N stocks with the following return process:

rit − rf = βi(rmt − rf ) + εit (A.1)

where βi ∼ U(0, 2), eit ∼ N(0, σ2
ε ), and the market excess return rmt − rf ∼ N(um, σ2

m), εit is i.i.d.

across time series and across funds. Assuming 22 trading days in a month, we aggregate stock returns and

market returns at monthly and quarterly frequencies accordingly.

Assume that a fund manager knows perfectly a stock’s beta, βi. She ranks all stocks according to their

betas, and divides them into a high-beta group (H), and a low-beta group (L), each with N/2 stocks. She

calculates the average betas for the two groups: βH =
∑

i∈H βi/(2N) and βL =
∑

i∈L βi/(2N). At the

beginning of each quarter, the fund manager receives a signal about market returns for the next quarter:

St = rmt − rf + est (A.2)

where est ∼ N(0, σ2
s).

To take advantage of the timing signal St, the fund manager adjusts portfolio weights ωit in the following

way: the weight for each stock in the high-beta group is ωHt = 1/N + 2γ(St − um)/(βH − βL)/N , and

the weight for each stock in the low-beta group is ωLt = 1/N − 2γ(St − um)/(βH − βL)/N . She holds

the portfolio weights constant for the next quarter. Therefore the fund beta for the next quarter is

βt = γ(St − um) + β̄

where β̄ =
∑N

i=1
βi/N is the average beta of the N stocks.

In the above setup, σs measures the accuracy of the fund manager’s market timing information, γ mea-

sures the aggressiveness of her timing strategy. The fund return is:

rt − rf = βt(rmt − rf ) +
∑

i∈H

ωHtεit +
∑

i∈L

ωLtεit = [γ(St − um) + β̄](rmt − rf ) + et

= (β̄ − γum)(rmt − rf ) + γ(rmt − rf )2 + γest(rmt − rf ) + et (A.3)

where et =
∑

i∈H ωHtεit +
∑

i∈L ωLtεit.

We simulate the stock returns rit and the fund manager’s private information St according to (A.1) and

(A.2), respectively. Subsequently we obtain the fund manager’s portfolio weights ωHt and ωLt, the fund

beta process βt, and the fund return process rt. For simplicity, we set rf = 0, um = 0.5%/22. We set the

number of stocks N=60, approximately the median number of stocks held by the mutual funds in our sample

(from Table I). The standard deviation of the idiosyncratic stock return εit is set as σe = 0.17/
√

22, where
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0.17 is approximately the cross-sectional average of the standard deviation of monthly return residuals using

a market model, based on the CRSP stock return data. The standard deviation of the market return is set

as σm = 0.045/
√

22, close to that of the CRSP value-weighted index returns. The total number of months

of stock returns and fund returns T = 132 + 60, where 132 is the mean number of monthly stock return

observations for a typical fund in our sample, and an additional 60 months of stock returns are simulated for

the purpose of estimating the stock betas. We vary two parameters in the simulation. First, the noise-signal

ratio for St, σs/σm, takes values of 0.25, 0.5, 1, 2, and 4. Second, the timing measure γ is set to 0.1, 0.36,

1.35, and 3.11, with 0.36, and 3.11 being the median and 90th percentile of the estimated γ from our data

(Table III) at the 3-month forecasting horizon. We also consider γ = 0.10 and 1.57 in order to cover wide

range degrees of timing activities.

In each simulation, we estimate the return-based measure (1) and the holdings-based measure (6). To

estimate the return-based measure (RB), we use 132 monthly fund returns (from month 61 to month 182).

For the holdings-based measure, we assume that the portfolio holdings are observed only at quarter-end. We

estimate the stock betas on a rolling basis, using three methods: (1) with 264 daily returns (1-year) prior

to a quarter-end (HB1), (2) with 60 monthly returns (5 year) prior to a quarter-end (HB2), and (3) with 66

daily returns (3 months) prior to a quarter-end (HB3). We then estimate the fund betas using the quarterly

portfolio weights and estimated stock betas. Finally, we compute the holdings-based measure using 27

quarters of fund betas, from quarter 21 to quarter 47. Note that the return-based and holdings-based timing

measures employ time series data of different lengths. This is consistent with our data sample.

The simulation is replicated 10,000 times to obtain a series of return-based and holdings-based timing

measures. Table A.I reports the means and standard deviations of various measures. The results confirm our

conjecture in Section I.C. The means of both types of measures are quite close to the true values, except that

there is a slight downward bias in the return-based measure. There are significant differences in the standard

deviations. For example, when γ = 0.10 and σs/σm = 0.25, the standard deviation for the return-based

measure is 0.72, while those for the three holdings-based measures are 0.07, 0.16, and 0.12, respectively.

The two types of measures are closest to each other in standard deviation for the case where γ = 3.11 and

σs/σm = 4. Even in this case, the standard deviation of the return-based measure is about 50% larger than

those for the holdings-based measures.

We also perform simulations with k=0. In this case, the standard deviation for the return-based measure

is 0.72, versus 0.08, 0.16, and 0.12 for the three holdings-based measures. For brevity, these results are not

reported.
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Table I

Summary Statistics of Fund Characteristics

Table I reports the characteristics of mutual funds in the sample with a breakdown according to investment objectives. Total

net assets, annual return, turnover, annual load, expense ratio, percentage investment in stocks, and average number of stocks

held are first averaged over the time series data of each fund, and then averaged across funds. A fund’s annual load is

calculated as the total load divided by 7. Median number of stocks held is the cross-sectional median of the time series

averages. Age is the average life of funds in the sample, where fund life is defined as the time between the first and last

reported monthly returns. “NOBS – return” denotes the average number of monthly return observations across funds, and

“NOBS – holdings” denotes the cross-sectional average number of quarters with portfolio holdings information.

All Funds Aggressive Growth Growth Growth & Income Balanced

Number of funds 2294 255 1390 441 208

Total net assets ($ millions ) 482.60 545.95 397.52 773.93 360.96

Annual return (%) 9.96 11.76 9.97 9.71 8.18

Turnover (%/year) 0.94 1.13 0.98 0.73 0.94

Annual load (%/year) 0.30 0.39 0.27 0.35 0.30

Expense ratio (%/year) 1.31 1.43 1.34 1.19 1.16

Investment in stocks (%) 74.73 70.37 81.36 66.44 46.71

Age (years) 13.46 17.21 11.86 16.15 13.46

Average number of stocks held 102.15 91.57 104.70 90.94 122.39

Median number of stocks held 61.90 66.38 61.95 59.65 63.36

NOBS – return 131.96 165.65 119.90 150.39 132.91

NOBS – holdings 27.24 36.93 24.52 30.75 26.30
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Table II

Return-based Timing Measures

Table II reports the cross-sectional distribution of the estimated Henriksson-Merton measure and Treynor-Mazuy measure and the Newey-

West t-statistics. The forecasting horizon is 1-month. The bootstrapped p-values for both the γ estimates and the Newey-West t-statistics

are reported, respectively, in the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and

kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: Treynor-Mazuy Measure (1-Month Forecasting Horizon)

γ̂ -3.13 -2.10 -1.63 -0.79 -0.26 -0.15 0.30 0.79 1.25 2.67 1.09 0.32 9.10

p (0.65) (0.79) (0.81) (0.81) (0.70) (0.69) (0.52) (0.46) (0.45) (0.47) (0.43) (0.46) (0.35)

t -4.08 -2.86 -2.14 -1.27 -0.28 -0.28 0.71 1.53 2.12 3.42 1.59 0.28 8.54

p (0.89) (0.88) (0.84) (0.77) (0.67) (0.66) (0.51) (0.42) (0.37) (0.28) (0.06) (0.32) (0.04)

Panel B: Henriksson-Merton Measure (1-Month Forecasting Horizon)

γ̂ -0.66 -0.42 -0.32 -0.15 -0.04 -0.01 0.09 0.20 0.29 0.53 0.23 -0.25 6.38

p (0.47) (0.58) (0.62) (0.60) (0.59) (0.56) (0.60) (0.62) (0.63) (0.71) (0.74) (0.57) (0.36)

t -3.05 -2.09 -1.63 -0.86 -0.08 -0.08 0.72 1.47 1.92 2.90 1.24 -0.03 3.96

p (0.89) (0.83) (0.78) (0.69) (0.57) (0.58) (0.44) (0.33) (0.28) (0.20) (0.04) (0.54) (0.50)
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Table III

Holdings-based Treynor-Mazuy Measure

Table III reports the cross-sectional distribution of the estimated holdings-based Treynor-Mazuy measure and the Newey-West t-statistics

with 1-, 3-, 6-, and 12-month forecasting horizons. The stock betas are estimated using the past 1-year daily returns. The timing measures

γ̂ are pre-multiplied by 100. The bootstrapped p-values for both the γ estimates and the Newey-West t-statistics are reported, respectively,

in the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 1-Month Forecasting Horizon

γ̂ -14.96 -5.33 -3.22 -0.90 1.35 0.34 2.09 5.00 7.48 24.27 30.54 40.16 1870

p (0.31) (0.40) (0.44) (0.29) (0.12) (0.14) (0.11) (0.10) (0.14) (0.10) (0.39) (0.03) (0.05)

t -3.00 -1.73 -1.22 -0.53 0.19 0.23 0.95 1.58 2.02 3.10 1.21 -0.41 5.75

p (0.28) (0.18) (0.14) (0.18) (0.29) (0.24) (0.33) (0.47) (0.52) (0.62) (0.86) (0.85) (0.53)

Panel B: 3-Month Forecasting Horizon

γ̂ -7.61 -2.78 -1.48 -0.21 1.05 0.36 1.57 3.11 4.55 13.81 12.20 22.49 662.4

p (0.26) (0.33) (0.21) (0.04) (0.04) (0.01) (0.02) (0.04) (0.08) (0.07) (0.72) (0.21) (0.63)

t -3.09 -1.79 -1.15 -0.25 0.60 0.64 1.51 2.30 2.77 3.88 1.42 -0.27 4.60

p (0.50) (0.32) (0.13) (0.03) (0.02) (0.01) (0.01) (0.03) (0.05) (0.12) (0.14) (0.80) (0.73)

Panel C: 6-Month Forecasting Horizon

γ̂ -6.40 -2.38 -1.24 -0.16 1.20 0.46 1.44 2.85 3.97 15.81 11.50 22.73 633.9

p (0.39) (0.45) (0.29) (0.07) (0.01) (0.01) (0.01) (0.03) (0.06) (0.00) (0.50) (0.20) (0.64)

t -4.04 -2.09 -1.39 -0.26 0.72 0.78 1.79 2.73 3.35 4.65 1.76 -0.55 7.77

p (0.79) (0.47) (0.31) (0.06) (0.03) (0.02) (0.02) (0.03) (0.04) (0.09) (0.04) (0.92) (0.15)

Panel D: 12-Month Forecasting Horizon

γ̂ -5.41 -2.00 -1.20 -0.17 0.85 0.36 1.12 2.30 3.20 10.37 8.47 19.27 546.1

p (0.33) (0.36) (0.34) (0.11) (0.05) (0.04) (0.07) (0.09) (0.16) (0.06) (0.54) (0.23) (0.67)

t -5.36 -2.61 -1.59 -0.37 0.85 0.87 2.07 3.44 4.40 6.43 2.24 -0.41 7.90

p (0.83) (0.48) (0.26) (0.10) (0.06) (0.04) (0.03) (0.03) (0.03) (0.05) (0.03) (0.86) (0.14)
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Table IV

Holdings-based Treynor-Mazuy Measure: Alternative Stock Betas

Table IV reports the cross-sectional distribution of the Newey-West t-statistics for the holdings-based Treynor-Mazuy measure with 1-, 3-, 6-,

and 12-month forecasting horizons. The holdings-based measures are based on alternative stock betas estimated from the past five-year monthly

returns (5y) and the past 3-month daily returns (3m), respectively. The bootstrapped p-values for the Newey-West t-statistics are reported in

the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 1-Month Forecasting Horizon

5y t -2.84 -1.64 -1.23 -0.52 0.20 0.24 0.97 1.63 1.99 2.92 1.16 -0.19 4.34

p (0.15) (0.07) (0.14) (0.14) (0.25) (0.21) (0.31) (0.39) (0.57) (0.81) (0.94) (0.69) (0.90)

3m t -2.81 -1.73 -1.15 -0.46 0.29 0.30 1.04 1.72 2.23 3.25 1.22 0.04 5.32

p (0.09) (0.11) (0.03) (0.04) (0.10) (0.09) (0.15) (0.27) (0.30) (0.55) (0.87) (0.41) (0.65)

Panel B: 3-Month Forecasting Horizon

5y t -3.39 -1.87 -1.19 -0.30 0.59 0.69 1.50 2.31 2.91 4.20 1.49 -0.17 4.92

p (0.69) (0.39) (0.13) (0.02) (0.01) (0.00) (0.00) (0.02) (0.02) (0.06) (0.10) (0.72) (0.63)

3m t -3.02 -1.86 -2.23 -0.40 0.44 0.46 1.27 2.11 2.73 4.01 1.43 -0.14 5.15

p (0.50) (0.32) (0.13) (0.03) (0.02) (0.01) (0.01) (0.03) (0.05) (0.12) (0.12) (0.71) (0.56)

Panel C: 6-Month Forecasting Horizon

5y t -4.70 -2.43 -1.56 -0.44 0.63 0.70 1.75 2.86 3.50 5.17 1.90 -0.34 5.50

p (0.88) (0.71) (0.47) (0.13) (0.04) (0.03) (0.02) (0.02) (0.02) (0.04) (0.03) (0.87) (0.45)

3m t -3.96 -2.23 -1.44 -0.45 0.48 0.57 1.47 2.35 2.90 4.12 1.62 -0.64 6.64

p (0.86) (0.65) (0.31) (0.07) (0.03) (0.01) (0.01) (0.02) (0.03) (0.08) (0.05) (0.97) (0.19)

Panel D: 12-Month Forecasting Horizon

5y t -6.80 -3.51 -2.26 -0.80 0.38 0.44 1.67 3.02 3.99 6.23 2.38 -0.33 6.05

p (0.96) (0.83) (0.64) (0.33) (0.23) (0.20) (0.12) (0.08) (0.07) (0.08) (0.03) (0.83) (0.33)

3m t -4.86 -2.36 -1.64 -0.56 0.41 0.42 1.45 2.58 3.21 4.64 1.82 -0.61 7.07

p (0.93) (0.42) (0.31) (0.10) (0.09) (0.08) (0.05) (0.02) (0.05) (0.13) (0.06) (0.98) (0.11)
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Table V

Holdings-based Henriksson-Merton Measure

Table V reports the cross-sectional distribution of the Newey-West t-statistics for the holdings-based Henriksson-Merton measure with 1-,

3-, 6-, and 12-month forecasting horizons. The stock betas are estimated using the past 1-year daily returns (1y), the past five-year monthly

returns (5y), and the past 3-month daily returns (3m), respectively. The bootstrapped p-values for the Newey-West t-statistics are reported in

the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 1-Month Forecasting Horizon

1y t -2.62 -1.83 -1.34 -0.70 0.09 0.15 0.90 1.56 1.90 2.54 1.15 -0.15 3.20

p (0.61) (0.67) (0.52) (0.47) (0.39) (0.32) (0.32) (0.28) (0.36) (0.62) (0.34) (0.79) (0.90)

5y t -2.48 -1.77 -1.31 -0.61 0.23 0.29 1.04 1.70 2.10 2.80 1.19 -0.05 3.28

p (0.42) (0.57) (0.46) (0.32) (0.19) (0.13) (0.14) (0.14) (0.15) (0.29) (0.22) (0.61) (0.84)

3m t -2.54 -1.74 -1.33 -0.70 0.06 0.06 0.80 1.49 1.84 2.65 1.11 0.04 3.43

p (0.36) (0.47) (0.45) (0.46) (0.48) (0.44) (0.51) (0.45) (0.59) (0.68) (0.70) (0.44) (0.86)

Panel B: 3-Month Forecasting Horizon

1y t -2.58 -1.62 -1.21 -0.55 0.32 0.33 1.17 1.85 2.22 3.13 1.23 -0.19 3.69

p (0.52) (0.39) (0.35) (0.28) (0.16) (0.16) (0.09) (0.09) (0.13) (0.15) (0.15) (0.83) (0.61)

5y t -3.02 -1.88 -1.41 -0.71 0.17 0.20 1.05 1.79 2.16 2.93 1.26 -0.17 3.15

p (0.85) (0.70) (0.63) (0.51) (0.31) (0.27) (0.14) (0.10) (0.14) (0.24) (0.15) (0.82) (0.92)

3m t -2.81 -1.64 -1.13 -0.47 0.29 0.29 1.05 1.78 2.25 3.25 1.20 -0.01 3.79

p (0.67) (0.33) (0.15) (0.12) (0.12) (0.10) (0.12) (0.09) (0.09) (0.13) (0.30) (0.56) (0.65)

Panel C: 6-Month Forecasting Horizon

1y t -3.88 -2.40 -1.66 -0.60 0.51 0.59 1.63 2.62 3.28 4.66 1.81 -0.07 6.03

p (0.90) (0.87) (0.72) (0.34) (0.09) (0.07) (0.02) (0.01) (0.01) (0.02) (0.03) (0.58) (0.18)

5y t -4.70 -2.82 -2.07 -0.79 0.35 0.44 1.58 2.65 3.22 4.80 2.01 -0.43 11.11

p (0.98) (0.96) (0.92) (0.54) (0.16) (0.11) (0.02) (0.01) (0.01) (0.02) (0.03) (0.87) (0.08)

3m t -3.53 -2.25 -1.52 -0.52 0.45 0.49 1.46 2.42 2.97 4.47 1.63 -0.06 4.55

p (0.88) (0.86) (0.64) (0.17) (0.04) (0.02) (0.00) (0.01) (0.01) (0.01) (0.04) (0.57) (0.46)
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Table VI

Return-based Timing Measures: Extended Forecasting Horizons

Table VI reports the cross-sectional distribution of the Newey-West t-statistics for the return-based Treynor-Mazuy measure (TM) and

Henriksson-Merton measure (HM) with 3-, 6-, and 12-month forecasting horizons. The bootstrapped p-values for the Newey-West t-statistics

are reported in the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 3-Month Forecasting Horizon

TM t -4.02 -2.61 -1.95 -1.12 -0.15 -0.17 0.77 1.84 2.52 3.77 1.55 0.04 3.85

p (0.90) (0.83) (0.77) (0.70) (0.60) (0.59) (0.50) (0.31) (0.22) (0.12) (0.06) (0.45) (0.55)

HM t -3.43 -2.17 -1.66 -0.92 -0.10 -0.16 0.67 1.65 2.26 3.21 1.34 0.07 3.71

p (0.85) (0.75) (0.70) (0.64) (0.56) (0.60) (0.50) (0.33) (0.24) (0.20) (0.09) (0.39) (0.63)

Panel B: 6-Month Forecasting Horizon

TM t -6.17 -4.08 -3.06 -1.42 0.37 0.42 2.14 3.90 4.79 6.55 2.74 -0.06 3.52

p (0.87) (0.85) (0.79) (0.61) (0.28) (0.28) (0.13) (0.02) (0.02) (0.01) (0.01) (0.41) (0.84)

HM t -6.14 -4.29 -3.37 -1.63 0.14 0.32 1.91 3.36 4.35 6.49 2.64 -0.10 3.19

p (0.88) (0.86) (0.85) (0.69) (0.39) (0.36) (0.18) (0.08) (0.05) (0.03) (0.05) (0.47) (0.85)

Panel C: 12-Month Forecasting Horizon

TM t -22.49 -12.80 -7.39 -2.53 0.17 0.44 3.49 7.44 9.98 17.49 7.279 0.38 12.67

p (0.84) (0.82) (0.68) (0.34) (0.23) (0.22) (0.08) (0.04) (0.06) (0.18) (0.14) (0.41) (0.36)
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Table VII

Investment Objectives and Market Timing
Table VII reports the cross-sectional distribution of the Newey-West t-statistics for the holdings-based Treynor-Mazuy measure for four fund

groups. “AGG” refers to the aggressive growth funds, “GRO” the growth funds, “G&I” the growth and income funds, and “BAL” the balanced

funds. The stock betas are estimated from the past 1-year daily returns. The bootstrapped p-values for the Newey-West t-statistics are reported in

the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 1-Month Forecasting Horizon

AGG t -2.39 -1.16 -0.82 -0.17 0.54 0.54 1.23 1.87 2.48 3.65 1.13 0.05 4.45
p (0.12) (0.00) (0.00) (0.01) (0.02) (0.02) (0.05) (0.13) (0.10) (0.20) (0.79) (0.46) (0.37)

GRO t -2.97 -1.70 -1.22 -0.54 0.22 0.26 1.01 1.63 2.08 3.21 1.22 -0.35 5.76
p (0.24) (0.15) (0.15) (0.22) (0.29) (0.25) (0.29) (0.41) (0.49) (0.60) (0.86) (0.80) (0.52)

G&I t -3.03 -1.83 -1.30 -0.60 0.05 0.14 0.76 1.27 1.65 2.84 1.10 -0.33 3.98
p (0.35) (0.30) (0.24) (0.25) (0.47) (0.33) (0.60) (0.83) (0.90) (0.77) (0.96) (0.78) (0.72)

BAL t -4.46 -2.45 -1.67 -0.81 -0.16 -0.06 0.54 1.36 1.88 2.41 1.35 -1.08 7.61
p (0.92) (0.83) (0.68) (0.52) (0.73) (0.61) (0.85) (0.75) (0.68) (0.90) (0.42) (0.96) (0.14)

Panel B: 3-Month Forecasting Horizon

AGG t -3.52 -1.56 -0.90 -0.11 0.68 0.90 1.53 2.22 2.73 3.33 1.36 -0.76 4.87
p (0.92) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.21) (0.05) (0.97) (0.28)

GRO t -3.16 -1.81 -1.10 -0.25 0.66 0.70 1.60 2.36 2.82 3.87 1.43 -0.25 4.27
p (0.37) (0.18) (0.02) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.14) (0.15) (0.81) (0.96)

G&I t -2.96 -1.76 -1.16 -0.25 0.56 0.54 1.43 2.17 2.64 4.34 1.37 0.19 4.17
p (0.34) (0.14) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.16) (0.27) (0.77)

BAL t -3.56 -2.01 -1.59 -0.59 0.20 0.26 1.10 1.85 2.25 3.51 1.47 -0.70 7.18
p (0.78) (0.49) (0.61) (0.09) (0.13) (0.07) (0.05) (0.07) (0.22) (0.27) (0.06) (0.95) (0.17)

Panel C: 6-Month Forecasting Horizon

AGG t -3.09 -1.33 -0.89 -0.15 0.79 0.94 1.74 2.43 2.92 3.81 1.44 -0.69 4.86
p (0.44) (0.05) (0.05) (0.04) (0.02) (0.01) (0.02) (0.03) (0.06) (0.21) (0.22) (0.95) (0.27)

GRO t -3.58 -2.10 -1.40 -0.20 0.79 0.82 1.84 2.88 3.53 4.86 1.77 -0.20 6.74
p (0.59) (0.47) (0.35) (0.06) (0.04) (0.03) (0.02) (0.03) (0.04) (0.09) (0.07) (0.73) (0.22)

G&I t -5.15 -2.01 -1.45 -0.32 0.62 0.72 1.68 2.67 3.21 4.43 1.76 -0.68 6.00
p (0.96) (0.40) (0.36) (0.07) (0.04) (0.02) (0.01) (0.01) (0.04) (0.10) (0.03) (0.94) (0.19)

BAL t -5.62 -2.49 -1.76 -0.61 0.33 0.51 1.48 2.57 2.94 4.17 1.99 -1.91 13.95
p (0.99) (0.75) (0.64) (0.25) (0.17) (0.07) (0.05) (0.04) (0.10) (0.16) (0.01) (0.99) (0.03)

Panel D: 12-Month Forecasting Horizon

AGG t -4.35 -2.31 -1.46 -0.12 0.71 0.76 1.77 2.73 3.43 4.25 1.78 -0.92 6.73
p (0.62) (0.40) (0.23) (0.03) (0.08) (0.06) (0.07) (0.10) (0.10) (0.41) (0.23) (0.97) (0.11)

GRO t -5.00 -2.50 -1.51 -0.38 0.95 0.91 2.18 3.67 4.81 6.84 2.29 -0.38 8.37
p (0.71) (0.42) (0.25) (0.14) (0.07) (0.05) (0.04) (0.03) (0.03) (0.05) (0.04) (0.83) (0.11)

G&I t -6.79 -2.63 -1.71 -0.41 0.71 0.86 1.95 3.10 3.96 6.28 2.26 -0.42 7.90
p (0.97) (0.50) (0.32) (0.11) (0.07) (0.03) (0.03) (0.04) (0.05) (0.05) (0.03) (0.84) (0.12)

BAL t -6.33 -3.21 -1.90 -0.66 0.65 0.68 1.92 3.48 4.39 5.90 2.29 -0.36 4.29
p (0.95 ) (0.75) (0.45) (0.21) (0.08) (0.06) (0.04) (0.02) (0.04) (0.09) (0.05) (0.78) (0.54)
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Table VIII

Fund Characteristics and Market Timing

Table VIII reports the estimated coefficients of the following panel data model:

β̂it = ai + (b0 + b1Turnover + b2Load + b3Expense + b4RET + b5 ln(TNA))rmt + eit

where β̂it is the beta estimate of fund i with stock betas estimated using the past 12-month daily returns. The forecasting

horizons are 1-, 3-, 6-, and 12-month. Turnover is the annual fund turnover. Load is the annual fund load. Expense is the

annual expense ratio, RET is the average annual return. Ln(TNA) is the natural log of total net assets. Turnover, Load,

Expense, RET, and TNA used in the panel data model are the time series averages for each fund. The t-statistics are

computed following a robust procedure and reported in the parentheses next to the coefficient estimates.

Forecasting Horizon Constant Turnover Load Expense RET ln(TNA)

1-Month 0.31 (0.46) 0.76 (1.37) -1.71 (-2.46) 0.70 (1.23) 2.69 (2.18) -0.33 (-0.41)

3-Month 0.06 (0.38) 0.42 (1.90) -1.46 (-3.01) 0.10 (0.97) 1.01 (2.08) 0.11 (1.25)

6-Month -0.07 (-0.30) 0.25 (1.74) -1.20 (-2.42) 0.34 (2.22) 1.40 (1.94) 0.20 (1.28)

12-Month 0.17 (0.27) 0.10 (1.80) -1.19 (-2.26) 0.21 (2.25) 1.77 (2.26) 0.20 (1.86)

40



Table IX

Conditional Information and Market Timing

Table IX reports the cross-sectional distribution of the Newey-West t-statistics for the γ estimates from the following regression:

β̂t = a + bMt−1 + γrmt + et

The regression is performed for each fund, where Mt−1 is a vector of five economic variables – Short, Term, Credit, D/P and E/P. Fund

betas are computed using stock beta estimates based on the past 1-year daily returns. The bootstrapped p-values for the Newey-West t-

statistics are reported in the parentheses underneath. “Stdev”, “Skew”, and “Kurto” denote the standard deviation, skewness, and kurtosis,

respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 1-Month Forecasting Horizon

t -3.14 -1.88 -1.36 -0.61 0.20 0.20 1.00 1.71 2.27 3.55 1.35 -0.02 8.61

p (0.35) (0.32) (0.27) (0.23) (0.22) (0.21) (0.18) (0.24) (0.20) (0.27) (0.43) (0.50 ) (0.44 )

Panel B: 3-Month Forecasting Horizon

t -2.73 -1.68 -1.20 -0.46 0.41 0.47 1.24 1.96 2.45 3.50 1.33 -0.27 7.54

p (0.06) (0.10) (0.09) (0.07) (0.04) (0.02) (0.03) (0.06) (0.09) (0.29) (0.53) (0.72 ) (0.55 )

Panel C: 6-Month Forecasting Horizon

t -3.34 -2.11 -1.45 -0.56 0.41 0.46 1.36 2.23 2.84 4.16 1.54 -0.10 4.69

p (0.65) (0.70) (0.46) (0.17) (0.04) (0.02) (0.01) (0.00) (0.01) (0.03) (0.03) (0.61 ) (0.94 )

Panel D: 12-Month Forecasting Horizon

t -4.57 -2.86 -2.08 -0.80 0.35 0.32 1.48 2.71 3.48 5.69 2.05 0.70 10.28

p (0.90) (0.89) (0.91) (0.57) (0.07) (0.09) (0.00) (0.00) (0.00) (0.00) (0.00) (0.12 ) (0.33 )
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Table X

Potential Economic Value of Market Timing

Table X reports the cross-sectional distribution of the economic value of market timing and the scaled value of timing V̂ = γ̂(eσ2

m
− 1), where

γ̂ is the holdings-based Treynor-Mazuy measure with stock betas estimated using the past 1-year daily returns, and σ2

m is the variance estimate

of the continuously-compounded market returns. V̂ is annualized and in percentage terms. V̂ /σv is the scaled value of timing, where σv is

the standard deviation of bootstrapped V̂ s. The numbers in the parentheses underneath are the bootstrapped p-values. “Stdev”, “Skew”, and

“Kurto” denote the standard deviation, skewness, and kurtosis, respectively.

1% 5% 10% 25% Mean Median 75% 90% 95% 99% Stdev Skew Kurto

Panel A: 1-Month Forecasting Horizon

V̂ (%) -37.22 -13.26 -8.01 -2.24 3.37 0.84 5.21 12.44 18.61 60.40 76.01 40.16 1870

p (0.17) (0.20) (0.23) (0.18) (0.14) (0.18) (0.18) (0.20) (0.28) (0.17) (0.57) (0.03) (0.05)

V̂ /σv -2.53 -1.63 -1.12 -0.46 0.14 0.19 0.79 1.34 1.66 2.36 0.99 -0.27 3.50

p (0.79) (0.60) (0.37) (0.23) (0.26) (0.20) (0.26) (0.29) (0.34) (0.34) (0.41) (0.95) (0.17)

Panel B: 3-Month Forecasting Horizon

V̂ (%) -18.99 -6.94 -3.69 -0.513 2.85 1.22 3.93 7.78 11.34 34.45 30.43 21.66 661.9

p (0.10) (0.14) (0.08) (0.02) (0.06) (0.03) (0.06) (0.14) (0.22) (0.17) (0.88) (0.22) (0.65)

V̂ /σv -2.10 -1.27 -0.86 -0.19 0.37 0.45 1.00 1.41 1.71 2.30 0.92 -0.46 3.51

p (0.37) (0.13) (0.06) (0.02) (0.05) (0.04) (0.10) (0.23) (0.28) (0.35) (0.59) (1.00) (0.10)

Panel C: 6-Month Forecasting Horizon

V̂ (%) -16.00 -5.95 -3.11 -0.41 3.01 1.14 3.59 7.12 9.94 39.55 28.76 22.73 633.9

p (0.17) (0.23) (0.14) (0.04) (0.03) (0.03) (0.05) (0.09) (0.17) (0.01) (0.70) (0.20) (0.63)

V̂ /σv -2.22 -1.43 -1.00 -0.20 0.41 0.55 1.10 1.53 1.79 2.59 1.02 -0.52 3.93

p (0.59) (0.37) (0.23) (0.05) (0.06) (0.04) (0.08) (0.16) (0.21) (0.12) (0.30) (1.00) (0.02)

Panel D: 12-Month Forecasting Horizon

V̂ (%) -13.61 -5.04 -3.02 -0.44 2.13 0.90 2.81 5.78 8.06 26.10 21.33 19.27 546.0

p (0.16) (0.19) (0.20) (0.08) (0.08) (0.07) (0.15) (0.21) (0.31) (0.13) (0.73) (0.23) (0.67)

V̂ /σv -2.07 -1.35 -0.91 -0.22 0.33 0.48 1.00 1.33 1.54 2.00 0.90 -0.67 3.66

p (0.54) (0.33) (0.17) (0.09) (0.13) (0.08) (0.16) (0.34) (0.44) (0.51) (0.55) (1.00) (0.04)
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Table A.I

Simulation Results of Return-based versus Holdings-based Measures

Table A.I reports the results of the simulation detailed in Appendix A for both return-based and holdings-based timing measures. We simulate daily returns according

to (A.1), the market timing signals according to (A.2), and obtain corresponding fund betas and fund returns. We then compute the return-based Treynor-Mazuy timing

measure (RB), and three holdings-based measures with stock betas estimated using (1) the past 1-year daily returns (HB1), (2) the past 5-year monthly returns (HB2),

and (3) the past 3-month daily returns (HB3). The simulation is performed with different values for the timing measure γ and the noise-signal ratio σs/σm. The mean

and standard deviation (in the parentheses below the mean) of various timing measures with 10,000 replications are reported.

γ 0.10 0.36 1.35 3.11
σs

σm

RB HB1 HB2 HB3 RB HB1 HB2 HB3 RB HB1 HB2 HB3 RB HB1 HB2 HB3

0.25 0.092 0.100 0.099 0.100 0.347 0.359 0.359 0.360 1.316 1.349 1.349 1.350 3.040 3.108 3.108 3.109

(0.72) (0.07) (0.16) (0.12) (0.71) (0.08) (0.16) (0.12) (0.82) (0.09) (0.17) (0.18) (1.11) (0.15) (0.23) (0.35)

0.50 0.092 0.100 0.099 0.100 0.353 0.360 0.359 0.360 1.334 1.350 1.349 1.351 3.068 3.111 3.108 3.112

(0.72) (0.08) (0.16) (0.12) (0.71) (0.08) (0.16) (0.12) (0.82) (0.12) (0.19) (0.20) (1.14) (0.22) (0.28) (0.39)

1.00 0.094 0.100 0.099 0.099 0.358 0.359 0.360 0.361 1.330 1.350 1.350 1.350 3.051 3.108 3.107 3.108

(0.72) (0.08) (0.16) (0.12) (0.72) (0.10) (0.17) (0.13) (0.82) (0.18) (0.23) (0.24) (1.20) (0.38) (0.42) (0.50)

2.00 0.097 0.099 0.099 0.099 0.348 0.361 0.360 0.360 1.331 1.354 1.357 1.356 3.056 3.101 3.102 3.102

(0.72) (0.08) (0.16) (0.12) (0.73) (0.11) (0.18) (0.15) (0.90) (0.33) (0.36) (0.37) (1.45) (0.74) (0.77) (0.81)

4.00 0.098 0.100 0.100 0.100 0.357 0.360 0.361 0.360 1.312 1.351 1.350 1.348 3.053 3.112 3.110 3.112

(0.73) (0.09) (0.17) (0.13) (0.76) (0.19) (0.24) (0.21) (1.12) (0.65) (0.67) (0.68) (2.17) (1.49) (1.50) (1.52)
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Figure 1: The Density of t-statistics for the Return-based Timing Measures
Figure 1 plots the density of the cross-sectional distribution of the t-statistics for the return-based timing measures estimated

from all funds, together with that of the bootstrapped t-statistics (the dotted line).
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Figure 2: The Density of t-statistics for the Holdings-based Timing Measures
Figure 2 plots the density of the cross-sectional distribution of the t-statistics for the holdings-based timing measures esti-

mated from all funds with 1-, 3-, 6-, and 12-month forecasting horizons, together with that of the bootstrapped t-statistics

(the dotted line).
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